Protecting Digital Images Using Keys Enhanced by 2D Chaotic Logistic Maps
Abstract
:1. Introduction
- Ease of obtaining a digital color image because of the diversity of the sources it provides and the diversity of the equipment that generates it.
- The digital image can be processed easily because it is presented as a matrix with three dimensions, which consist of a two-dimensional matrix for each of the primary colors (red, green, and blue), as shown in Figure 1.
- Ease of dealing with the matrix of each color, ease of extracting each color from the three colors matrices, and ease of re-combining these matrices to produce the colored image.
- Using the digital revolution in many vital applications, especially engineering, medical, and data security and protection applications.
2. Related Work
3. The Proposed Method
- The private key must be complicated to guess; in addition, it must provide sufficient key space (KS) in order to make the hacking process difficult and provide a high degree of image protection.
- The private key must be sensitive even to very slight changes in order to ensure that any change in the key when decrypting leads to the generation of a bad image, allowing any changes to be accurately considered an attempt to hack the key. Furthermore, the encryption process must change the image to become incomprehensible and useless, while the decryption process must produce an image that is entirely identical to the original image.
- The method must generate high quality parameter values during the encryption–decryption process. An image’s level of damage and subsequent restoration can be evaluated by calculating its MSE, PSNR, and/or CC; these measures of quality can be determined by comparing two images, and can be calculated using Equations (1)–(3) [47,48,49].
- In the encryption phase, the MSE must be very high and the PSNR must be very low, while in the decryption phase the MSE must be zero and thePSNR must be infinite. A good image encryption algorithm should aim to produce an encrypted image that has low correlation with the original image in order to ensure that the encrypted image is highly distorted and difficult to recover without the decryption key.
- The method must minimize both the encryption and decryption times and maximize the encryption and decryption throughput in terms of bytes encrypted or decrypted per second.
- The method should be easy to use and able to process any image without causing any change in the processes implemented by the method.
Algorithm 1 Encryption Process. |
Inputs: Color image to be encrypted, Private Key Output: Encrypted image Process
|
Algorithm 2 Decryption Process. |
Inputs: Encrypted color image, Private Key. Output: Decrypted image Process
|
4. Implementation and Results
4.1. Image Quality
4.2. Sensitivity Analysis
4.3. Security Analysis
1 Bit | 11 bits | 52 bits |
Sign | Exponent | Mantissa |
4.4. Correlation Analysis
4.5. Quality Analysis
4.6. Speed Analysis
- Increasing R and C increases the time required to generate the keys.
- As the values of R and C increase, the time required for encryption increases slightly, suggesting that moderate values of R and C should be selected in order to optimize the efficiency of the proposed method to match the large size of the images in the dataset.
4.7. Attack Robustness Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3DES | Triple Data Encryption Standard |
