Assessment of Endocyn on Dental Pulp Stem Cells (DPSCs): A Pilot Study of Endodontic Irrigant Effects
Abstract
:1. Introduction
2. Methods
2.1. Study Approval for DPSC Lines
2.2. Experimental Reagents
2.3. Growth Assays
2.4. Viability Assays
2.5. RNA Isolation and cDNA Synthesis
2.6. Real-Time qPCR Screening
Positive control primer: | Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) |
GAPDH forward primer | 5′-ATC TTC CAG GAG CGA GAT CC-3′ |
GAPDH reverse primer | 5′-ACC ACT GAC ACG TTG GCA GT-3′ |
ISCT (MSC) validation primers: | |
CD45 forward primer | 5′-CAT ATT TAT TTT GTC CTT CTC CCA-3′ |
CD45 reverse primer | 5′-GAA AGT TTC CAC GAA CGG-3′ |
CD73 forward primer | 5′-AGT CCA CTG GAG AGT TCC TGC A-3′ |
CD73 reverse primer | 5′-TGA GAG GGT CAT AAC TGG GCA C-3′ |
CD90 forward primer | 5′-ATG AAC CTG GCC ATC AGC A-3′ |
CD90 reverse primer | 5′-GTG TGC TCA GGC ACC CC-3′ |
CD105 forward primer | 5′-CCA CTA GCC AGG TCT CGA AG-3′ |
CD105 reverse primer | 5′-GAT GCA GGA AGA CAC TGC TG-3′ |
Stem cell biomarker primers: | |
Nestin forward primer | 5′-CGT TGG AAC AGA GGT TGG AG-3′ |
Nestin reverse primer | 5′-TCC TGA AAG CTG AGG GAA G-3′ |
NANOG forward primer | 5′-GCT GAG ATG CCT CAC ACG GAG-3′ |
NANOG reverse primer | 5′-TCT GTT TCT TGA CTG GGA CCT TGT C-3′ |
Oct-4 forward primer | 5′-TGG AGA AGG AGA AGC TGG AGC AAA A-3′ |
Oct-4 reverse primer | 5′-GGC AGA TGG TCG TTT GGC TGA ATA-3′ |
Sox-2 forward primer | 5′-ATG GGC TCT GTG GTC AAG TC-3′ |
Sox-2 reverse primer | 5′-CCC TCC CAA TTC CCT TGT AT-3′ |
Alkaline phosphatase (ALP) | |
ALP forward primer | 5′-CAC TGC GGA CCA TTC CCA CGT CTT-3′ |
ALP reverse primer | 5′-GCG CCT GGT AGT TGT TGT GAG CAT-3′ |
Dentin sialophosphoprotein (DSPP) | |
DSPP forward primer | 5′-CAA CCA TAG AGA AAG CAA ACG CG-3′ |
DSPP reverse primer | 5′-TTT CTG TTG CCA CTG CTG GGA C-3′ |
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NaOCl | Sodium hypochlorite |
DPSC | Dental pulp stem cell |
UNLV | University of Nevada, Las Vegas |
DMSO | Dimethyl sulfoxide |
PBS | Phosphate-buffered saline |
CD | Cluster of differentiation |
ISCT | International Society for Cellular Therapy |
BGS | Bovine growth serum |
Appendix A
Experimental Condition Observed Response | Statistical Analysis | |
---|---|---|
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [1% PBS] −3.7% −3.4% −4.6% −4.3% −4.1% −4.0% −3.2% −4.4% −3.9% −4.2% −4.6% −4.5% | Average: −4.1% Standard deviation: 0.45 Range: −3.2% to −4.6% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [1% PBS] −10.8% −11.4% −8.5% −7.7% −11.4% −9.9% −9.1% −7.5% −8.6% −9.3% −9.1% −9.4% | Average: −9.4% Standard deviation: 1.29 Range: −7.5% to −11.4% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [10% PBS] 3.4% 4.5% 3.9% 4.1% 3.9% 4.5% 4.4% 4.1% 4.6% 4.2% 3.9% 4.4% | Average: 4.2% Standard deviation: 0.35 Range: 3.4% to 4.5% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [10% PBS] −40.2% −32.8% −35.4% −37.2% −41.2% −40.0% −38.4% −32.5% −37.4% −35.6% −31.2% −31.3% −36.2% | Average: −36.1% Standard deviation: 3.54 Range: −31.2% to −41.2% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [50% PBS] 7.7% 10.6% 9.3% 8.7% 8.2% 9.1% 8.9% 7.8% 7.1% 6.8% 8.6% 8.8% | Average: 8.5% Standard deviation: 1.03 Range: 7.7% to 10.6% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [50% PBS] −45.5% −53.1% −48.3% −51.2% −53.3% −46.4% −43.2% −49.8% −53.2% −55.1% −48.2% −49.0% −49.7% | Average: −49.7% Standard deviation: 3.61 Range: −45.5% to −55.1% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [1% NaOCl] −11.4% −12.3% −14.6% −8.8% −9.4% −9.3% −9.4% −10.6% −11.4% −11.7% −8.9% −8.3% | Average: −10.5% Standard deviation: 1.84 Range: −8.3% to −14.6% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [1% NaOCl] −25.5% −28.5% −31.2% −36.7% −33.4% −29.9% −32.4% −27.8% −28.3% −31.6% −28.9% −25.2% −30.0% | Average: −30.0% Standard deviation: 3.31 Range: −25.2% to −33.4% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [10% NaOCl] −13.4% −10.8% −15.6% −11.4% −10.2% −13.3% −11.4% −13.6% −15.1% −11.8% −12.1% −11.8% | Average: −12.5% Standard deviation: 1.67 Range: −10.2% to −15.6% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [10% NaOCl] −35.9% −31.7% −29.8% −28.6% −31.7% −33.5% −35.5% −32.4% −32.5% −29.5% −27.6% −27.9% | Average: −31.4% Standard deviation: 2.77 Range: −27.6% to −35.9% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [50% NaOCl] −39.9% −33.1% −32.6% −37.5% −29.6% −32.7% −33.1% −31.2% −32.4% −29.3% −35.6% −33.5% | Average: −33.4% Standard deviation: 3.05 Range: −29.3% to −39.9% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [50% NaOCl] −55.2% −48.2% −49.7% −48.2% −51.1% −55.3% −44.8% −43.7% −41.7% −47.4% −49.2% −48.1% | Average: −48.6% Standard deviation: 4.09 Range: −41.7% to −55.3% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [1% Endocyn] −10.2% −9.9% −7.4% −7.7% −9.4% −6.9% −9.2% −9.4% −7.8% −7.6% −7.1% −6.8% | Average: −8.3% Standard deviation: 1.24 Range: −6.9% to −10.2% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [1% Endocyn] −33.4% −27.2% −28.6% −33.8% −35.9% −34.5% −26.5% −27.8% −29.3% −31.1% −25.5% −22.4% | Average: −29.7% Standard deviation: 4.11 Range: −22.4% to −35.9% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [10% Endocyn] −5.5% −7.3% −5.5% −5.9% −6.3% −6.6% −5.2% −5.7% −6.2% −7.2% −5.9% −6.2% | Average: −6.1% Standard deviation: 0.66 Range: −5.2% to −7.3% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [10% Endocyn] −32.5% −34.7% −28.7% −31.2% −27.6% −32.4% −33.1% −36.4% −32.4% −28.5% −27.4% −29.5% | Average: −31.2% Standard deviation: 2.88 Range: −27.4% to−36.4% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Viability [50% Endocyn] −11.3% −18.2% −14.3% −15.5% −18.6% −18.4% −17.5% −16.4% −16.9% −11.9% −12.3% −11.2% | Average: −15.8% Standard deviation: 2.89 Range: −11.2% to −18.6% |
dpsc-3882 dpsc-3924 dpsc-5653 dpsc-7089 dpsc-8124 dpsc-8604 dpsc-9765 dpsc-9894 dpsc-11418 dpsc-11750 dpsc-11836 dpsc-17322 | Growth [50% Endocyn] −55.8% −64.6% −67.5% −68.1% −61.2% −63.2% −55.5% −65.4% −66.6% −61.2% −67.3% −59.0% | Average: −63.0% Standard deviation: 4.44 Range: −55.5% to −68.1% |
References
- Lin, P.Y.; Chen, H.S.; Wang, Y.H.; Tu, Y.K. Primary molar pulpotomy: A systematic review and network meta-analysis. J. Dent. 2014, 42, 1060–1077. [Google Scholar] [CrossRef] [PubMed]
- Marghalani, A.A.; Omar, S.; Chen, J.W. Clinical and radiographic success of mineral trioxide aggregate compared with formocresol as a pulpotomy treatment in primary molars: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2014, 145, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Farhadian, A.; Issa, M.A.; Kingsley, K.; Sullivan, V. Analysis of Pediatric Pulpotomy, Pulpectomy, and Extractions in Primary Teeth Revealed No Significant Association with Subsequent Root Canal Therapy and Extractions in Permanent Teeth: A Retrospective Study. Pediatr. Rep. 2024, 16, 438–450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alqaderi, H.; Lee, C.T.; Borzangy, S.; Pagonis, T.C. Coronal