Intestinal Microbiota—A Possible Contributor to Cardiovascular Diseases?
Abstract
:Introduction
Discussions
Gut microbiota and atherosclerosis
Gut microbiota and inflammation
Gut microbiota and cardiovascular disease
Gut microbiota and heart failure
Gut microbiota and arterial hypertension
Conclusions
Highlights
- ✓
- Recent findings have shown that microbiota is responsible for multiple metabolic effects, interfering with body functions and creating the predisposition for specific diseases.
- ✓
- There is increasing evidence that specific gut microbial populations are associated with cardiovascular diseases.
- ✓
- The characterization of the microbiota genome and isolation of their metabolites are important steps forward to create new methods of prevention, diagnosis, and improvement of therapeutic interventions.
Conflict of interest disclosure
Compliance with ethical standards
References
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature. 2007, 449, 804–10. [Google Scholar] [CrossRef]
- The Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014, 16, 276–289. [Google Scholar] [CrossRef] [PubMed]
- O'Toole, P.W.; Jeffery, I.B. Gut microbiota and aging. Science 2015, 350, 1214–5. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M. The influence of the gut microbiota on host physiology: in pursuit of mechanisms. Yale J Biol Med. 2016, 89, 285–297. [Google Scholar]
- Zaha, D.C.; Bungau, S.; Uivarosan, D.; et al. Antibiotic consumption and microbiological epidemiology in surgery departments: results from a single study center. Antibiotics. 2020, 9, 81. [Google Scholar] [CrossRef]
- Zaha, D.C.; Bungau, S.; Aleya, S.; et al. What antibiotics for what pathogens? The sensitivity spectrum of isolated strains in an intensive care unit. Sci Tot Environ. 2019, 687, 118–127. [Google Scholar] [CrossRef]
- Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004, 4, 181–9. [Google Scholar] [CrossRef]
- Psichas, A.; Sleeth, M.L.; Murphy, K.G.; et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obesity. 2015, 39, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J Agric Food Chem. 2009, 57, 5982–5986. [Google Scholar] [CrossRef]
- Ge, H. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology. 2008, 149, 4519–4526. [Google Scholar] [CrossRef]
- Gao, Z. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, M.; Kang, S.G.; et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015, 8, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Cleary, S.; Bahrami, B.; Reynolds, N.; Macfarlane, G.T. Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomized, double-blind, placebo-controlled crossover study. Aliment Pharmacol Ther. 2013, 38, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Cavaglieri, C.R.; Nishiyama, A.; Fernandes, L.C.; Curi, R.; Miles, E.A.; Calder, P.C. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sciences. 2003, 73, 1683–1690. [Google Scholar] [CrossRef]
- Peron, J.P.; de Oliveira, A.P.; Rizzo, L.V. It takes guts for tolerance: the phenomenon of oral tolerance and the regulation of autoimmune response. Autoimmun Rev. 2009, 9, 1–4. [Google Scholar] [CrossRef]
- Sivaprakasam, S.; Prasad, P.D.; Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016, 164, 144–51. [Google Scholar] [CrossRef]
- Monedero, V.; Revilla-Guarinos, A.; Zúñiga, M. Physiological role of two-component signal transduction systems in food-associated lactic acid bacteria. Adv Appl Microbiol. 2017, 99, 1–51. [Google Scholar]
- Lee, J.H.; Karamychev, V.N.; Kozyavkin, S.A.; et al. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics. 2008, 9, 247. [Google Scholar] [CrossRef]
- Roffi, M.; Patrono, C.; Collet, J.P.; et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST segment. European Heart Journal. 2016, 37, 267–315. [Google Scholar] [CrossRef]
- Li, D.Y.; Tang, W.H.W. Gut microbiota and atherosclerosis. Curr Atheroscler Rep. 2017, 19, 39. [Google Scholar] [CrossRef]
- Nirmalkar, K.; Murugesan, S.; Pizano-Zárate, M.L.; et al. Gut microbiota and endothelial dysfunction markers in obese Mexican children and adolescents. Nutrients. 2018, 10, pii: E2009. [Google Scholar] [CrossRef]
- Babes, V.; Babes, E. Circulating vascular cell adhesion molecule-1 and subclinical atherosclerosis. Arch Balk Med Union 2015, 50, 474–478. [Google Scholar]
- Stepankova, R.; Tonar, Z.; Bartova, J.; et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb. 2010, 17, 796–804. [Google Scholar] [CrossRef]
- Suceveanu, A.I.; Pantea Stoian, A.; Mazilu L et, a.l. Interferon-free therapy is not a trigger for hepatocellular carcinoma in patients with chronic infection with hepatitis C virus. Farmacia. 2018, 66, 904–908. [Google Scholar] [CrossRef]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007, 56, 1761–72. [Google Scholar] [CrossRef]
