Nanoparticles in the Treatment of Chronic Lung Diseases
Highlights
- In chronic lung diseases, nano-carrier systems provide the advantage of sustained drug release in lung tissue, resulting in reduced dosing frequency and improved patient compliance.
- Further studies are required in order to better understand the potential long-term risk of excipient toxicity and nanoscale carriers.
Abstract
:Highlights
- In chronic lung diseases, nano-carrier systems provide the advantage of sustained drug release in lung tissue, resulting in reduced dosing frequency and improved patient compliance.
- Further studies are required in order to better understand the potential long-term risk of excipient toxicity and nanoscale carriers.
Abstract
Introduction
Discussions
- ➢
- Polymeric nanoparticles are composed of biodegradable or biocompatible materials such as polylactic acid, alginic acid, gelatin, and chitosan, which results in prolonged drug release [24]. They are currently used in several chronic pulmonary diseases such as asthma, tuberculosis (TB) [25,26], and pulmonary hypertension [27].
- ➢
- Liposomal nano-carriers are uni-multi-lamellar spherical nanoparticles made of lipid bilayer membranes, including cholesterol and phosphatidylcholine, delivered in a liquid and dry powder form [28,29,30,31]. The most valuable function of this nano-system is the increase in cellular uptake of the drug due to the presence of cells penetrating peptides. They have proven themselves useful in treating respiratory distress syndrome [32].
- ➢
- Solid lipid nano-carriers are composed of solid lipids, surfactants, and water. They have less or almost no cytotoxic effect compared to the polymer-based carriers, as shown in different studies: in vitro, ex vivo, and in vivo [33,34,35]. Their main use is represented by lung cancer treatment and TB (tuberculosis) vaccine delivery. Solid lipid nano-carriers represent a multifunctional strategy in which a single molecule allows detection, diagnosis, imaging, cell destruction, and delivery of drugs, decreasing drug-related side effects [36,37]. More tolerable to the lungs and major advantages of solid lipid nanoparticles are the controlled release of drugs with rapid in vivo degradation [38,39,40].
- ➢
- Submicron emulsions are promising carriers for DNA vaccines (e.g. Mycobacterium tuberculosis) to the lung compared to the commercially available liposomes. The emulsion systems are able to transfect pulmonary epithelial cells, which directly activate dendritic cells, resulting in the stimulation of antigen-specific T-cells [41].
Conclusions
Acknowledgments
Conflicts of Interest
Compliance with ethical standards
References
- Faraday, M. Experimental relations of gold (and other metals) to light. Phil Trans Roy Soc London. 1857, 147, 145–181. [Google Scholar]
- Marty, J.J.; Oppenheim, R.C.; Speiser, P. Nanoparticles—a new colloidal drug delivery system. Pharm Acta Helv. 1978, 53, 17–23. [Google Scholar] [PubMed]
- Courrier, H.M.; Butz, N.; Vandamme, T.F. Pulmonary drug delivery systems: recent developments and prospects. Crit Rev Ther Drug Carr Syst. 2002, 19, 425–498. [Google Scholar] [CrossRef] [PubMed]
- Weissig, V.; Pettinger, T.K.; Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014, 9, 4357–73. [Google Scholar] [CrossRef]
- Chung, C.Y.; Yang, J.T.; Kuo, Y.C. Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials. 2013, 34, 9717–9727. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.S.; Byron, P.R. Inhaling medicines: Delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007, 6, 67–74. [Google Scholar] [CrossRef]
- Gasselhuber, A.; Dreher, M.R.; Rattay, F.; Wood, B.J.; Haemmerich, D. Comparison of conventional chemotherapy, stealth liposomes and temperature sensitive liposomes in a mathematical model. PLoS One. 2012, 7, e47453. [Google Scholar] [CrossRef]
- Byron, P.; Patton, J.S. Drug Delivery via the Respiratory Tract. J Aerosol Med. 2009, 7, 49–75. [Google Scholar] [CrossRef]
- Buddiga, P. Use of Metered Dose Inhalers, Spacers, and Nebulizers, online 2015. Available online: https://whipples-surgery.blogspot.com/2015/10/use-of-metered-dose-inhalers-spacers.html.