pulpotomy for cariously exposed permanent posterior teeth with closed apices: A systematic review and meta-analysis. J. Dent. 2016, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Elhamouly, Y.; Adham, M.M.; Dowidar, K.M.L.; El Backly, R.M. Outcome assessment methods of bioactive and biodegradable materials as pulpotomy agents in primary and permanent teeth: A scoping review. BMC Oral Health 2024, 24, 496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zarabadi, M.S.; Firoozi, P.; Basir Shabestari, S.; Maleki, A.; Nazemi Salman, B. 3Mixtatin versus MTA in pulp therapy of primary teeth: A systematic review and meta-analysis of current randomized controlled trials. Evid. Based Dent. 2024, 25, 111–112. [Google Scholar] [CrossRef] [PubMed]
- Mungekar-Markandey, S.; Mistry, L.; Jawdekar, A. Clinical Success of Iatrogenic Perforation Repair Using Mineral Trioxide Aggregate and Other Materials in Primary Molars: A Systematic Review and Meta-analysis. Int. J. Clin. Pediatr. Dent. 2022, 15, 610–616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ather, A.; Patel, B.; Gelfond, J.A.L.; Ruparel, N.B. Outcome of pulpotomy in permanent teeth with irreversible pulpitis: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 19664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pedano, M.S.; Li, X.; Yoshihara, K.; Landuyt, K.V.; Van Meerbeek, B. Cytotoxicity and Bioactivity of Dental Pulp-Capping Agents towards Human Tooth-Pulp Cells: A Systematic Review of In-Vitro Studies and Meta-Analysis of Randomized and Controlled Clinical Trials. Materials 2020, 13, 2670. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cushley, S.; Duncan, H.F.; Lappin, M.J.; Chua, P.; Elamin, A.D.; Clarke, M.; El-Karim, I.A. Efficacy of direct pulp capping for management of cariously exposed pulps in permanent teeth: A systematic review and meta-analysis. Int. Endod. J. 2021, 54, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Komora, P.; Vámos, O.; Gede, N.; Hegyi, P.; Kelemen, K.; Galvács, A.; Varga, G.; Kerémi, B.; Vág, J. Comparison of bioactive material failure rates in vital pulp treatment of permanent matured teeth—A systematic review and network meta-analysis. Sci. Rep. 2024, 14, 18421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- González-Gil, D.; Flores-Fraile, J.; Vera-Rodríguez, V.; Martín-Vacas, A.; López-Marcos, J. Comparative Meta-Analysis of Minimally Invasive and Conventional Approaches for Caries Removal in Permanent Dentition. Medicina 2024, 60, 402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Figundio, N.; Lopes, P.; Tedesco, T.K.; Fernandes, J.C.H.; Fernandes, G.V.O.; Mello-Moura, A.C.V. Deep Carious Lesions Management with Stepwise, Selective, or Non-Selective Removal in Permanent Dentition: A Systematic Review of Randomized Clinical Trials. Healthcare 2023, 11, 2338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kulkarni, P.; Tiwari, S.; Agrawal, N.; Kumar, A.; Umarekar, P.; Bhargava, S. Clinical Outcome of Direct Pulp Therapy in Primary Teeth: A Systematic Review and Meta-analysis. J. Indian Soc. Pedod. Prev. Dent. 2022, 40, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.R.; Bendgude, V.D.; Kakodkar, P. Evaluation of Success Rate of Lesion Sterilization and Tissue Repair Compared to Vitapex in Pulpally Involved Primary Teeth: A Systematic Review. J. Conserv. Dent. 2019, 22, 510–515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garrocho-Rangel, A.; Jalomo-Ávila, C.; Rosales-Berber, M.