Toxicological Analysis of Some Drugs of Abuse in Biological Samples
Abstract
:Introduction
- -
- Initial diagnosis of drug addiction
- -
- Checking an auto-response, a declaration
- -
- Mandatory screening in some treatment programs
- -
- Screening as a method of tracking drug effects over time
- -
- Identification of the substance in case of an overdose
- -
- Determination of treatment compliance
Discussion
- -
- Type of sample used
- -
- Scope of analysis
- -
- Pharmacokinetic features and biotransformation of the illicit substance
- -
- Available equipment and reagents
- -
- Staff expertise
- -
- Costs.
- Biological samples. Depending on the purpose of the analysis, the substances of abuse may be determined from different biological samples.
- Blood/plasma: first choice for the quantitative determination of drugs; therapeutic levels in the blood are low but, when they are consumed abusively, the concentrations may be 2-3 times higher.
- Urine: first choice for screening of drugs of abuse. It is available in sufficient quantity and substances or metabolites are present in relatively high concentrations.
- Hair: it is used for the determination of the history of an abuse substance consumption. Detection is possible at10-14 days to 90 days after ingestion.
- Saliva: it is used for the screening of drugs of abuse consumed within the last 24 hours.
- Meconium: reveals maternal history of drugs of abuse consumption in the last 20 weeks of pregnancy and allow the choice of therapy for mother and new-born.
- Breast milk: it is used for the determination of the exposure extent of the infant to drugs of abuse.
- Procedures for extraction of drugs of abuse from biological samples:
Testing of substances of abuse extracted from biological samples
- -
- Screening tests: are quick, simple and requires a minimum previous processing of the sample. Examples: immunoassays, Thin Layer Chromatography (TLC).
- -
- Confirmatory tests: are performant, sensitive, selective methods that reduce the number of false- positive / false-negative results. Examples: Gas Chromatography-Mass Spectrometry (GCMS), High performance liquid chromatography (HPLC), Liquid chromatography-Mass Spectrometry (LCMS).
- Screening methods for the determination of drugs of abuse: thin layer chromatography, immunoassay
- -
- easy to performed
- -
- quick
- -
- not require a complicated and unaffordable equipment
- -
- require few usual reagents
- -
- not require highly qualified personnel
- -
- inexpensive
- -
- able to be performed also outside a lab
- -
- require a minimum processing of the samples.
- 2.
- Toxicological examination of the drugs of abuse - confirmatory methods
- -
- Are effective methods, sensitive, selective, accurate, reproducible;
- -
- Are performant column chromatographic methods: GC-MS, HPLC, LC-MS;
- -
- Requires a laborious sample preparation stage;
- -
- Requires expensive equipment and highly qualified personnel;
- -
- Are analysed with higher costs.
Confirmatory Tests - gas chromatography coupled with mass spectrometry (GC-MS)
Confirmatory Tests – High Performance Liquid Chromatography (HPLC)
Confirmation Tests - liquid chromatography coupled with mass spectrometry (LC-MS)
Conclusions
Acknowledgments
References
- Concheiro, M.; Gray, T.R.; Shakleya, D.M.; Huestis, M.A. High-throughput simultaneous analysis of buprenorphine, methadone, cocaine, opiates, nicotine, and metabolites in oral fluid by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2010, 398, 915–924. [Google Scholar] [PubMed]
- Hoja, H.; Marquet, P.; Verneuil, B.; Lotfi, H.; Penicaut, B.; Lachatre, G. Applications of liquid chromatography-mass spectrometry in analytical toxicology: A review. J. Anal. Toxicol. 1997, 21, 116–126. [Google Scholar]
- Brunet, B.R.; Allan, J.B.; Karl, B.S.; Patrick, M.; Marilyn, A.H. Development and validation of a solid- phase extraction gas chromatography–mass spectrometry method for the simultaneous quantification of methadone, heroin, cocaine and metabolites in sweat. Anal Bioanal Chem. 2008, 392, 115–127. [Google Scholar]
- Dams, R.; Murphy, C.M.; Lambert, W.E.; Huestis, M.A. Urine drug testing for opioids, cocaine, and metabolites by direct injection liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 1665–1670. [Google Scholar] [PubMed]
- Cheng, Y.; Neue, U.D.; Woods, L.L. Novel high-performance liquid chromatographic and solid-phase extraction methods for quantitating methadone and its metabolite in spiked human urine. Journal of Chromatography B. 1999, 729, 19–31. [Google Scholar]
- De Giovanni, N.; Rossi, S.S. Simultaneous detection of cocaine and heroin metabolites in urine by solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatography B 1994, 658, 69–73. [Google Scholar]
- ***. Available online: http://what-when-how.com/forensic-sciences/presumptive-chemical-tests/.
