The Role of Biotransformation Processes in Mediating Interactions Between Psychotropic Drugs and Natural Products
Abstract
:Introduction
Discussions
Highlights
Conclusions
Conflicts of Interest
Compliance with ethical standards:
References
- Tsujimoto, M.; Uchida, T.; Kozakai, H.; Yamamoto, S.; Minegaki, T.; Nishiguchi, K. Inhibitory Effects of Vegetable Juices on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells. Biol Pharm Bull. 2016, 39, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.M.; Lesko, L.J. Drug-Drug, Drug-Dietary Supplement, and Drug-Citrus Fruit and Other Food Interactions: What Have We Learned? J Clin Pharmacol. 2004, 44, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yoon, Y.J.; Shon, J.H.; Cha, I.J.; Shin, J.G.; Liu, K.H. Inhibitory effects of fruit juices on CYP3A activity. Drug Metab Dispos. 2006, 34, 521–523. [Google Scholar] [CrossRef]
- Rodríguez-Fragoso, L.; Martínez-Arismendi, J.L.; Orozco-Bustos, D.; Reyes-Esparza, J.; Torres, E.; Burchiel, S.W. Potential risks resulting from fruit/vegetable-drug interactions: Effects on drug- metabolizing enzymes and drug transporters. J Food Sci. 2011, 76, R112–R124. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ding, X.; Zhang, Q.Y. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm Sin, B. 2016, 6, 374–383. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr Drug Targets. 2018, 19, 38–54. [Google Scholar] [CrossRef]
- Wanwimolruk, S.; Prachayasittikul, V. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1). EXCLI J. 2014, 13, 347–391. [Google Scholar]
- Foti, R.S.; Dalvie, D.K. Cytochrome P450 and Non- Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics. Drug Metab Dispos. 2016, 44, 1229–1245. [Google Scholar] [CrossRef]
- Mikov, M.; Đanić, M.; Pavlović, N.; Stanimirov, B.; Goločorbin-Kon, S.; Stankov, K.; Al-Salami, H. The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes. Eur J Drug Metab Pharmacokinet. 2017, 42, 881–890. [Google Scholar] [CrossRef]
- Hartree, E.F. The discovery of cytochrome. Biochem Educ. 1973, 1, 69–71. [Google Scholar] [CrossRef]
- Hannemann, F.; Bichet, A.; Ewen, K.M.; Bernhardt, R. Cytochrome P450 systems-biological variations of electron transport chains. Biochim Biophys Acta. 2007, 1770, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Bathe, U.; Tissier, A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Phytochemistry 2019, 161, 149–162. [Google Scholar] [CrossRef]
- Dibrova, D.V.; Shalaeva, D.N.; Galperin, M.Y.; Mulkidjanian, A.Y. Emergence of cytochrome bc complexes in the context of photosynthesis. Physiol Plant. 2017, 161, 150–170. [Google Scholar] [CrossRef]
- Andrade, C. Fruit Juice, Organic Anion Transporting Polypeptides and Drug Interactions in Psychiatry. J Clin Psychiatry. 2014, 75, e1323–e1325. [Google Scholar] [CrossRef]
- Windmill, K.F.; McKinnon, R.A.; Zhu, X.; Gaedigk, A.; Grant, D.M.; McManus, M.E. The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: Functional and localization studies. Mutat Res. 1997, 376, 153–160. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Waterman, M.R.; Egli, M. Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci. 2016, 37, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R. Cytochrome P450 nomenclature, 2004. Methods Mol Biol. 2006, 320, 1–10. [Google Scholar] [PubMed]