Á.; Pozos-Guillén, A. Lesion Sterilization Tissue Repair (LSTR) Approach Of Non-Vital Primary Molars With A Chloramphenicol-Tetracycline-ZOE Antibiotic Paste: A Scoping Review. J. Clin. Pediatr. Dent. 2021, 45, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.K.; Brigit, B.; Annapoorna, B.S.; Naik, S.B.; Merwade, S.; Rashmi, K. Effect of triple antibiotic paste and calcium hydroxide on the rate of healing of periapical lesions: A systematic review. J. Conserv. Dent. 2021, 24, 307–313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kharchi, A.S.; Tagiyeva-Milne, N.; Kanagasingam, S. Regenerative Endodontic Procedures, Disinfectants and Outcomes: A Systematic Review. Prim. Dent. J. 2020, 9, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Rossi-Fedele, G.; Rödig, T. Effectiveness of root canal irrigation and dressing for the treatment of apical periodontitis: A systematic review and meta-analysis of clinical trials. Int. Endod. J. 2023, 56 (Suppl. S3), 422–435. [Google Scholar] [CrossRef] [PubMed]
- Ruksakiet, K.; Hanák, L.; Farkas, N.; Hegyi, P.; Sadaeng, W.; Czumbel, L.M.; Sang-Ngoen, T.; Garami, A.; Mikó, A.; Varga, G.; et al. Antimicrobial Efficacy of Chlorhexidine and Sodium Hypochlorite in Root Canal Disinfection: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Endod. 2020, 46, 1032–1041.e7. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, P.; Herrera, D.R.; Pecorari, V.G.A.; Gomes, B.P.F.A. Endotoxin levels after chemomechanical preparation of root canals with sodium hypochlorite or chlorhexidine: A systematic review of clinical trials and meta-analysis. Int. Endod. J. 2019, 52, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Soltani, M.K.; Shalavi, S. An update on the management of endodontic biofilms using root canal irrigants and medicaments. Iran. Endod. J. 2014, 9, 89–97. [Google Scholar] [PubMed] [PubMed Central]
- Mohammadi, Z.; Jafarzadeh, H.; Shalavi, S.; Kinoshita, J.I. Unusual Root Canal Irrigation Solutions. J. Contemp. Dent. Pract. 2017, 18, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Naladkar, K.; Chandak, M.; Sarangi, S.; Agrawal, P.; Jidewar, N.; Suryawanshi, T.; Hirani, P. Breakthrough in the Development of Endodontic Irrigants. Cureus 2024, 16, e66981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shetty, N.; Mathew, T.; Shetty, A.; Hegde, M.N.; Attavar, S. Ozonated water as an irrigant in disinfecting root canal systems—A systematic review. Evid. Based Dent. 2022. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.J.N.L.; Rover, G.; Belladonna, F.G.; Herrera, D.R.; De-Deus, G.; da Silva Fidalgo, T.K. Effectiveness of passive ultrasonic irrigation on periapical healing and root canal disinfection: A systematic review. Br. Dent. J. 2019, 227, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.A.; Steier, L.; Vanin, G.N.; Zanella, M.L.; Pizzi, C.M.; Ferreira, E.R.; Dallepiane, F.G.; Piccolo, N.M.; da Silva Koch, J.; Souza, K.R.; et al. Antimicrobial action, cytotoxicity and erosive potential of hypochlorous acid obtained from an electrolytic device compared with sodium hypochlorite. Clin. Oral Investig. 2024, 28, 282. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.A.; Zanella, M.L.; Vanin, G.N.; Dallepiane, F.G.; Pizzi, C.Y.M.; Ferreira, E.R.; Fuhr, M.C.S.; Piccolo, N.M.; Palhano, H.S.; da Silva Koch, J.; et al. Antimicrobial action and cytotoxicity of hypochlorous acid obtained from an innovative electrolytic device—An in vitro study. Arch. Oral Biol. 2024, 163, 105966. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, S.; Menon, K. Comparative Evaluation of Human Pulp Tissue Dissolution by 500-ppm and 200-ppm Hypochlorous Acid and 5.25% Sodium Hypochlorite: An In Vitro Study. J. Contemp. Dent. Pract. 2023, 24, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.; Stewart, S.; Ma, L.; Kingsley, K.; Sullivan, V. Differential Antimicrobial Effects of Endodontic Irrigant Endocyn on Oral Bacteria. Hygiene 2025. in review. [Google Scholar]