- *** Recommended Methods for the Detection and Assay of heroin, Cannabinoids, Cocaine, Amphetamine, Metamphetamine and Ring-Substituted Amphetamine Derivatives in Biological Specimens. United Nations International Drug Control Programme (UNIDCDP): New York, NY, USA, 1995.
- Aitken, C.G. Sampling— How big a sample? J. Forensic Sci. 1999, 44, 750–760. [Google Scholar]
- Baconi, D. Toxicomanii— Note de curs, Ed. Tehnoplast Company SRL: Bucureşti, 2005. [Google Scholar]
- Baconi, D.; Bălălău, C. Toxicologia substanţelor de abuz, Ed. Universitară Carol Davila: Bucureşti, 2013. [Google Scholar]
- Bourquin, D.; Lehman, T.; Hämmig, R.; Bührer, M.; Brenneisen, R. High-performance liquid chromatographic monitoring of intravenously administered diacetylmorphine and morphine and their metabolites in human plasma. J. Chromatography B 1997, 694, 233–238. [Google Scholar]
- Choo, R.E.; Lauren, M. Jansson KS, Marilyn AH. A Validated Liquid Chromatography–Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometric Method for the Quantification of Methadone, 2-Ethylidene-1,5-dimethyl-3,3- diphenylpyrrolidine (EDDP), and 2-Ethyl-5-methyl- 3,3-diphenylpyroline (EMDP) in Human Breast Milk. J Anal Toxicol. 2007, 31, 265–269. [Google Scholar]
- Choo, R.E.; Constance, M.M.; Hendree, E.J.; Marilyn, A.H. Determination of methadone, 2-ethylidene- 1,5-dimethyl-3,3- diphenylpyrrolidine, 2-ethyl-5-methyl-3,3-diphenylpyraline and methadol in meconium by liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry. J. Chromatogr. B 2005, 814, 369–373. [Google Scholar]
- Danielson, T.J.; Mozayani, A.; Sanchez, L.A. Methadone and methadone metabolites in postmortem specimens. Forensic Sci Med Pathol 2008, 4, 170–174. [Google Scholar]
- de Castroa, A.; Marta, C.; Diaa, M.S.; Marilyn, A.H. Development and validation of a liquid chromatography mass spectrometry assay for the simultaneous quantification of methadone, cocaine, opiates and metabolites in human umbilical cord. J. Chromatogr. B 2009, 877, 3065–3071. [Google Scholar]
- Etter, M.L.; George, K.G.; Eichhorst, J.; Lehotay, D.C. Determination of free and protein-bound methadone and its major metabolite EDDP: Enantiomeric separation and quantitation by LC/MS/MS. Clinical Biochemistry 2005, 38, 1095–1102. [Google Scholar] [PubMed]
- Flanagan, R.J.; Braithwaite, R.A.; Brown, S.S.; Widdop, B.; de Wolff, F.A. Basic Analytical Toxicology; World Health Organization: Geneva, 1995. [Google Scholar]
- Foster, D.J.; Andrew, A.S.; Jason, M.W.; Felix, B. Population pharmacokinetics of (R)-, (S)- and racmethadone in methadone maintenance patients. Br J Clin Pharmacol, 2004, 57, 742–755. [Google Scholar] [PubMed]
- Foster, D.J.; Somogyi, A.A.; Bochner, F. Stereoselective quantification of methadone and its major oxidative metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine, in human urine using high-performance liquid chromatography. Journal of Chromatography B, 2000; 744, 165–176. [Google Scholar]
- Fríguls, B.; Joya, X.; García-Algar, O.; Pallás, C.R.; Vall, O.; Pichini, S. A comprehensive review of assay methods to determine drugs in breast milk and the safety of breastfeeding when taking drugs. Anal Bioanal Chem. 2010, 397, 1157–1179. [Google Scholar] [PubMed]