- Hamad, M.; Dayyih, W.A.; Rafal, A.; Dayyih, A.A.; Al Ani, I.; Mallah, E.; Salih, H.; Zakarya, Z.; Arafat, T. The Effect of Some Fruit Juices on Glimepiride Pharmacokinetic in Rat Plasma by Using High Performance Liquid Chromatography-Mass Spectrometry. Biomed Pharmacol, J. 2017, 10, 1665–1675. [Google Scholar] [CrossRef]
- Dyuba, A.V.; Vygodina, T.V.; Konstantinov, A.A. Reconstruction of absolute absorption spectrum of reduced heme a in cytochrome C oxidase from bovine heart. Biochemistry (Mosc). 2013, 78, 1358–1365. [Google Scholar] [CrossRef]
- Ryan, D.E.; Iida, S.; Wood, A.W.; Thomas, P.E.; Lieber, C.S.; Levin, W. Characterization of three highly purified cytochromes P-450 from hepatic microsomes of adult male rats. J Biol Chem. 1984, 259, 1239–1250. [Google Scholar] [CrossRef]
- Keya, K.; Prya, S. A Study of Phylogenetic Relationships and Homology of Cytochrome C using Bioinformatics. Int Res J of Science & Engineering. 2016, 4, 65–75. [Google Scholar]
- Ohkubo, A.; Chida, T.; Kikuchi, H.; Tsuda, T.; Sunaga, K. Effects of tomato juice on the pharmacokinetics of CYP3A4-substrate drugs. Asian J Pharm Sci. 2017, 12, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Awortwe, C.; Makiwane, M.; Reuter, H.; Muller, C.; Louw, J.; Rosenkran, B. Critical evaluation of causality assessment of herb–drug interactions in patients. Br J Clin Pharmacol. 2018, 84, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Grimstein, M.; Huang, S.M. A regulatory science viewpoint on botanical-drug interactions. J Food Drug Anal. 2018, 26(2S): S12-S25.
- Lucas, C.; Martin, J. Smoking and drug interactions. Aust Prescr. 2013, 36, 102–143. [Google Scholar] [CrossRef]
- Cristea, A.N.; Chiriță, C.; Cuciureanu, M.; Jaba, I.; Ștefănescu, E.; Velescu, B.Ș.; Zbârcea, C.E. Farmacologie generală. Ed. Didactică şi Pedagogică, Bucureşti, Ediţia a II-a. 2009; 141–149. [Google Scholar]
- Zhou, S.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef]
- Choi, J.H.; Ko, C.M. Food and Drug Interactions. J Lifestyle Med. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Won, C.S.; Oberlies, N.H.; Paine, M.F. Influence of dietary substances on intestinal drug metabolism and transport. Curr Drug Metab. 2010, 11, 778–792. [Google Scholar] [CrossRef]
- Pem, D.; Jeewon, R. Fruit and Vegetable Intake: Benefits and Progress of Nutrition Education Interventions-Narrative Review Article. Iran J Public Health. 2015, 44, 1309–1321. [Google Scholar]
- Bub, A.; Watzl, B.; Blockhaus, M.; Briviba, K.; Liegibel, U.; Müller, H.; Pool-Zobel, B.L.; Rechkemmer, G. Fruit juice consumption modulates antioxidative status, immune status and DNA damage. J Nutr Biochem. 2003, 14, 90–98. [Google Scholar] [CrossRef]
- Ștefănescu, E.; Moroșan, E.; Gurgu, H.; Ghiță, I.C.V.; Zanfirescu, A.; Zbârcea, C.E.; Mușat, O.; Negreș, S. Experimental pharmacological research regarding the effect of some newly synthesized β- phenylethylamines on the modified parameters of the lipid metabolism. Farmacia. 2019, 67, 596–602. [Google Scholar] [CrossRef]
- Negreş, S.; Chiriţă, C.; Moroşan, E.; Arsene, A.L. Experimental pharmacological model of diabetes induction with alloxan in rat. Farmacia 2013, 61, 313–323. [Google Scholar]