- Scott, M.B., 2nd; Zilinski, G.S.; Kirkpatrick, T.C.; Himel, V.T.; Sabey, K.A.; Lallier, T.E. The Effects of Irrigants on the Survival of Human Stem Cells of the Apical Papilla, Including Endocyn. J. Endod. 2018, 44, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Miteva, M.; Mihaylova, Z.; Mitev, V.; Aleksiev, E.; Stanimirov, P.; Praskova, M.; Dimitrova, V.S.; Vasileva, A.; Calenic, B.; Constantinescu, I.; et al. A Review of Stem Cell Attributes Derived from the Oral Cavity. Int. Dent. J. 2024, 74, 1129–1141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, P.; Aghazadeh, M.; Rajasingh, S.; Dixon, D.; Jain, V.; Rajasingh, J. Stem cells in regenerative dentistry: Current understanding and future directions. J. Oral Biosci. 2024, 66, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Mantesso, A.; Nör, J.E. Stem cells in clinical dentistry. J. Am. Dent. Assoc. 2023, 154, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Bae, A.; Kim, J.; Kingsley, K. Differential Effects of Extracellular Matrix Glycoproteins Fibronectin and Laminin-5 on Dental Pulp Stem Cell Phenotypes and Responsiveness. J. Funct. Biomater. 2023, 14, 91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bae, S.; Kang, B.; Lee, H.; Luu, H.; Mullins, E.; Kingsley, K. Characterization of Dental Pulp Stem Cell Responses to Functional Biomaterials Including Mineralized Trioxide Aggregates. J. Funct. Biomater. 2021, 12, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bassett, C.; Triplett, H.; Lott, K.; Howard, K.M.; Kingsley, K. Differential Expression of MicroRNA (MiR-27, MiR-145) among Dental Pulp Stem Cells (DPSCs) Following Neurogenic Differentiation Stimuli. Biomedicines 2023, 11, 3003. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lott, K.; Collier, P.; Ringor, M.; Howard, K.M.; Kingsley, K. Administration of Epidermal Growth Factor (EGF) and Basic Fibroblast Growth Factor (bFGF) to Induce Neural Differentiation of Dental Pulp Stem Cells (DPSC) Isolates. Biomedicines 2023, 11, 255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, A.; Raik, S.; Sharma, P.; Rattan, V.; Bhattacharyya, S. Primary Culture of Dental Pulp Stem Cells. J. Vis. Exp. 2023, 195, e65223. [Google Scholar] [CrossRef] [PubMed]
- Hollands, P.; Aboyeji, D.; Orcharton, M. Dental pulp stem cells in regenerative medicine. Br. Dent. J. 2018, 224, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Koosha, F.; Cymerman, J.; Manders, T.; Simon, M.; Walker, S.; Rafailovich, M. Non-cytotoxic Root Canal Dressing with Improved Antimicrobial Efficacy. J. Endod. 2023, 49, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.A.; Chen, Y.L.; Huang, J.S.; Huang, G.T.; Chuang, S.F. Effects of Restorative Materials on Dental Pulp Stem Cell Properties. J. Endod. 2019, 45, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; D’Amico, C.; Meto, A.; Mehta, V.; Lo Giudice, G.; Cervino, G. Sodium Hypochlorite Accidents in Endodontic Practice: Clinical Evidence and State of the Art. J. Craniofac. Surg. 2024, 35, e636–e645. [Google Scholar] [CrossRef] [PubMed]
