The Substrate of the Biopsychosocial Influences in the Carcinogenesis of the Digestive Tract
Abstract
:Introduction
Discussion
Brain-gastrointestinal tract axis
Neurotransmitters and digestive cancer
Psychological factors and neoplasm
Brain-mast cell axis in malignant tumors of digestive tract
Conclusions
Acknowledgments
References
- Grundy, D.; Al-Chaer, E.D.; Aziz, Q.; Collins, S.M.; Ke, M.; Taché, Y.; Wood, J.D. Fundamentals of neurogastroenterology: Basic science. Gastroenterology 2006, 130, 1391–411. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H. Neurogastroenterology: A window on the ENS. Nat Rev Gastroenterol Hepatol. 2016, 13, 436–7. [Google Scholar] [CrossRef]
- Novack, D.H.; Cameron, O.; Epel, E.; Ader, R.; Waldstein, S.R.; Levenstein, S.; Antoni, M.H.; Wainer, A.R. Psychosomatic medicine: The scientific foundation of the biopsychosocial model. Acad Psychiatry 2007, 31, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Fife, A.; Beasley, P.J.; Fertig, D.L. Psychoneuroimmunology and cancer: Historical perspectives and current research. Adv neuroimmunol. 1996, 6, 179–190. [Google Scholar] [CrossRef]
- Gidron, Y.; Perry, H.; Glennie, M. Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol. 2005, 6, 245–248. [Google Scholar] [CrossRef]
- Mravec, B.; Gidron, Y.; Hulin, I. Neurobiology of cancer: Interactions between nervous, endocrine and immune systems as a base for monitoring and modulating the tumorigenesis by the brain. Semin Cancer Biol. 2008, 18, 150–63. [Google Scholar] [CrossRef]
- Ondicova, K.; Mravec, B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol. 2010, 11, 596–601. [Google Scholar] [CrossRef]
- Hall, J.E. Guyton and Hall textbook of medical physiology. Elsevier Health Sciences 2010. [Google Scholar]
- Arina, P. The brain-gut interaction: The conversation and the implications. South African Journal of Clinical Nutrition 2011, 24, S8–S14. [Google Scholar]
- Ray, K. Neurogastroenterology: A tale of two neurons—Distinct functions of vagal afferents of the gut. Nat Rev Gastroenterol Hepatol. 2016, 13, 435. [Google Scholar] [CrossRef]
- Wood, J.D.; Alpers, D.H.; Andrews, P.L. Fundamentals of neurogastroenterology. Gut 1999, 4, II6–II16. [Google Scholar] [CrossRef]
- Entschladen, F.; Palm, D.; Niggemann, B.; Zaenker, K.S. The cancer’s nervous tooth: Considering the neuronal crosstalk within tumors. Semin Cancer Biol. 2008, 18, 171–5. [Google Scholar] [CrossRef]
- Matsushita, M.; Masaoka, T.; Suzuki, H. Emerging treatments in neurogastroenterology: Acotiamad, a novel treatment option for functional dyspepsia. Neurogastroenterol Motil. 2016, 28, 631–8. [Google Scholar] [CrossRef] [PubMed]
- Zänker, K.S. The neuro-neoplastic synapse: Does it exist? Prog Exp Tumor Res 2007, 39, 154–161. [Google Scholar] [PubMed]
- Schuller, H.M. Neurotransmission and cancer: Implications for prevention and therapy. Anti-cancer Drugs 2008, 19, 655–671. [Google Scholar] [CrossRef]
- Entschladen, F.; Drell, T.L.; Lang, K.; Joseph, J.; Zaenker, K.S. Tumour-cell migration, invasion, and metastasis: Navigation by neurotransmitters. Lancet Oncol. 2004, 5, 254–258. [Google Scholar] [CrossRef]
- Fitzgerald, P.J. Is norepinephrine an etiological factor in some types of cancer? Int J Cancer 2009, 124, 257–263. [Google Scholar] [CrossRef]
- Ray, K. Neurogastroenterology: Enteric neurons and macrophage crosstalk. Nat Rev Gastroenterol Hepatol. 2016, 13, 123. [Google Scholar] [CrossRef]
- Shi, M.; Yang, Z.; Hu, M.; Liu, D.; Hu, Y.; Qian, L.; Zhang, W.; Chen, H.; Guo, L.; Yu, M.; et al. Catecholamine-Induced β2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression. Journal Immunol. 2013, 190, 5600–8. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, N.; Kim, G.H.; Kim, G.H. Comparing the Areas of Interest in the Field of Functional Gastrointestinal Disorder and Neuro-gastroenterology and Motility between the East and the West. J Neurogastroenterol Motil. 2015, 21, 503–10. [Google Scholar] [CrossRef]
- Jarmuż, A.; Zielińska, M.; Storr, M.; Fichna, J. Emerging treatments in Neurogastroenterology: Perspectives of guanylyl cyclase C agonists use in functional gastrointestinal disorders and inflammatory bowel diseases. Neurogastroenterol Motil. 2015, 27, 1057–68. [Google Scholar] [CrossRef]