AES | Advanced Encryption Standard |
BF | Blow Fish |
CC | Correlation Coefficient |
CLM | Chaotic Logistic Map |
CLMK | Chaotic Logistic Map Key |
DES | Data Encryption Standard |
KS | Key Space |
MSE | Mean Square Error |
NPCR | Number of Pixels Change Rate |
PK | Private Key |
PSNR | Peak Signal to Noise Ratio |
SSIM | Structural Similarity Index Measure |
UACI | Unified Average Changing Intensity |
References
- Arora, H.; Soni, G.K.; Kushwaha, R.K.; Prasoon, P. Digital Image Security Based on the Hybrid Model of Image Hiding and Encryption. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 8–10 July 2021; pp. 1153–1157. [Google Scholar]
- Abu-Faraj, M.; Al-Hyari, A.; Alqadi, Z. A Complex Matrix Private Key to Enhance the Security Level of Image Cryptography. Symmetry 2022, 14, 664. [Google Scholar] [CrossRef]
- Abu-Faraj, M.; Aldebei, K.; Alqadi, Z. Simple, Efficient, Highly Secure, and Multiple Purposed Method on Data Cryptography. Trait. Signal 2022, 39, 173–178. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Wang, F. Web-scale multidimensional visualization of big spatial data to support earth sciences—A case study with visualizing climate simulation data. Informatics 2017, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, L.M.G.; Namikawa, L.M.; Castejon, E.F. Digital image processing in remote sensing. In Proceedings of the 2009 Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image Processing, Rio de Janeiro, Brazil, 11–15 October 2009; pp. 59–71. [Google Scholar]
- Abu-Faraj, M.; Zubi, M. Analysis and implementation of kidney stones detection by applying segmentation techniques on computerized tomography scans. Ital. J. Appl. Math. 2020, 43, 590–602. [Google Scholar]
- Ge, Y.; Liu, P.; Ni, Y.; Chen, J.; Yang, J.; Su, T.; Zhang, H.; Guo, J.; Zheng, H.; Li, Z.; et al. Enhancing the X-ray differential phase contrast image quality with deep learning technique. IEEE Trans. Biomed. Eng. 2020, 68, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.Y.; Wang, H.J. Enhancing image quality in Visual Cryptography with colors. In Proceedings of the 2012 International Conference on Information Security and Intelligent Control, Yunlin, Taiwan, 14–16 August 2012; pp. 103–106. [Google Scholar]
- Rasras, R.J.; Abuzalata, M.; Alqadi, Z.; Al-Azzeh, J.; Jaber, Q. Comparative Analysis of Color Image Encryption-Decryption Methods Based on Matrix Manipulation. Int. J. Comput. Sci. Mob. Comput. 2019, 8, 14–26. [Google Scholar]
- Pujari, V.G.; Khot, S.R.; Mane, K.T. Enhanced visual cryptography scheme for secret image retrieval using average filter. In Proceedings of the 2014 IEEE Global Conference on Wireless Computing & Networking (GCWCN), Lonavala, India, 22–24 December 2014; pp. 88–91. [Google Scholar]
- Ibrahim, D.; Ahmed, K.; Abdallah, M.; Ali, A.A. A New Chaotic-Based RGB Image Encryption Technique Using a Nonlinear Rotational 16 × 16 DNA Playfair Matrix. Cryptography 2022, 6, 28. [Google Scholar] [CrossRef]
- Abu-Faraj, M.; Al-Hyari, A.; Al-Taharwa, I.; Al-Ahmad, B.; Alqadi, Z. CASDC: A Cryptographically Secure Data System Based on Two Private Key Images. IEEE Access 2022, 10, 126304–126314. [Google Scholar] [CrossRef]
- Ioannidou, I.; Sklavos, N. On General Data Protection Regulation Vulnerabilities and Privacy Issues, for Wearable Devices and Fitness Tracking Applications. Cryptography 2021, 5, 29. [Google Scholar] [CrossRef]