- Parchami, K.; Dastorani, M.; Barati, M. What is the impact of Endodontic Irrigant Solutions on the Viability of Stem Cells from Apical Papilla in an in-vitro setting: A Systematic Review. Saudi Dent. J. 2024, 36, 1170–1178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Susila, A.V.; Sai, S.; Sharma, N.; Balasubramaniam, A.; Veronica, A.K.; Nivedhitha, S. Can natural irrigants replace sodium hypochlorite? A systematic review. Clin. Oral Investig. 2023, 27, 1831–1849. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Delgado, M.; Camps-Font, O.; Luz, L.; Sanz, D.; Mercade, M. Update on citric acid use in endodontic treatment: A systematic review. Odontology 2023, 111, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Mrinalini, M.; Gupta, A.; Abraham, D.; Duraisamy, A.K.; Sharma, R. A Systematic Review of the Comparative Efficacy of Lactobacillus Probiotics and Sodium Hypochlorite as Intracanal Irrigants Against Enterococcus faecalis. Cureus 2024, 16, e70926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anbalagan, K.; Jena, A.; Mohanty, S.; Mallick, R.; Shashirekha, G.; Sarangi, P. Smear layer removal and antimicrobial efficacy of chitosan as a root canal irrigant: A systematic review of in-vitro studies. Odontology 2024, 113, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Elfarraj, H.; Lizzi, F.; Bitter, K.; Zaslansky, P. Effects of endodontic root canal irrigants on tooth dentin revealed by infrared spectroscopy: A systematic literature review. Dent. Mater. 2024, 40, 1138–1163. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.A.; Falacho, R.I.; Santos, J.M.; Ramos, J.C.; Palma, P.J. Effects of endodontic irrigation solutions on structural, chemical, and mechanical properties of coronal dentin: A scoping review. J. Esthet. Restor. Dent. 2024, 36, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Aksel, H.; Albanyan, H.; Bosaid, F.; Azim, A.A. Dentin Conditioning Protocol for Regenerative Endodontic Procedures. J. Endod. 2020, 46, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Galler, K.M.; D’Souza, R.N.; Federlin, M.; Cavender, A.C.; Hartgerink, J.D.; Hecker, S.; Schmalz, G. Dentin conditioning codetermines cell fate in regenerative endodontics. J. Endod. 2011, 37, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Alghilan, M.A.; Windsor, L.J.; Palasuk, J.; Yassen, G.H. Attachment and proliferation of dental pulp stem cells on dentine treated with different regenerative endodontic protocols. Int. Endod. J. 2017, 50, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Ring, K.C.; Murray, P.E.; Namerow, K.N.; Kuttler, S.; Garcia-Godoy, F. The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin. J. Endod. 2008, 34, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Dinh, Y.; Yesares Rubi, P.; Gibbs, J.L.; Michot, B. Effects of aqueous and ethanolic extracts of Chinese propolis on dental pulp stem cell viability, migration and cytokine expression. PeerJ 2024, 12, e18742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zawadzka-Knefel, A.; Rusak, A.; Mrozowska, M.; Machałowski, T.; Żak, A.; Haczkiewicz-Leśniak, K.; Kulus, M.; Kuropka, P.; Podhorska-Okołów, M.; Skośkiewicz-Malinowska, K. Chitin scaffolds derived from the marine demosponge Aplysina fistularis stimulate the differentiation of dental pulp stem cells. Front. Bioeng. Biotechnol. 