- Gergov, M.; Nokua, P.; Viori, E.; Ojanpero, I. Simultaneous screening and quantification of opioid drugs in post-mortem blood and urine by LCMS. Forensic Science International 2009, 36–43. [Google Scholar]
- Gheorghe, M.; Bălălău, D.; Ilie, M.; Baconi, D.L.; Ciobanu, A.M. Component analysis of illicit heroin samples by GC-MS method. Farmacia 2008, LVI (5), 577–582. [Google Scholar]
- Gheorghe, M.; Bălălău, D.; Ilie, M.; Baconi, D.L.; Ciobanu, A.M. Qualitative analysis of confiscated illegal drugs by thin-layer chromatography. Farmacia 2008, LVI (5), 541–546. [Google Scholar]
- Girod, C.; Staub, C. Methadone and EDDP in hair from human subjects following a maintenance program: Results of a pilot study. Forensic Science International 2001, 117, 175–184. [Google Scholar]
- Goldberger, B.A.; Darwin, W.D.; Grant, T.M.; Allen, A.C.; Caplan, Y.H.; Cone, E.J. Measurement of Heroin and Its Metabolites by Isotope-Dilution Electron-Impact Mass Spectrometry. Clin. Chem. 1993, 39, 670–675. [Google Scholar]
- Hallinan, R.; Raya, J.; Byrne, A.; Kingsley, A.; Attia, J. Therapeutic thresholds in methadone maintenance treatment: A receiver operating characteristic analysis. Drug and Alcohol Dependence 2006, 81, 129–136. [Google Scholar]
- Jansson, L.M.; Robin, E.C.; Harrow, C.; Martha, V.; Schroeder, J.R.; Lowe, R.; Huestis, M.A. Concentrations of Methadone in Breast Milk and Plasma in the Immediate Perinatal Period. J Hum Lact. 2007, 23, 184–190. [Google Scholar] [PubMed]
- Katagi, M.; Nishikawa, M.; Tatsuno, M.; Miki, A.; Tsuchihashi, H. Column-switching high-performance liquid chromatography–electrospray ionization mass spectrometry for identification of heroin metabolites in human urine. Journal of Chromatography B 2001, 751, 177–185. [Google Scholar]
- Kelly, T.; Doble, P.; Dawson, M. Chiral analysis of methadone and its major metabolites (EDDP and EMDP) by liquid cromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005, 814, 315–323. [Google Scholar] [PubMed]
- Kintz, P.; Julie, E.; Marion, V.; Vincent, C. Interpretation of hair findings in children after methadone poisoning. Forensic Science International 2009, 196, 51–54. [Google Scholar]
- Larson, M.E.; Thomas, M.R. Quantification of a Methadone Metabolite (EDDP) in Urine: Assessment of Compliance. Clinical Medicine & Research 2009, 7, 134–141. [Google Scholar]
- Lehotay, D.C.; George, S.; Etter, M.L.; Graybiel, K.; Eichhorst, J.C.; Fern, B.; Wildenboer, W.; Selby, P.; Kapur, B. Free and bound enantiomers of methadone and its metabolite, EDDP in methadone maintenance treatment: Relationship to dosage? Clinical Biochemistry 2005, 38, 1088–1094. [Google Scholar] [PubMed]
- Liang, H.R.; Foltz, R.L.; Meng, M.; Bennett, P. Method development and validation for quantitative determination of methadone enantiomers in human plasma by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B. 2004, 806, 191–198. [Google Scholar]
- Low, A.S.; Taylor, R.B. Analysis of common opiates and heroin metabolites in urine by high- performance liquid chromatography. J. Chromatography B. 1995, 663, 225–233. [Google Scholar]