- Ramadan, W.H.; Sarkis, A.T. Patterns of use of dry powder inhalers versus pressurized metered-dose inhalers devices in adult patients with chronic obstructive pulmonary disease or asthma: An observational comparative study. Chron Respir Dis. 2017, 14, 309–320. [Google Scholar] [CrossRef]
- Ngoune, R.; Peters, A.; von Elverfeldt, D.; Winkler, K.; Putz, G. Accumulating nanoparticles by EPR: A route of no return. J Control Release. 2016, 238, 58–70. [Google Scholar] [CrossRef]
- Carvalho, T.C.; Peters, J.I.; Williams, I.I.I.R.O. Influence of particle size on regional lung deposition – What evidence is there? Int J Pharm. 2011, 406, 1–10. [Google Scholar] [CrossRef]
- Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: A review of current toxicological data. Part Fibre Toxicol. 2013, 10, 15. [Google Scholar] [CrossRef]
- Leach, C.; Colice, C.G.; Luskin, A. Particle size of inhaled corticosteroids: Does it matter? J Allergy Clin Immunol. 2009, 124, S88–S93. [Google Scholar] [CrossRef] [PubMed]
- Loira-Pastoriza, C.; Todoroff, J.; Vanbever, R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014, 75, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Vij, N. Nanodelivery in airway diseases: challenges and therapeutic applications. Nanomedicine. 2010, 6, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Todoroff, J.; Vanbever, R. Fate of nanomedicines in the lungs. Curr Opin Colloid Interface Sci. 2010, 16, 246–254. [Google Scholar] [CrossRef]
- Bailey, M.M.; Berkland, C.J. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009, 29, 196–212. [Google Scholar] [CrossRef]
- Azarmi, S.; Roa, W.H.; Löbenberg, R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008, 60, 863–875. [Google Scholar] [CrossRef]
- Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schaffler, M.; Takenaka, S.; Moller, W.; Schmid, G.; Simon, U.; et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011, 77, 407–416. [Google Scholar] [CrossRef]
- Akagi, S.; Nakamura, K.; Matsubara, H.; et al. Intratracheal administration of prostacyclin analogue-incorporated nanoparticles ameliorates the development of monocrotaline and sugen-hypoxia-induced pulmonary arterial hypertension. J Cardiovasc Pharmacol. 2016, 67, 290–298. [Google Scholar] [CrossRef]
- Heneweer, C.; Gendy, S.E.; Peñate-Medina, O. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. Ther Deliv. 2012, 3, 645–56. [Google Scholar] [CrossRef] [PubMed]
- Harush-Frenkel, O.; et al. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol Appl Pharmacol. 2010, 246, 83–90. [Google Scholar] [CrossRef]
- Olivier, K.N.; Griffith, D.E.; Eagle, G.; McGinnis, J.P., II; et al. Randomized Trial of Liposomal Amikacin for Inhalation in Nontuberculous Mycobacterial Lung Disease. Am J Respir Crit Care Med. 2017, 195, 814–23. [Google Scholar] [CrossRef] [PubMed]
- Chiaramoni, N.S.; Gasparri, J.; Speroni, L.; Taira, M.C.; Alonso S del, V. Biodistribution of liposome/DNA systems after subcutaneous and intraperitoneal inoculation. J Liposome Res. 2010, 20, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Donahoe, M. Acute respiratory distress syndrome: A clinical review. Pulm Circ. 2011, 1, 192–211. [Google Scholar] [CrossRef]
- DiMarco, M.; Shamsuddin, S.; Razak, K.A.; Aziz, A.A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation. Int J Nanomedicine. 2010, 5, 37–49. [Google Scholar]
- Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015, 219, 500–518. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, C.; Yuan, Y.; Tao, X.; Yang, F.; Shan, X.; Zhou, H.; Xu, F. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water- soluble chitosan. Biomaterials. 2009, 30, 2340–2348. [Google Scholar] [CrossRef]