- Jargin, S.V. Grapefruit: Some perspectives in pharmacology and nutrition. J Intercult Ethnopharmacol. 2017, 30, 339–341. [Google Scholar] [CrossRef]
- Cuciureanu, M.; Vlase, L.; Muntean, D.; Varlan, I.; Cuciureanu, R. Grapefruit juice-drug interactions: Importance for pharmacotherapy. Rev Med Chir Soc Med Nat Iasi. 2010, 114, 885–891. [Google Scholar] [PubMed]
- Bailey, D.G.; Malcolm, J.; Arnold, O.; Spence, J.D. Grapefruit juice—drug interactions. Br J Clin Pharmacol. 1998, 46, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.C.; Saville, D.J.; Coville, P.F.; Wanwimolruk, S. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products. Pharm Acta Helv. 2000, 74, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.G. Predicting clinical relevance of grapefruit– drug interactions: A complicated process. J Clin Pharm Ther. 2017, 42, 125–127. [Google Scholar] [CrossRef]
- Lee, J.W.; Morris, J.K.; Wald, N.J. Grapefruit Juice and Statins. Am J Med. 2016, 129, 26–29. [Google Scholar] [CrossRef]
- Lilja, J.J.; Neuvonen, M.; Neuvonen, P.J. Effects of regular consumption of grapefruit juice on the pharmacokinetics of simvastatin. Br J Clin Pharmacol. 2004, 58, 56–60. [Google Scholar] [CrossRef]
- Bailey, D.G.; Dresser, G.; Malcolm, J.; Arnold, O. Grapefruit – medication interactions: Forbidden fruit or avoidable consequences? CMAJ. 2013, 185, 309–316. [Google Scholar] [CrossRef]
- Summers, K.M. Potential drug-food interactions with pomegranate juice. Ann Pharmacotherapy. 2006, 40, 1472–1473. [Google Scholar] [CrossRef]
- Dresser, G.K.; Bailey, D.G.; Leake, B.F.; Schwarz, U.I.; Dawson, P.A.; Freeman, D.J.; Kim, R.B. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002, 71, 11–20. [Google Scholar] [CrossRef]
- Franke, S.I.; Prá, D.; Giulian, R.; Dias, J.F.; Yoneama, M.L.; da Silva, J.; Erdtmann, B.; Henriques, J.A. Influence of orange juice in the levels and in the genotoxicity of iron and copper. Food Chem Toxicol. 2006, 44, 425–435. [Google Scholar] [CrossRef]
- Niemi, M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics. 2007, 8, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Tamai, I. Oral drug delivery utilizing intestinal OATP transporters. Adv Drug Deliv Rev. 2012, 64, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhou, Z.; Tay-Sontheimer, J.; Levy, R.H.; Ragueneau-Majlessi, I. Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. J Pharm Sci. 2017, 106, 2312–2325. [Google Scholar] [CrossRef]
- Bailey, D.G. Fruit juice inhibition of uptake transport: A new type of food – drug interaction. Br J Clin Parmacol. 2010, 70, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Mallhi, T.H.; Sarriff, A.; Adnan, A.S.; Khan, Y.H.; Qadir, M.I.; Hamzah, A.A.; Khan, A.H. Effect of Fruit/Vegetable- Drug Interactions on CYP450, OATP and p- Glycoprotein: A Systematic Review. Trop J Pharm Res. 2015, 14, 1927–1935. [Google Scholar] [CrossRef]
- Wanwimolruk, S.; Phopin K Prachayasittikul, V. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2). EXCLI J. 2014, 13, 869–896. [Google Scholar]
- Tian, R.; Koyabu, N.; Takanaga, H.; Matsuo, H.; Ohtani, H.; Sawada, Y. Effects of grapefruit juice and orange juice on the intestinal efflux of P-glycoprotein substrates. Pharm Res. 2002, 19, 802–829. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, S.Y.; Fabriaga, E.; Zhang, P.H.; Zhou, Q. Food-drug interactions precipitated by fruit juices other than grapefruit juice: An update review. J Food Drug Anal. 2018, 26, S61–S71. [Google Scholar] [CrossRef]