- Thaker, P.H.; Han, L.Y.; Kamat, A.A.; Arevalo, J.M.; Takahashi, R.; Lu, C.; Jennings, N.B.; Armaiz-Pena, G.; Bankson, J.A.; Ravoori, M.; et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006, 12, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Shahzad, M.M.; Lin, Y.G.; Armaiz-Pena, G.; Mangala, L.S.; Han, H.D.; Kim, H.S.; Nam, E.J.; Jennings, N.B.; Halder, J.; et al. Surgical stress promotes tumor growth in ovarian carcinoma. Clinical Cancer Research 2009, 15, 2695–2702. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.V.; Sood, A.K.; Chen, M.; Li, Y.; Eubank, T.D.; Marsh, C.B.; Jewell, S.; Flavahan, N.A.; Morrison, C.; Yeh, P.E.; et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006, 66, 10357–64. [Google Scholar] [CrossRef]
- Vilardi, B.M.; Bravo-Calderon, D.M.; Bernabe, D.G.; Oliveira, S.H.; Oliveira, D.T. VEGF-C expression in oral cancer by neurotransmitter-induced activation of beta-adrenergic receptors. Tumour Biol 2013, 34, 139–43. [Google Scholar] [CrossRef]
- Yang, E.V.; Kim, S.J.; Donovan, E.L.; Chen, M.; Gross, A.C.; Webster Marketon, J.I.; Barsky, S.H.; Glaser, R. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: Implications for stress-related enhancement of tumor progression. Brain Behav Immun. 2009, 23, 267–275. [Google Scholar] [CrossRef]
- Verma, S.; Kesh, K.; Ganguly, N.; Jana, S.; Swarnakar, S. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants. World J Biol Chem. 2014, 5, 355–376. [Google Scholar] [CrossRef]
- Goebel-Stengel, M.; Mazzuoli-Weber, G.; Demir, I.E.; Wouters, M.M.; Gourcerol, G.; Stengel, A. TANDEM—A novel concept to bring basic and clinical scientists together in order to push borders in Neurogastroenterology & amp; Motility. Neurogastroenterol Motil. 2015, 27, 1515–8. [Google Scholar]
- Langers, A.M.; Verspaget, H.W.; Hawinkels, L.J.; Kubben, F.J.; van Duijn, W.; van der Reijden, J.J.; Hardwick, J.C.; Hommes, D.W.; Sier, C.F. MMP-2 and MMP-9 in normal mucosa are independently associated with outcome of colorectal cancer patients. Br J Cancer 2012, 106, 1495–98. [Google Scholar] [CrossRef]
- Schuller, H.M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer 2009, 9, 195–205. [Google Scholar] [CrossRef]
- Tracey, K.J. Reflex control of immunity. Nat Rev Immunol. 2009, 9, 418–28. [Google Scholar] [CrossRef]
- Al-Wadei, H.A.; Schuller, H.M. Nicotinic receptor-associated modulation of stimulatory and inhibitory neurotransmitters in NNK-induced adenocarcinoma of the lungs and pancreas. Journal Pathol. 2009, 218, 437–45. [Google Scholar] [CrossRef] [PubMed]
- Von Rosenvinge, E.C.; Raufman, J.P. Muscarinic receptor signaling in colon cancer. Cancers (Basel) 2011, 3, 971–81. [Google Scholar] [CrossRef]
- Xie, G.; Cheng, K.; Shant, J.; Raufman, J.P. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol. 2009, 296, G755–G763. [Google Scholar] [CrossRef]
- Cheng, K.; Xie, G.; Khurana, S.; Heath, J.; Drachenberg, C.B.; Timmons, J.; Shah, N.; Raufman, J.P. Divergent effects of muscarinic receptor subtype gene ablation on murine colon tumorigenesis reveals association of M3R and zinc finger protein 277 expression in colon neoplasia. Mol Cancer 2014, 13, 77. [Google Scholar] [CrossRef]
- Shah, N.; Khurana, S.; Cheng, K.; Raufman, J.P. Muscarinic receptors and ligands in cancer. Am J Physiol Cell Physiol 2009, 296, C221–C232. [Google Scholar] [CrossRef]
- Zhao, C.M.; Hayakawa, Y.; Kodama, Y.; Muthupalani, S.; Westphalen, C.B.; Andersen, G.T.; Flatberg, A.; Johannessen, H.; Friedman, R.A.; Renz, B.W.; et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014, 6, 250ra115. [Google Scholar] [CrossRef] [PubMed]
- Jobling, P.; Pundavela, J.; Oliveira, S.M.; Roselli, S.; Walker, M.M.; Hondermarck, H. Nerve–Cancer Cell Cross-talk: A Novel Promoter of Tumor Progression. Cancer Res. 2015, 75, 1777–1781. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Cortes, F.; Turco, F.; Linan-Rico, A.; Soghomonyan, S.; Whitaker, E.; Wehner, S.; Cuomo, R.; Christofi, F.L. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases. Inflamm Bowel Dis. 2016, 22, 433–49. [Google Scholar] [CrossRef]
