The Serine/Threonine Protein Kinase (Akt)/ Protein Kinase B (PkB) Signaling Pathway in Breast Cancer
Abstract
:Introduction
Discussions
Breast Cancer Subtypes
Pi3k signaling pathway
AKT Activation in Cancer
- The occurrence of mutations or amplification of PI3KCA, PIK3CB, PIK3R1 leads to increased activity of AKT signaling pathways.
- Overexpression of some target molecules or activating signals such as HER 2, epidermal growth factor receptor (EGFR), insulin-like growth factor receptor 1(IGF-R1).
- Loss of negative regulators for PIP3, PTEN and INPP4B.
- Overexpression of AKT1, AKT2 and PDK1 [16].
Endocrine Resistance and PI3K/AKT
Breast Cancer Biomarkers and Therapy
Highlights
- ✓
- Mutations of the AKT signaling pathway components (especially PI3KCA and PTEN) have been observed in breast cancer patients, which are associated with resistance to hormonal treatment.
- ✓
- Mutations that occur at this signaling pathway cause AKT overactivation which will further lead to the activation of target molecules responsible for cell growth, survival and proliferation and protein synthesis of breast tumor cells.
Conclusions
Conflicts of Interest disclosure
Compliance with ethical standards
References
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Abate, D.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability- Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study [published online ahead of print, 2019 Sep 27]. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [CrossRef]
- World Health Organisation. Romania, Blobocan. 2018. Available online: https://gco.iarc.fr/.
- World Health Organisation. The global cancer observatory 2018. 2018. Available online: https://gco.iarc.fr/today/home.
- Prat, A.; Pineda, E.; Adamo, B.; et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015, 24 Suppl 2, S26–S35. [Google Scholar] [CrossRef]
- Hashmi, A.A.; Aijaz, S.; Khan, S.M.; et al. Prognostic parameters of luminal A and luminal B intrinsic breast cancer subtypes of Pakistani patients. World J Surg Oncol. 2018, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; et al. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef] [PubMed]
- Vallejos, C.S.; Gómez, H.L.; Cruz, W.R.; et al. Breast cancer classification according to immunohistochemistry markers: Subtypes and association with clinicopathologic variables in a peruvian hospital database. Clin Breast Cancer. 2010, 10, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015, 15, 7–24. [Google Scholar] [CrossRef]
- Yang, S.X.; Polley, E.; Lipkowitz, S. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat Rev. 2016, 45, 87–96. [Google Scholar] [CrossRef]
- Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010, 11, 329–341. [Google Scholar] [CrossRef]
- Miricescu, D.; Totan, A.; Stefani, C.; et al. Structure, activation and biological effects of AKT or protein kinase B. Rev Medicala Romana 2019, 14, 233–237. [Google Scholar] [CrossRef]
- Holz, M.K. The role of S6K1 in ER-positive breast cancer. Cell Cycle 2012, 11, 3159–3165. [Google Scholar] [CrossRef]
- Zoncu, R.; Efeyan, A.; Sabatini, D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011, 12, 21–35. [Google Scholar] [CrossRef]
- Woolley, J.F.; Dzneladze, I.; Salmena, L. Phosphoinositide signaling in cancer: INPP4B Akt(s) out. Trends Mol Med. 2015, 21, 530–532. [Google Scholar] [CrossRef] [PubMed]
- Stemke-Hale, K.; Gonzalez-Angulo, A.M.; Lluch, A.; et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008, 68, 6084–6091. [Google Scholar] [CrossRef]
- Mayer, I.A.; Arteaga, C.L. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016, 67, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Samuels, Y.; Wang, Z.; Bardelli, A.; et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef] [PubMed]
- She, Q.B.; Gruvberger-Saal, S.K.; Maurer, M.; et al. Integrated molecular pathway analysis informs a synergistic combination therapy targeting PTEN/PI3K and EGFR pathways for basal-like breast cancer. BMC Cancer. 2016, 16, 587. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Baselga, J. Management of breast cancer with targeted agents: Importance of heterogenicity. Nat Rev Clin Oncol. 2010, 7, 139–147. [Google Scholar] [CrossRef]
- Osborne, C.K.; Schiff, R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011, 62, 233–247. [Google Scholar] [CrossRef]