- Abu-Faraj, M.; Al-Hyari, A.; Aldebei, K.; Alqadi, Z.; Al-Ahmad, B. Rotation Left Digits to Enhance the Security Level of Message Blocks Cryptography. IEEE Access 2022, 10, 69388–69397. [Google Scholar] [CrossRef]
- Stallings, W. Cryptography and Network Security, 4th ed.; Pearson Education: Bengaluru, India, 2006. [Google Scholar]
- Abu-Faraj, M.; Al-Hyari, A.; Al-taharwa, I.; Alqadi, Z.; Ali, B. Increasing the Security of Transmitted Text Messages Using Chaotic Key and Image Key Cryptography. Int. J. Data Netw. Sci. 2023, 7, 809–820. [Google Scholar] [CrossRef]
- Abu-Faraj, M.; Al-Hyari, A.; Al-Ahmad, B.; Alqadi, Z.; Ali, B.; Alhaj, A. Building a Secure Image Cryptography System using Parallel Processing and Complicated Dynamic Length Private Key. Appl. Math. Inf. Sci. (AMIS) 2022, 16, 1017–1026. [Google Scholar] [CrossRef]
- Khan, A.; Chefranov, A.; Demirel, H. Image-Level Structure Recognition Using Image Features, Templates, and Ensemble of Classifiers. Symmetry 2020, 12, 1072. [Google Scholar] [CrossRef]
- Abduljabbar, Z.A.; Abduljaleel, I.Q.; Ma, J.; Sibahee, M.A.A.; Nyangaresi, V.O.; Honi, D.G.; Abdulsada, A.I.; Jiao, X. Provably Secure and Fast Color Image Encryption Algorithm Based on S-Boxes and Hyperchaotic Map. IEEE Access 2022, 10, 26257–26270. [Google Scholar] [CrossRef]
- Chaudhary, N.; Shahi, T.B.; Neupane, A. Secure Image Encryption Using Chaotic, Hybrid Chaotic and Block Cipher Approach. J. Imaging 2022, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Elminaam, D.S.A.; Kader, H.M.A.; Hadhoud, M.M. Performance evaluation of symmetric encryption algorithms. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2008, 8, 280–286. [Google Scholar]
- Singh, S.P.; Maini, R. Comparison of data encryption algorithms. Int. J. Comput. Sci. Commun. 2011, 2, 125–127. [Google Scholar]
- Singh, G.; Kumar, A.; Sandha, K. A study of new trends in Blowfish algorithm. Int. J. Eng. Res. Appl. 2011, 1, 321–326. [Google Scholar]
- Labao, A.; Adorna, H. A CCA-PKE Secure-Cryptosystem Resilient to Randomness Reset and Secret-Key Leakage. Cryptography 2022, 6, 2. [Google Scholar] [CrossRef]
- Agrawal, M.; Mishra, P. A comparative survey on symmetric key encryption techniques. Int. J. Comput. Sci. Eng. 2012, 4, 877. [Google Scholar]
- Nadeem, A.; Javed, M.Y. A performance comparison of data encryption algorithms. In Proceedings of the 2005 International Conference on Information and Communication Technologies, Las Vegas, NV, USA, 4–6 April 2005; pp. 84–89. [Google Scholar]
- Elmanfaloty, R.A.; Abou-Bakr, E. An image encryption scheme using a 1D chaotic double section skew tent map. Complexity 2020, 2020, 7647421. [Google Scholar] [CrossRef]
- Kumar, B.; Karthikka, P.; Dhivya, N.; Gopalakrishnan, T. A performance comparison of encryption algorithms for digital images. Int. J. Eng. Res. Technol. 2014, 3, 2169–2174. [Google Scholar]
- Heucheun Yepdia, L.M.; Tiedeu, A.; Kom, G. A robust and fast image encryption scheme based on a mixing technique. Secur. Commun. Netw. 2021, 2021, 6615708. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Asgari-Chenaghlu, M.; Balafar, M.A.; Feizi-Derakhshi, M.R. A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Signal Process. 2019, 157, 1–13. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X. Multiple-image encryption algorithm based on DNA encoding and chaotic system. Multimed. Tools Appl. 2019, 78, 7841–7869. [Google Scholar] [CrossRef]