- Velin, A.K.; Ericson, A.C.; Braaf, Y.; Wallon, C.; Söderholm, J.D. Increased antigen and bacterial uptake in follicle associated epithelium induced by chronic psychological stress in rats. Gut. 2004, 53, 494–500. [Google Scholar] [CrossRef]
- Armaiz-Pena, G.N.; Lutgendorf, S.K.; Cole, S.W.; Sood, A.K. Neuroendocrine modulation of cancer progression. Brain Behav Immun. 2009, 23, 10–15. [Google Scholar] [CrossRef]
- Reiche, E.M.; Nunes, S.O.; Morimoto, H.K. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004, 5, 617–625. [Google Scholar] [CrossRef]
- Benish, M.; Bartal, I.; Goldfarb, Y.; Levi, B.; Avraham, R.; Raz, A.; Ben-Eliyahu, S. Perioperative use of β-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008, 15, 2042–2052. [Google Scholar] [CrossRef]
- Liu, S.; Hu, H.Z.; Gao, N.; Gao, C.; Wang, G.; Wang, X.; Peck, O.C.; Kim, G.; Gao, X.; Xia, Y.; et al. Neuroimmune interactions in guinea pig stomach and small intestine. Am J Physiol Gastrointest Liver Physiol. 2003, 284, G154–G164. [Google Scholar] [CrossRef] [PubMed]
- Saperas, E.; Nogueiras, C.; Mourelle, M.; Antolín, M.; Cadahia, A.; Malagelada, J.R. Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology 1998, 114, 640–648. [Google Scholar]
- Broaddus, R.R.; Castro, G.A. Mast cell-mediated colonic immune function and its inhibition by dietary aspirin in mice infected with Trichinellaspiralis. Int Arch Allergy Immunol. 1994, 105, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Saperas, E.; Mourelle, M.; Antolín, M.; Malagelada, J.R. Regulation of intestinal mast cells and luminal protein release by cerebral thyrotropin-releasing hormone in rats. Gastroenterology 1996, 111, 1465–73. [Google Scholar] [CrossRef] [PubMed]
- Conti, P.; Castellani, M.L.; Kempuraj, D.; Salini, V.; Vecchiet, J.; Tetè, S.; Mastrangelo, F.; Perrella, A.; De Lutiis, M.A.; Tagen, M.; et al. Role of mast cells in tumor growth. Ann Clin Lab Sci. 2007, 37, 315–22. [Google Scholar]
- Huang, B.; Lei, Z.; Zhang, G.M.; Li, D.; Song, C.; Li, B.; Liu, Y.; Yuan, Y.; Unkeless, J.; Xiong, H.; et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 2008, 112, 1269–79. [Google Scholar] [CrossRef]
- Ribatti, D.; Crivellato, E. The controversial role of mast cells in tumor growth. Int Rev Cell Mol Biol. 2009, 275, 89–131. [Google Scholar]
- Strouch, M.J.; Cheon, E.C.; Salabat, M.R.; Krantz, S.B.; Gounaris, E.; Melstrom, L.G.; Dangi-Garimella, S.; Wang, E.; Munshi, H.G.; Khazaie, K.; et al. Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res. 2010, 16, 2257–2265. [Google Scholar] [CrossRef]
- Ribatti, D.; Guidolin, D.; Marzullo, A.; Nico, B.; Annese, T.; Benagiano, V.; Crivellato, E. Mast cells and angiogenesis in gastric carcinoma. Int. J Exp Pathol. 2010, 91, 350–356. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the author. 2016 Georgică C. Târtea, Cristina Florescu, Daniel Pirici, Daniel Caragea, Elena A. Târtea, Cristin C. Vere.
Share and Cite
Târtea, G.C.; Florescu, C.; Pirici, D.; Caragea, D.; Târtea, E.A.; Vere, C.C. The Substrate of the Biopsychosocial Influences in the Carcinogenesis of the Digestive Tract. J. Mind Med. Sci. 2016, 3, 108-117. https://doi.org/10.22543/2392-7674.1043
Târtea GC, Florescu C, Pirici D, Caragea D, Târtea EA, Vere CC. The Substrate of the Biopsychosocial Influences in the Carcinogenesis of the Digestive Tract. Journal of Mind and Medical Sciences. 2016; 3(2):108-117. https://doi.org/10.22543/2392-7674.1043
Chicago/Turabian StyleTârtea, Georgică C., Cristina Florescu, Daniel Pirici, Daniel Caragea, Elena A. Târtea, and Cristin C. Vere. 2016. "The Substrate of the Biopsychosocial Influences in the Carcinogenesis of the Digestive Tract" Journal of Mind and Medical Sciences 3, no. 2: 108-117. https://doi.org/10.22543/2392-7674.1043
APA StyleTârtea, G. C., Florescu, C., Pirici, D., Caragea, D., Târtea, E. A., & Vere, C. C. (2016). The Substrate of the Biopsychosocial Influences in the Carcinogenesis of the Digestive Tract. Journal of Mind and Medical Sciences, 3(2), 108-117. https://doi.org/10.22543/2392-7674.1043