- Estella-Hermoso de Mendoza, A.; Campanero, M.A.; Mollinedo, F.; Blanco-Prieto, M.J. Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol. 2009, 5, 323–343. [Google Scholar] [CrossRef]
- Nassimi, M.; Schleh, C.; Lauenstein, H.D.; Hussein, R.; Hoymann, H.G.; Koch, W.; Pohlmann, G.; Krug, N.; Sewald, K.; Rittinghausen, S.; Braun, A.; Muller-Goymann, C. A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm. 2010, 75, 107–116. [Google Scholar] [CrossRef]
- Lee, H.Y.; Mohammed, K.A.; Nasreen, N. Nanoparticle- based targeted gene therapy for lung cancer. Am J Cancer Res. 2016, 6, 1118–1134. [Google Scholar] [PubMed]
- Nassimi, M.; Schleh, C.; Lauenstein, H.D.; Hussein, R.; Lübbers, K.; Pohlmann, G.; Switalla, S.; Sewald, K.; Müller, M.; Krug, N.; et al. Low cytotoxicity of solid lipid nanoparticles in in vitroand ex vivo lung models. Inhal Toxicol. 2009, 21, 104–109. [Google Scholar] [CrossRef]
- Patel, A.R.; Chougule, M.B.T.; Patlolla, R.; Wang, G.; Singh, M. Efficacy of aerosolized celecoxib encapsulated nanostructured lipid carrier in non-small cell lung cancer in combination with docetaxel. Pharm Res. 2013, 30, 1435–1446. [Google Scholar] [CrossRef]
- Channick, R.N.; Voswinckel, R.; Rubin, L.J. Inhaled treprostinil: a therapeutic review. Drug Des Devel Ther. 2012, 6, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010, 392, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Van Rijt, S.H.; Bein, T.; Meiners, S. Medical nanoparticles for next-generation drug delivery to the lungs. Eur Respir J. 2014, 44, 765–774. [Google Scholar] [CrossRef]
- Lenz, A.G.; Stoeger, T.; Cei, D.; Schmidmeir, M.; Semren, N.; et al. Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air- liquid interface conditions. Am J Respir Cell Mol Biol. 2014, 51, 526–535. [Google Scholar] [CrossRef]
- Muralidharan, P.; Malapit, M.; Mallory, E.; Hayes, D., Jr. Mansour, H. M. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 2015, 11, 1189–1199. [Google Scholar]
- Paranjpe, M.; Müller-Goymann, C.C. Nanoparticle- mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014, 15, 5852–5873. [Google Scholar] [CrossRef]
- Garcia Fde, M. Nanomedicine and therapy of lung diseases. Einstein (Sao Paulo). 2014, 12, 531–533. [Google Scholar] [CrossRef]
- Dombu, C.Y.; Kroubi, M.; Zibouche, R.; Matran, R.; Betbeder, D. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells. Nanotechnology. 2010, 21, 355l302. [Google Scholar] [CrossRef] [PubMed]
- Ibricevic, A.; Guntsen, S.P.; Zhang, K.; Shrestha, R.; Liu, Y.; Sun, J.Y.; Welch, M.J.; Wooley, K.L.; Brody, S.L. PEGylation of cationic, shell-crosslinked-knedel-like nanoparticles modulates inflammation and enhances cellular uptake in the lung. Nanomedicine. 2013, 9, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Griset, A.P.; Walpole, J.; Liu, R.; Gaffey, A.; Colson, Y.L.; Grinstaff, M.W. Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid- responsive polymeric drug delivery system. J Am Chem Soc. 2010, 131, 2469–71. [Google Scholar] [CrossRef] [PubMed]
- Agent, P.; Parrott, H. Inhaled therapy in cystic fibrosis: agents, devices and regimens. Breathe 2015, 11, 111–8. [Google Scholar] [CrossRef]
- Omlor, A.; Nguyen, J.; Bals, R.; Dinh, Q.T. Nanotechnology in respiratory medicine. Respir Res. 2015, 16, 64. [Google Scholar] [CrossRef]
- Hickey, A.J. Controlled delivery of inhaled therapeutic agents. J Control Release. 2014, 190, 182–8. [Google Scholar] [CrossRef]
- Matsuo, Y.; Ishihara, T.; Ishizaki, J.; Miyamoto, K.; Higaki, M.; Yamashita, N. Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell Immunol. 2009, 260, 33–38. [Google Scholar] [CrossRef]