- Eyster, K.M. The estrogen receptors: An overview from different perspectives. Methods Mol Biol. 2016, 1366, 1–10. [Google Scholar]
- Arnal, J.F.; Fontaine, C.; Abot, A.; et al. Lessons from the dissection of the activation functions (AF-1 and AF- 2) of the estrogen receptor alpha in vivo. Steroids 2013, 78, 576–582. [Google Scholar] [CrossRef]
- Bostner, J.; Skoog, L.; Fornander, T.; et al. Estrogen receptor-alpha phosphorylation at serine 305, nuclear p21-activated kinase 1 expression, and response to tamoxifen in postmenopausal breast cancer. Clin Cancer Res. 2010, 16, 1624–1633. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Stebbing, J.; Giamas, G.; Murphy, J. Endocrine resistance in hormone receptor positive breast cancer- from mechanism to therapy. Front Endocrinol. 2019, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, T.J.; Meier, J.B.; Jansen, V.M. Current landscape of targeted therapies for hormone-receptor positive, HER2 negative metastatic breast cancer. Front Oncol. 2018, 8, 308. [Google Scholar] [CrossRef]
- Miller, T.W.; Rexer, B.N.; Garrett, J.T.; Arteaga, C.L. Mutations in the phosphatidylinositol 3-kinase pathway: Role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011, 13, 224. [Google Scholar] [CrossRef]
- Mayer, I.A.; Abramson, V.G.; Formisano, L.; et al. A phase Ib study of alpelisib (BYL719), a PI3Ka- specific inhibitor, with letrozole in ER+/HER2- metastatic breast cancer. Clin Cancer Res. 2017, 23, 26–34. [Google Scholar] [CrossRef]
- Ahmad, S.; Abu-Eid, R.; Shrimali, R.; et al. Differential PI3Kd signaling in CD4+ T-cell subsets enables selective targeting of T regulatory cells to enhance cancer immunotherapy. Cancer Res. 2017, 77, 1892–1904. [Google Scholar] [CrossRef] [PubMed]
- Motofei, I.G.; Rowland, D.L.; Popa, F.; et al. A Pilot Study on Tamoxifen Sexual Side Effects and Hand Preference in Male Breast Cancer. Arch Sex Behav. 2015, 44, 1589–1594. [Google Scholar] [CrossRef]
- Baselga, J.; Semiglazov, V.; van Dam, P.; et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2009, 27, 2630–2637. [Google Scholar] [CrossRef]
- Paplomata, E.; O’Regan, R. The PI3K/AKT/mTOR pathway in brest cancer: Targets, trials and biomarkers. Ther Adv Med Oncol. 2014, 6, 154–166. [Google Scholar] [CrossRef]
- Mazilu, L.; Stanculeanu, D.L.; Gheorghe, A.D.; et al. Chemotherapy and other factors affecting quality of life in non-small cell lung cancer (NSCLC) patients. Rev Chim (Bucharest). 2019, 70, 33–35. [Google Scholar] [CrossRef]
- Suceveanu, A.I.; Mazilu, L.; Nitipir, C.; Pantea Stoian, A.; Parepa, I.; Voinea, C.; Suceveanu, A.P. Diabetes mellitus raise the risk for interval colorectal cancer and advanced adenomas. Rev Chim (Bucharest). 2019, 70, 1808–1811. [Google Scholar] [CrossRef]
© 2020 by the author. 2020 Daniela Miricescu, Camelia Cristina Diaconu, Constantin Stefani, Ana Maria Alexandra Stanescu, Alexandra Totan, Ioana Ruxandra Rusu, Ovidiu Gabriel Bratu, Dan Spinu, Maria Greabu
Share and Cite
Miricescu, D.; Diaconu, C.C.; Stefani, C.; Stanescu, A.M.A.; Totan, A.; Rusu, I.R.; Bratu, O.G.; Spinu, D.; Greabu, M. The Serine/Threonine Protein Kinase (Akt)/ Protein Kinase B (PkB) Signaling Pathway in Breast Cancer. J. Mind Med. Sci. 2020, 7, 34-39. https://doi.org/10.22543/7674.71.P3439
Miricescu D, Diaconu CC, Stefani C, Stanescu AMA, Totan A, Rusu IR, Bratu OG, Spinu D, Greabu M. The Serine/Threonine Protein Kinase (Akt)/ Protein Kinase B (PkB) Signaling Pathway in Breast Cancer. Journal of Mind and Medical Sciences. 2020; 7(1):34-39. https://doi.org/10.22543/7674.71.P3439
Chicago/Turabian StyleMiricescu, Daniela, Camelia Cristina Diaconu, Constantin Stefani, Ana Maria Alexandra Stanescu, Alexandra Totan, Ioana Ruxandra Rusu, Ovidiu Gabriel Bratu, Dan Spinu, and Maria Greabu. 2020. "The Serine/Threonine Protein Kinase (Akt)/ Protein Kinase B (PkB) Signaling Pathway in Breast Cancer" Journal of Mind and Medical Sciences 7, no. 1: 34-39. https://doi.org/10.22543/7674.71.P3439
APA StyleMiricescu, D., Diaconu, C. C., Stefani, C., Stanescu, A. M. A., Totan, A., Rusu, I. R., Bratu, O. G., Spinu, D., & Greabu, M. (2020). The Serine/Threonine Protein Kinase (Akt)/ Protein Kinase B (PkB) Signaling Pathway in Breast Cancer. Journal of Mind and Medical Sciences, 7(1), 34-39. https://doi.org/10.22543/7674.71.P3439