- Trim, W.; Turner, J.E.; Thompson, D. Parallels in immunometabolic adipose tissue dysfunction with ageing and obesity. Front Immunol. 2018, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Kim, C.; Kang, J. Inflammatory components of adipose tissue as target for treatment of metabolic syndrome. Forum Nutr. 2009, 61, 95–103. [Google Scholar]
- Torres, S.; Fabersani, E.; Marquez, A.; Gauffin-Cano, P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr. 2019, 58, 27–43. [Google Scholar] [CrossRef]
- Popa, A.R.; Bungau, S.; Vesa, C.M.; et al. Evaluating the efficacy of the treatment with benfotiamine and alpha-lipoic acid in distal symmetric painful diabetic polyneuropathy. Rev Chim. 2019, 70, 3108–3114. [Google Scholar] [CrossRef]
- Yamashita, T.; Emoto, T.; Sasaki, N.; Hirata, K.I. Gut microbiota and coronary artery disease. Int Heart J. 2016, 57, 663–671. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Levison, B.S.; et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013, 368, 1575–84. [Google Scholar] [CrossRef]
- Zhong, V.W.; Van Horn, L.; Greenland, P.; et al. Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality. JAMA Intern Med. 2020, 180, 503–512. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013, 19, 576–85. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Daim, M.M.; El-Tawil, O.S.; Bungau, S.G.; Atanasov, A.G. Applications of antioxidants in metabolic disorders and degenerative diseases: Mechanistic approach. Oxid Med Cell Longev. 2019, 2019, 4179676. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Roberts, A.B.; Buffa, J.A.; et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015, 163, 1585–95. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–31. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Diaconu, C. Is there an implication of intestinal microbiota in cardiovascular diseases? Arch Balk Med Union. 2019, 54, 609–611. [Google Scholar] [CrossRef]
- Pasini, E.; Aquilani, R.; Testa, C.; et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Failure. 2016, 4, 220–227. [Google Scholar] [CrossRef]
- Kitai, T.; Tang, W.H.W. Gut microbiota in cardiovascular disease and heart failure. Clin Sci (Lond). 2018, 132, 85–91. [Google Scholar] [CrossRef]
- Jinga, M.; Balaban, V.D.; Ionita-Radu, F.; et al. Real life experience with ombitasvir/paritaprevir/ritonavir plus dasabuvir and ribavirin regimen in patients with compensated HCV cirrhosis. Gastroenterology. 2017, 152, S1148–S1148. [Google Scholar] [CrossRef]
- Crisu, G.C.; Ionita-Radu, F.; Costache, R.; et al. Efficacy and safety of ombitasvir/paritaprevir/ritonavir + dasabuvir and ribavirin regimen in patients with compensated HCV cirrhosis. Romanian Journal of Military Medicine. 2019, 122, 22–26. [Google Scholar] [CrossRef]
- Tica, O.A.; Tica, O.; Antal, L.; et al. Modern oral anticoagulant treatment in patients with atrial fibrillation and heart failure: insights from the clinical practice. Farmacia. 2018, 66, 972–976. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, H.; Shi, K.; Ren, Y.; Zhang, P.; Cheng, S. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology. 2012, 17, 733–8. [Google Scholar] [CrossRef]
- Stoicescu, M.; Csepento, C.; Mutiu, G.; et al. The role of increased plasmatic renin level in the pathogenesis of arterial hypertension in young adults. Rom J Morphol Embryol. 2011, 52 (Suppl. S1), 419–423. [Google Scholar]
© 2020 by the author. 2020 Roua Iorga, Ovidiu Gabriel Bratu, Nicolae Bacalbasa, Mihnea-Alexandru Gaman, Camelia Cristina Diaconu
Share and Cite
Iorga, R.; Bratu, O.G.; Bacalbasa, N.; Gaman, M.-A.; Diaconu, C.C. Intestinal Microbiota—A Possible Contributor to Cardiovascular Diseases? J. Mind Med. Sci. 2020, 7, 168-172. https://doi.org/10.22543/7674.72.P168172
Iorga R, Bratu OG, Bacalbasa N, Gaman M-A, Diaconu CC. Intestinal Microbiota—A Possible Contributor to Cardiovascular Diseases? Journal of Mind and Medical Sciences. 2020; 7(2):168-172. https://doi.org/10.22543/7674.72.P168172
Chicago/Turabian StyleIorga, Roua, Ovidiu Gabriel Bratu, Nicolae Bacalbasa, Mihnea-Alexandru Gaman, and Camelia Cristina Diaconu. 2020. "Intestinal Microbiota—A Possible Contributor to Cardiovascular Diseases?" Journal of Mind and Medical Sciences 7, no. 2: 168-172. https://doi.org/10.22543/7674.72.P168172
APA StyleIorga, R., Bratu, O. G., Bacalbasa, N., Gaman, M.-A., & Diaconu, C. C. (2020). Intestinal Microbiota—A Possible Contributor to Cardiovascular Diseases? Journal of Mind and Medical Sciences, 7(2), 168-172. https://doi.org/10.22543/7674.72.P168172