- Heyman, M.B.; Abrams, S.A. Section on Gastroenterology, hepatology and nutrition, Committee on Nutrition: Fruit Juice in Infants, Children, and Adolescents: Current Recommendations. Pediatrics. 2017, 139, e20170967. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Yoshimura, R.; Umene-Nakano, W.; Ikenouchi- Sugita, A.; Hori, H.; Hayashi, K.; Kodama, Y.; Nakamura, J. Grapefruit juice alters plasma sertraline levels after single ingestion of sertraline in healthy volunteers. World J Biol Psychiatry. 2009, 10, 832–835. [Google Scholar] [CrossRef]
- Hori, H.; Yoshimura, R.; Ueda, N.; Eto, S.; Shinkai, K.; Sakata, S.; Ohmori, O.; Terao, T.; Nakamura, J. Grapefruit juice-fluvoxamine interaction – is it risky or not? J Clin Psychopharmacol. 2003, 23, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Pawełczyk, T.; Kłoszewska, I. Grapefruit juice interactions with psychotropic drugs: Advantages and potential risk. Przegl Lek. 2008, 65, 92–95. [Google Scholar]
- Motofei, I.G.; Rowland, D.L.; Baconi, D.L.; et al. Androgenetic alopecia; drug safety and therapeutic strategies. Expert Opin Drug Saf. 2018, 17, 407–412. [Google Scholar] [CrossRef]
- Flockhart, D.A. Dietary restrictions and drug interactions with monoamine oxidase inhibitors: An update. J Clin Psychiatry. 2012, 73, 17–24. [Google Scholar] [CrossRef]
- Salter, M.; Kenney, A. Myocardial Injury from Tranylcypromine-Induced Hypertensive Crisis Secondary to Excessive Tyramine Intake. Cardiovasc Toxicol. 2018, 18, 583–586. [Google Scholar] [CrossRef]
- Howland, R.H. Transdermal selegiline: A novel MAOI formulation for depression. J Psychosoc Nurs Ment Health Serv. 2006, 44, 9–12. [Google Scholar] [PubMed]
- Ozdemir, M.; Aktan, Y.; Boydag, B.S.; Cingi, M.I.; Musmul, A. Interaction between grapefruit juice and diazepam in humans. Eur Drug Metab Pharmacokinet. 1998, 23, 55–59. [Google Scholar] [CrossRef]
- Kupferschmidt, H.H.; Ha, H.R.; Ziegler, W.H.; Meier, P.J.; Krähenbühl, S. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther. 1995, 58, 20–28. [Google Scholar] [CrossRef]
- Hukkinen, S.K.; Varhe, A.; Olkkola, K.T.; Neuvonen, P.J. Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice. Clin Pharmacol Ther. 1995, 58, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Vanakoski, J.; Mattila, M.J.; Seppälä, T. Grapefruit juice does not enhance the effects of midazolam and triazolam in man. Eur J Clin Pharmacol. 1996, 50, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, J.S.; Donovan, J.L.; DeVane, C.L.; Taylor, R.M.; Ruan, Y.; Wang, J.S.; Chavin, K.D. Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA. 2003, 290, 1500–1504. [Google Scholar] [CrossRef]
- Lilja, J.J.; Kivisto, K.T.; Backman, J.T.; Lamberg, T.S.; Neuvonen, P.J. Grapefruit juice substantially increases plasma concentrations of buspirone. Clin Pharmacol Ther. 1998, 64, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Chan, W.K.; Harralson, A.F.; Buffum, J.; Bui, B.C. The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study. Clin Ther. 1999, 21, 1890–1899. [Google Scholar] [CrossRef]