2023, 11, 1254506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Padmawar, N.; Pawar, N.; Tripathi, V.; Banerjee, S.; Tyagi, G.; Joshi, S.R. Comparative analysis of rotary versus manual instrumentation in paediatric pulpectomy procedures: A systematic review and meta-analysis. Aust. Endod. J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Tysiąc-Miśta, M.; Tanasiewicz, M.; Amini, S.; Najary, S.; Baghani, M.T.; Eftekhar Ashtiani, R.; Shidfar, S.; Nasiri, M.J. Traumatic Dental Injuries’ Prevalence across Diverse Healthcare Settings: A Systematic Review and Meta-Analysis. Arch. Acad. Emerg. Med. 2024, 13, e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Namjoynik, A.; Islam, M.A.; Islam, M. Evaluating the efficacy of human dental pulp stem cells and scaffold combination for bone regeneration in animal models: A systematic review and meta-analysis. Stem Cell Res. Ther. 2023, 14, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernandes, T.L.; Cortez de SantAnna, J.P.; Frisene, I.; Gazarini, J.P.; Gomes Pinheiro, C.C.; Gomoll, A.H.; Lattermann, C.; Hernandez, A.J.; Franco Bueno, D. Systematic Review of Human Dental Pulp Stem Cells for Cartilage Regeneration. Tissue Eng. Part B Rev. 2020, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Amghar-Maach, S.; Gay-Escoda, C.; Sánchez-Garcés, M.Á. Regeneration of periodontal bone defects with dental pulp stem cells grafting: Systematic Review. J. Clin. Exp. Dent. 2019, 11, e373–e381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Conde, M.C.; Chisini, L.A.; Grazioli, G.; Francia, A.; Carvalho, R.V.; Alcázar, J.C.; Tarquinio, S.B.; Demarco, F.F. Does Cryopreservation Affect the Biological Properties of Stem Cells from Dental Tissues? A Systematic Review. Braz. Dent. J. 2016, 27, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, A. Editorial: Rejuvenation of aging adult stem cells to improve their regenerative potential. Front. Cell Dev. Biol. 2023, 11, 1232970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwack, K.H.; Lee, H.W. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front. Cell Dev. Biol. 2022, 10, 857066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Cell Line | Doubling Time (Growth Rate) | Viability (Following Thaw) |
---|---|---|
dpsc-3882 | 1.8 days | 88% |
dpsc-3924 | 2.2 days | 86% |
dpsc-5653 | 1.9 days | 87% |
dpsc-7089 | 1.7 days | 82% |
dpsc-8124 | 4.4 days | 73% |
dpsc-8604 | 4.1 days | 71% |
dpsc-9765 | 2.1 days | 79% |
dpsc-9894 | 5.2 days | 76% |
dpsc-11418 | 8.4 days | 63% |
dpsc-11750 | 9.9 days | 62% |
dpsc-11836 | 11.2 days | 67% |
dpsc-17322 | 10.6 days | 66% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truman, B.; Ma, L.; Stewart, S.; Kingsley, K.; Sullivan, V. Assessment of Endocyn on Dental Pulp Stem Cells (DPSCs): A Pilot Study of Endodontic Irrigant Effects. Methods Protoc. 2025, 8, 18. https://doi.org/10.3390/mps8010018
Truman B, Ma L, Stewart S, Kingsley K, Sullivan V. Assessment of Endocyn on Dental Pulp Stem Cells (DPSCs): A Pilot Study of Endodontic Irrigant Effects. Methods and Protocols. 2025; 8(1):18. https://doi.org/10.3390/mps8010018
Chicago/Turabian StyleTruman, Brennan, Linda Ma, Samuel Stewart, Karl Kingsley, and Victoria Sullivan. 2025. "Assessment of Endocyn on Dental Pulp Stem Cells (DPSCs): A Pilot Study of Endodontic Irrigant Effects" Methods and Protocols 8, no. 1: 18. https://doi.org/10.3390/mps8010018
APA StyleTruman, B., Ma, L., Stewart, S., Kingsley, K., & Sullivan, V. (2025). Assessment of Endocyn on Dental Pulp Stem Cells (DPSCs): A Pilot Study of Endodontic Irrigant Effects. Methods and Protocols, 8(1), 18. https://doi.org/10.3390/mps8010018