- Tang, Z.; Song, J.; Zhang, X.; Sun, R. Multiple-image encryption with bit-plane decomposition and chaotic maps. Opt. Lasers Eng. 2016, 80, 1–11. [Google Scholar] [CrossRef]
- Nita, S.L.; Mihailescu, M.I.; Pau, V.C. Security and Cryptographic Challenges for Authentication Based on Biometrics Data. Cryptography 2018, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Naseer, Y.; Shah, T.; Shah, D.; Hussain, S. A Novel Algorithm of Constructing Highly Nonlinear S-p-boxes. Cryptography 2019, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Cowper, N.; Shaw, H.; Thayer, D. Chaotic Quantum Key Distribution. Cryptography 2020, 4, 24. [Google Scholar] [CrossRef]
- Abu Taha, M.; Hamidouche, W.; Sidaty, N.; Viitanen, M.; Vanne, J.; El Assad, S.; Deforges, O. Privacy Protection in Real Time HEVC Standard Using Chaotic System. Cryptography 2020, 4, 18. [Google Scholar] [CrossRef]
- Raghunandan, K.R.; Dodmane, R.; Bhavya, K.; Rao, N.S.K.; Sahu, A.K. Chaotic-Map Based Encryption for 3D Point and 3D Mesh Fog Data in Edge Computing. IEEE Access 2023, 11, 3545–3554. [Google Scholar] [CrossRef]
- Li, R.; Liu, Q.; Liu, L. Novel image encryption algorithm based on improved logistic map. IET Image Process. 2019, 13, 125–134. [Google Scholar] [CrossRef]
- Del Rey, A.M.; He, P.; Sun, K.; Zhu, C. A Novel Image Encryption Algorithm Based on the Delayed Maps and Permutation-Confusion-Diffusion Architecture. Secur. Commun. Netw. 2021, 2021, 6679288. [Google Scholar] [CrossRef]
- Liu, L.; Hao, S.; Lin, J.; Wang, Z.; Hu, X.; Miao, S. Image block encryption algorithm based on chaotic maps. IET Signal Process. 2018, 12, 22–30. [Google Scholar] [CrossRef]
- Wu, X.; Yu, S.; Gao, L. A chaotic image encryption algorithm based on fractional-order chaotic map and logistic map. Nonlinear Dyn. 2018, 92, 1301–1316. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Zhou, X.; Huang, H. A novel image encryption algorithm based on logistic map. Nonlinear Dyn. 2021, 103, 27–44. [Google Scholar]
- Vijayalakshmi, C.; Lavanya, L.; Navya, C. A Hybrid Encryption Algorithm Based On AES and RSA. Int. J. Innov. Res. Comput. Commun. Eng. 2016, 4, 909–917. [Google Scholar]
- Zhang, L.; Yuan, X.; Wang, K.; Zhang, D. Multiple-image encryption mechanism based on ghost imaging and public key cryptography. IEEE Photonics J. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Gao, W.; Yang, L.; Zhang, D.; Liu, X. Quantum Identity-Based Encryption from the Learning with Errors Problem. Cryptography 2022, 6, 9. [Google Scholar] [CrossRef]
- Salunke, S.; Ahuja, B.; Hashmi, M.F.; Marriboyina, V.; Bokde, N.D. 5D Gauss Map Perspective to Image Encryption with Transfer Learning Validation. Appl. Sci. 2022, 12, 5321. [Google Scholar] [CrossRef]
- Alexan, W.; ElBeltagy, M.; Aboshousha, A. RGB Image Encryption through Cellular Automata, S-Box and the Lorenz System. Symmetry 2022, 14, 443. [Google Scholar] [CrossRef]
- Pourasad, Y.; Cavallaro, F. A novel image processing approach to enhancement and compression of X-ray images. Int. J. Environ. Res. Public Health 2021, 18, 6724. [Google Scholar] [CrossRef] [PubMed]
- Msekh, Z.A.; Hreshee, S.S. Implementation of a chaos-based symmetric text encryption using Arduino microcontrollers. In Proceedings of the Journal of Physics: Conference Series, Quebec City, QC, Canada, 15 June 2021; Volume 1963, p. 012086. [Google Scholar]
- Franzen, R. Kodak Lossless True Color Image Suite. 1999, Volume 4. Available online: http://r0k.us/graphics/kodak (accessed on 10 December 2022).