- Dannawi, M. Possible serotonin syndrome after combination of buspirone and St John’s Wort. J Psychopharmacol. 2002, 16, 401. [Google Scholar] [CrossRef]
- Müller, W.E.; Rolli, M.; Schäfer, C.; Hafner, U. Effects of hypericum extract (LI 160) in biochemical models of antidepressant activity. Pharmacopsychiatry. 1997, 30, 102–107. [Google Scholar] [CrossRef]
- Henderson, L.; Yue, Q.Y.; Bergquist, C.; Gerden, B.; Arlett, P. St John’s wort (Hypericum perforatum): Drug interactions and clinical outcomes. Br J Clin Pharmacol. 2002, 54, 349–356. [Google Scholar] [CrossRef]
- Oesterheld, J.; Kallepalli, H.R. Grapefruit juice and clomipramine: Shifting melabolitic ratios. J Clin Psychopharmacol. 1997, 17, 62–63. [Google Scholar] [CrossRef]
- Olesen, O.V.; Linnet, K. Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol. 2001, 41, 823–832. [Google Scholar] [CrossRef]
- Akamine, Y.; Yasui-Furukori, N.; Ieiri, I.; Uno, T. Psychotropic drug-drug interactions involving P-glycoprotein. CNS Drugs. 2012, 26, 959–973. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.J.; Casciano, C.N.; Clement, R.P.; Johnson, W.W. Inhibition of P-glycoprotein transport function by grapefruit juice psoralen. Pharm Res. 2001, 18, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Eich-Höchli, D.; Oppliger, R.; Golay, K.P.; Baumann, P.; Eap, C.B. Methadone maintenance treatment and St. John’s Wort—a case report. Pharmacopsychiatry. 2003, 36, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Benmebarek, M.; Devaud, C.; Gex-Fabry, M.; Powell Golay, K.; Brogli, C.; Baumann, P.; Gravier, B.; Eap, C.B. Effects of grapefruit juice on the pharmacokinetics of the enantiomers of methadone. Clin Pharmacol Ther. 2004, 76, 55–63. [Google Scholar] [CrossRef]
- Garg, S.K.; Kumar, N.; Bhargava, D.K.; Prabhakar, S.K. Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy. Clin Pharmacol Ther. 1998, 64, 286–288. [Google Scholar] [CrossRef]
© 2020 by the author. 2020 Nicolae Bacinschi, Ina Pogonea, Lilia Podgurschi, Maria Mihalachi-Anghel, Emil Ștefănescu, Bogdan Socea, Marin Chianu1
Share and Cite
Bacinschi, N.; Pogonea, I.; Podgurschi, L.; Mihalachi-Anghel, M.; Ștefănescu, E.; Socea, B.; Chianu, M. The Role of Biotransformation Processes in Mediating Interactions Between Psychotropic Drugs and Natural Products. J. Mind Med. Sci. 2020, 7, 9-15. https://doi.org/10.22543/7674.71.P915
Bacinschi N, Pogonea I, Podgurschi L, Mihalachi-Anghel M, Ștefănescu E, Socea B, Chianu M. The Role of Biotransformation Processes in Mediating Interactions Between Psychotropic Drugs and Natural Products. Journal of Mind and Medical Sciences. 2020; 7(1):9-15. https://doi.org/10.22543/7674.71.P915
Chicago/Turabian StyleBacinschi, Nicolae, Ina Pogonea, Lilia Podgurschi, Maria Mihalachi-Anghel, Emil Ștefănescu, Bogdan Socea, and Marin Chianu. 2020. "The Role of Biotransformation Processes in Mediating Interactions Between Psychotropic Drugs and Natural Products" Journal of Mind and Medical Sciences 7, no. 1: 9-15. https://doi.org/10.22543/7674.71.P915
APA StyleBacinschi, N., Pogonea, I., Podgurschi, L., Mihalachi-Anghel, M., Ștefănescu, E., Socea, B., & Chianu, M. (2020). The Role of Biotransformation Processes in Mediating Interactions Between Psychotropic Drugs and Natural Products. Journal of Mind and Medical Sciences, 7(1), 9-15. https://doi.org/10.22543/7674.71.P915