- Lucas, C.S.; Bermejob, A.M.; Tabernerob, M.J.; Fernándezb, P.; Strano-Rossic, S. Use of solid-phase microextraction (SPME) for the determination of methadone and EDDP in human hair by GC–MS. Forensic Science International 2000, 107, 225–232. [Google Scholar]
- Moeller, M.R.; Feya, P.; Wennig, R. Simultaneous determination of drugs of abuse (opiates, cocaine and amphetamine) in human hair by and its application to a methadone treatment program. Forensic Science International 1993, 63, 185–206. [Google Scholar] [CrossRef]
- Moffat, A.C.; Osselton, M.D.; Widdop, B. (Eds.) Clarke’s analysis of drugs and poisons, 3 rd; Pharmaceutical Press, 2004. [Google Scholar]
- Moore, C.; Guzaldo, F.; Hussain, M.J.; Lewis, D. Determination of methadone in urine using ion trap GC/MS in positive ion chemical ionization mode. Forensic Science International 2001, 119, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Nanovskaya, T.N.; Sujal, V.D.; Ilona, A.N.; Zharikova, O.L.; Gary, D.V.H.; Mahmoud, S.A. Methadone metabolism by human placenta. Biochemical Pharmacology 2004, 68, 583–591. [Google Scholar] [CrossRef]
- Nikolaou, P.D.; Papoutsis, I.I.; Atta-Politou, J.; Athanaselis, S.A.; Spiliopoulou, C.A.; Calokerinos, A.C.; Maravelias, C.P. Validated method for the simultaneous determination of methadone and its main metabolites (EDDP and EMDP) in plasma of umbilical cord blood by gas chromatography–mass spectrometry. J. Chromatogr. B 2008, 867, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Didier, O.; Rudaz, S.; Chevalley, A.-F.; Mino, A.; Deglon, J.-J.; Baland, L.; Veuthey, J.-L. Enantioselective analysis of methadone in saliva by liquid chromatography–mass spectrometry. J. Chromatogr. A 2000, 871, 163–172. [Google Scholar]
- Perrigo, B.J.; Joynt, B.P. Use of ELISA for the detection of common drugs of abuse in forensic whole blood samples, Can. Soc. Forensic Sci. J. 1995, 28, 261–269. [Google Scholar] [CrossRef]
- Quintela, O.; Lopez, P.; Bermejo, A.M.; Lopez-Rivadulla, M. Determination of methadone, 2- ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine and alprazolam in human plasma by liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. B 2006, 834, 188–194. [Google Scholar] [CrossRef]
- Rosas ME, R.; Preston, K.L.; Epstein, D.H.; Moolchan, E.T.; Wainer, I.W. Quantitative determination of the enantiomers of methadone and its metabolite (EDDP) in human saliva by enantioselective liquid chromatography with mass spectrometric detection. J. Chromatogr. B 2003, 796, 355–370. [Google Scholar]
- Rook, E.J.; Hillebrand, M.J.; Rosing, H.; van Ree, J.M.; Beijnen, J.H. The quantitative analysis of heroin, methadone and their metabolites and the simultaneous detection of cocaine, acetylcodeine and their metabolites in human plasma by high-performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B 2005, 824, 213–221. [Google Scholar] [CrossRef]
- Rosas, M.E.; Preston, K.L.; Epstein, D.H.; Moolchan, E.T.; Wainer, I.M. Quantitative determination of the enantiomers of methadone and its metabolite (EDDP) in human saliva by enantioselective liquid chromatography with mass spectrometric detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003, 796, 355–370. [Google Scholar] [CrossRef]