- Zhu, S.; Wang, G.; Zhu, C. A Secure and Fast Image Encryption Scheme Based on Double Chaotic S-Boxes. Entropy 2019, 21, 790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhang, L.Y.; Wang, J.; Zhang, Y.; Wong, K.w. Chosen-plaintext attack of an image encryption scheme based on modified Permutation–Diffusion structure. Nonlinear Dyn. 2016, 84, 2241–2250. [Google Scholar] [CrossRef] [Green Version]
Method | Throughput (Kbytes per Sec) |
---|---|
Non-chaotic approach | 170.3906 |
Chaotic approach | 141.2305 |
Hyper Chaotic approach | 636.3379 |
Method | Throughput (Kbytes per Sec) |
---|---|
Yepioda et al. [29] | 888.8867 |
Hua et al. [30] | 638.4082 |
Asgari-chenaphlu [31] | 911.0352 |
Zhang and Wang [32] | 360.4102 |
Zhenjun and Sun [33] | 384.9609 |
Rows | Columns | Number of Elements | Generation Time (Sec) |
---|---|---|---|
60 | 60 | 3600 | 4.37 × 10−5 |
80 | 80 | 6400 | 7.22 × 10−5 |
100 | 100 | 10,000 | 1.481 × 10−4 |
150 | 150 | 22,500 | 3.294 × 10−4 |
200 | 200 | 40,000 | 4.764 × 10−4 |
400 | 400 | 160,000 | 5.044 × 10−4 |
600 | 600 | 360,000 | 0.0018 |
1000 | 1000 | 1,000,000 | 0.0032 |
Between Input Image and Encrypted Image | Between Input Image and Recovered Image | |||
---|---|---|---|---|
Kodak Image Index | NPCR | UACI | SSIM | SSIM |
1 | 0.9962 | 0.2862 | −0.0010 | 1 |
3 | 0.9962 | 0.2993 | −0.0007 | 1 |
4 | 0.9961 | 0.3002 | −0.0002 | 1 |
6 | 0.996 | 0.3066 | −0.0005 | 1 |
7 | 0.996 | 0.2864 | −0.0004 | 1 |
8 | 0.996 | 0.3113 | −0.0005 | 1 |
11 | 0.9961 | 0.3013 | 0.0001 | 1 |
13 | 0.9961 | 0.3082 | −0.0001 | 1 |
16 | 0.9961 | 0.2904 | −0.0002 | 1 |
18 | 0.9961 | 0.3336 | 0.0004 | 1 |
20 | 0.9961 | 0.4005 | 0.0002 | 1 |
24 | 0.9961 | 0.3043 | −0.0003 | 1 |
Used PK in the Decryption Phase | Between Input and Decrypted Images | |
---|---|---|
MSE | PSNR | |
40, 50, 3.99, 0.01 | 0 | Infinite |
50, 50, 3.99, 0.01 | 3202.8 | 30.1073 |
40, 60, 3.99, 0.01 | 3322.4 | 29.7408 |
40, 50, 3.97, 0.01 | 3243.7 | 29.9807 |
40, 50, 3.99,0.012 | 3185.0 | 30.1633 |
(See Figure 12) |
Kodak Image Index | Total Encryption Time (Sec) | Throughput (Mbytes per Sec) |
---|---|---|
1 | 5.3297 | 0.2114 |
3 | 4.3760 | 0.2811 |
4 | 3.5063 | 0.3627 |
6 | 2.5266 | 0.4465 |
7 | 5.3041 | 0.2258 |
8 | 6.1289 | 0.1976 |
11 | 5.2619 | 0.2297 |
13 | 4.0444 | 0.3053 |
16 | 4.3109 | 0.2947 |
18 | 4.2384 | 0.3023 |
20 | 4.1395 | 0.3066 |
24 | 3.2900 | 0.3840 |
Average | 4.3714 | 0.2957 |
Kodak Image Index | Red CC | Green CC | Blue CC |
---|---|---|---|
1 | 0.0003 | −0.0016 | −0.0026 |
3 | −0.0008 | −0.0033 | 0.0003 |
4 | 0.0001 | −0.0023 | −0.0016 |
6 | −0.0022 | −0.0014 | −0.0011 |
7 | −0.0015 | −0.0010 | −0.0003 |
8 | −0.0001 | 0.0008 | −0.0002 |
11 | 0.0011 | 0.0036 | 0.0017 |
13 | 0.0001 | 0.0003 | −0.0007 |
16 | −0.0016 | −0.0018 | −0.0012 |
18 | −0.0007 | −0.0015 | 0.0013 |
20 | −0.0008 | 0.0007 | −0.0001 |
24 | −0.0008 | −0.0010 | 0.0001 |
Row Length | Column Length | MSE | PSNR |