- Holeab, C.; Paunica, M.; Curaj, A. A complex method of semantic bibliometrics for revealing conceptual profiles and trends in scientific literature. The case of future-oriented technology analysis (FTA) science. Economic computation and economic cybernetics studies and research. 2017, 51, 23–37. [Google Scholar]
- Griffiths, G.; Nystroem, B.; Sable, S.B.; Khuller, G.K. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nature Rev Microbiol. 2010, 8, 827–834. [Google Scholar] [CrossRef]
- Prencipe, G.; Tabakman, S.M.; Welsher, K.; et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc. 2009, 131, 4783–4787. [Google Scholar] [CrossRef]
- Muralidharan, P.; Hayes, D.; Black, S.M.; Mansour, H.M. Microparticulate/nanoparticulate powders of a novel Nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung Nrf2/Keap-1 pathway. Mol Syst Des Eng. 2016, 1, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Guthi, J.S.; et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm. 2010, 7, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E.; Salar-Behzadi, S. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies. Int J Mol Sci. 2014, 15, 4795–822. [Google Scholar] [CrossRef]
- Jones, M.C.; Jones, S.A.; Riffo-Vasquez, Y.; Spina, D.; et al. Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. J Control Release. 2014, 183, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Hanes, J.; Duncun, A.G.; Suk, J.S. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release. 2016, 240, 465–488. [Google Scholar] [CrossRef]
- Mansour, H.M.; Rhee, Y.S.; Wu, X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009, 4, 299–319. [Google Scholar] [CrossRef]
- Nair, P.; Pizzichini, M.M.; Kjarsgaard, M.; Inman, M.D.; Efthimiadis, A.; Pizzichini, E.; Hargreave, F.E.; O’Byrne, P.M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009, 360, 985–993. [Google Scholar] [CrossRef]
- Ahmad, Z.; Sharma, S.; Khuller, G.K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents. 2005, 26, 298–303. [Google Scholar]
- Bellini, R.G.; Guimaraes, A.P.; Pacheco, M.A.; Dias, D.M.; Furtado, V.R.; de Alencastro, R.B.; Horta, B.A. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model. 2015, 60, 34–42. [Google Scholar] [CrossRef]
© 2019 by the author. 2019 Teodora G. Alexescu, Simina Tarmure, Vasile Negrean, Maria Cosnarovici, Victoria M. Ruta, Ionela Popovici, Ioana Para, Mirela G. Perne, Olga H. Orasan, Doina A. Todea
Share and Cite
Alexescu, T.G.; Tarmure, S.; Negrean, V.; Cosnarovici, M.; Ruta, V.M.; Popovici, I.; Para, I.; Perne, M.G.; Orasan, O.H.; Todea, D.A. Nanoparticles in the Treatment of Chronic Lung Diseases. J. Mind Med. Sci. 2019, 6, 224-231. https://doi.org/10.22543/7674.62.P224231
Alexescu TG, Tarmure S, Negrean V, Cosnarovici M, Ruta VM, Popovici I, Para I, Perne MG, Orasan OH, Todea DA. Nanoparticles in the Treatment of Chronic Lung Diseases. Journal of Mind and Medical Sciences. 2019; 6(2):224-231. https://doi.org/10.22543/7674.62.P224231
Chicago/Turabian StyleAlexescu, Teodora G., Simina Tarmure, Vasile Negrean, Maria Cosnarovici, Victoria M. Ruta, Ionela Popovici, Ioana Para, Mirela G. Perne, Olga H. Orasan, and Doina A. Todea. 2019. "Nanoparticles in the Treatment of Chronic Lung Diseases" Journal of Mind and Medical Sciences 6, no. 2: 224-231. https://doi.org/10.22543/7674.62.P224231
APA StyleAlexescu, T. G., Tarmure, S., Negrean, V., Cosnarovici, M., Ruta, V. M., Popovici, I., Para, I., Perne, M. G., Orasan, O. H., & Todea, D. A. (2019). Nanoparticles in the Treatment of Chronic Lung Diseases. Journal of Mind and Medical Sciences, 6(2), 224-231. https://doi.org/10.22543/7674.62.P224231