- Schmidt, N.; Brune, K.; Geisslinger, G. Stereoselective determination of the enantiomers of methadone in plasma using high-performance liquid chromatography, J. Chromatogr. B Biomed Sci. Appl. 1992, 583, 195–200. [Google Scholar] [CrossRef]
- Shakleya, D.M. , Dams, R.; Choo, R.E.; Jones, H.; Huestis, M.A. Simultaneous Liquid Chromatography–Mass Spectrometry Quantification of Urinary Opiates, Cocaine, and Metabolites in Opiate-Dependent Pregnant Women in Methadone-Maintenance Treatment. J Anal Toxicol. 2010, 34, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Shakleya, D.M.; Jansson, L.M.; Huestis, M.A. Validation of a LC–APCI-MS/MS method for quantification of methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenylpyraline (EMDP) in infant plasma following protein precipitation. J. Chromatogr. B. 2007, 856, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Umans, J.G.; Chiu, T.S.; Lipman, R.A.; Schultz, M.F.; Shin, S.U.; Inturrjsl, C.E. Determination of heroin and its metabolites by high performance liquid chromatography. J. Chromat. 1982, 233, 213–225. [Google Scholar] [CrossRef] [PubMed]
- lase, L.; Popa, D.S.; Leucuţa, S.E.; Loghin, F. Bioanalysis of methadone in human plasma and urine by LC/MS/MS. Revue Roumaine de Chimie 2008, 53, 1157–1164. [Google Scholar]
- Wang, W.L.; Darwin, W.D.; Cone, E.J. Simultaneous assay of cocaine, heroin and metabolites in hair,plasma, saliva and urine by gas chromatography-mass spectrometry. J. Chromat. B 1994, 660, 279–290. [Google Scholar]
- Widschwendter, C.G.; Zernig, G.; Hofer, A. Quetiapine cross reactivity with urine methadone immunoassays. Int Clin Psychopharmacol 2006, 21, 81–85. [Google Scholar] [CrossRef] [PubMed]
Abuse substance | Saliva | Urine |
Marijuana | 12-24 hours | Days/wk. Depending on the frequency of use |
Opioid | 12-24 hours | 2-4 days |
Amphetamine | 24-48 hours | 1-2 days |
Benzodiazepine | 24-48 hours | 1 week |
Cocaine | 12-24 hours | 2-3 days |
© 2015 by the author. 2015 Anne Marie Ciobanu, Daniela Baconi, Cristian Bălălău, Carolina Negrei, Miriana Stan, Maria Bârcă
Share and Cite
Ciobanu, A.M.; Baconi, D.; Bălălău, C.; Negrei, C.; Stan, M.; Bârcă, M. Toxicological Analysis of Some Drugs of Abuse in Biological Samples. J. Mind Med. Sci. 2015, 2, 108-127. https://doi.org/10.22543/2392-7674.1018
Ciobanu AM, Baconi D, Bălălău C, Negrei C, Stan M, Bârcă M. Toxicological Analysis of Some Drugs of Abuse in Biological Samples. Journal of Mind and Medical Sciences. 2015; 2(2):108-127. https://doi.org/10.22543/2392-7674.1018
Chicago/Turabian StyleCiobanu, Anne Marie, Daniela Baconi, Cristian Bălălău, Carolina Negrei, Miriana Stan, and Maria Bârcă. 2015. "Toxicological Analysis of Some Drugs of Abuse in Biological Samples" Journal of Mind and Medical Sciences 2, no. 2: 108-127. https://doi.org/10.22543/2392-7674.1018
APA StyleCiobanu, A. M., Baconi, D., Bălălău, C., Negrei, C., Stan, M., & Bârcă, M. (2015). Toxicological Analysis of Some Drugs of Abuse in Biological Samples. Journal of Mind and Medical Sciences, 2(2), 108-127. https://doi.org/10.22543/2392-7674.1018