---|---|---|---|
60 | 60 | 8771.9 | 20.0322 |
80 | 80 | 8784.8 | 20.0175 |
100 | 100 | 8772.2 | 20.0319 |
150 | 150 | 8774.3 | 20.0295 |
200 | 200 | 8790.1 | 20.0114 |
400 | 400 | 8790.5 | 20.011 |
600 | 600 | 8864 | 19.9277 |
1000 | 1000 | 9961.2 | 18.7607 |
Round # | R | C | r | x |
---|---|---|---|---|
1 | 600 | 600 | 3.99 | 0.001 |
2 | 600 | 600 | 3.99 | 0.01 |
3 | 600 | 600 | 3.99 | 0.1 |
4 | 600 | 600 | 3.99 | 1.0 |
Kodak Image Index | MSE | PSNR |
---|---|---|
1 | 7745.8 | 21.2762 |
3 | 8603.8 | 20.2257 |
4 | 8655.7 | 20.1655 |
6 | 9091.8 | 19.6740 |
7 | 7758.4 | 21.2600 |
8 | 9404.2 | 19.3361 |
11 | 8730.8 | 20.0791 |
13 | 9192.6 | 19.5638 |
16 | 8012.3 | 20.9379 |
18 | 10,846 | 17.9093 |
20 | 15,223 | 14.5196. |
24 | 8923 | 19.8614 |
Key Size | Total Encryption Time | Throughput | |
---|---|---|---|
Row | Column | (Sec) | (Mbyte) |
60 | 60 | 3.6005 | 0.4018 |
60 | 80 | 3.6669 | 0.3933 |
80 | 80 | 3.4963 | 0.4023 |
100 | 150 | 4.4839 | 0.3234 |
150 | 150 | 4.9210 | 0.3053 |
150 | 100 | 4.9309 | 0.2715 |
200 | 200 | 4.7754 | 0.3086 |
400 | 400 | 5.7582 | 0.2202 |
600 | 600 | 4.5435 | 0.3136 |
600 | 800 | 5.8572 | 0.2162 |
1000 | 1000 | 5.4781 | 0.2494 |
Method | Throughput (Kbytes) | Enhancement (Ours/Method) |
---|---|---|
Non-chaotic approach [28] | 170.3906 | 1.78 |
Chaotic approach [28] | 141.2305 | 2.14 |
Hyper Chaotic approach [28] | 636.3379 | 0.48 |
Yepioda et al. [29] | 888.8867 | 0.34 |
Hua et al. [30] | 638.4082 | 0.47 |
Asgari-chenaphlu [31] | 911.0352 | 0.33 |
Zhang and Wang [32] | 360.4102 | 0.84 |
Zhenjun and Sun [33] | 384.9609 | 0.79 |
Our Approach (Average) | 302.7968 | 1.00 |
Occlusion % | SSIM-Decrypted | MSE-Decrypted | PSNR-Decrypted |
---|---|---|---|
0% | 1 | 0 | Infinity |
6.25% | 0.7492 | 525.66 | 48.1787 |
25% | 0.4364 | 2080.4 | 34.4222 |
50% | 0.2147 | 4174 | 27.4589 |
75% | 0.0886 | 6277.1 | 23.3786 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Faraj, M.; Al-Hyari, A.; Obimbo, C.; Aldebei, K.; Altaharwa, I.; Alqadi, Z.; Almanaseer, O. Protecting Digital Images Using Keys Enhanced by 2D Chaotic Logistic Maps. Cryptography 2023, 7, 20. https://doi.org/10.3390/cryptography7020020
Abu-Faraj M, Al-Hyari A, Obimbo C, Aldebei K, Altaharwa I, Alqadi Z, Almanaseer O. Protecting Digital Images Using Keys Enhanced by 2D Chaotic Logistic Maps. Cryptography. 2023; 7(2):20. https://doi.org/10.3390/cryptography7020020
Chicago/Turabian StyleAbu-Faraj, Mua’ad, Abeer Al-Hyari, Charlie Obimbo, Khaled Aldebei, Ismail Altaharwa, Ziad Alqadi, and Orabe Almanaseer. 2023. "Protecting Digital Images Using Keys Enhanced by 2D Chaotic Logistic Maps" Cryptography 7, no. 2: 20. https://doi.org/10.3390/cryptography7020020
APA StyleAbu-Faraj, M., Al-Hyari, A., Obimbo, C., Aldebei, K., Altaharwa, I., Alqadi, Z., & Almanaseer, O. (2023). Protecting Digital Images Using Keys Enhanced by 2D Chaotic Logistic Maps. Cryptography, 7(2), 20. https://doi.org/10.3390/cryptography7020020