Artificial Intelligence in Ovarian Cancers—From Diagnosis to Treatment; A Literature Review
Abstract
:Introduction
Discussions
Causes and Pathogenesis
Screening
AI in Diagnosis
- Machine Learning (ML) vs. Deep Learning (DL): ML algorithms had a pooled sensitivity (SE) of 89% and specificity (SP) of 88%, meaning they correctly identified 89% of true positives and correctly ruled out 88% of true negatives. DL algorithms had slightly lower SE at 88% and SP at 84%.
- Imaging Modalities:
- –
- Ultrasound (US): US studies showed high accuracy with an SE of 91%, SP of 87%, and an Area Under the Curve (AUC) of 0.95, indicating strong overall performance.
- –
- Magnetic Resonance Imaging (MRI): MRI studies had an SE of 83%, SP of 84%, and an AUC of 0.90, showing good but slightly lower performance compared to US.
- –
- Computed Tomography (CT): CT studies had the lowest performance with an SE of 75%, SP of 75%, and an AUC of 0.82.
- AI vs. Human Clinicians: AI algorithms outperformed human clinicians, with AI showing higher SE (82% vs. 77%), SP (86% vs. 80%), and AUC (0.91 vs. 0.85).
- Sample Size Effect: Studies with sample sizes ≤ 300 had lower SE (85%) and SP (82%) compared to those with sample sizes > 300, which had an SE of 93% and SP of 91%. Larger sample sizes also had a higher AUC (0.97 vs. 0.90).
- Publication Date: Studies published before 2020 had slightly higher SE (89%) and SP (89%) compared to those published after 2020 (SE of 88%, SP of 83%). The AUC was also higher for studies before 2020 (0.95 vs. 0.92).
- Geographic Distribution: Studies conducted in Asia had an SE of 87% and SP of 83%, while those outside Asia had higher SE (90%) and SP (89%). The AUC was higher for studies outside Asia (0.95 vs. 0.92).
Key points of AI in Enhancing Ovarian Cancer (OC) Diagnostics and Prognostics
Conclusions
Compliance with ethical standards
Conflict of interest disclosure
References
- Cannistra, S.A. Cancer of the ovary. N Engl J Med. 2004, 351, 2519–2529. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M.J. Cancer statistics, 2007. CA Cancer J Clin. 2007, 57, 43–66. [Google Scholar] [CrossRef]
- Risch, H.A.; McLaughlin, J.R.; Cole, D.E.; et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst. 2006, 98, 1694–1706. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Iversen, E.S.; Friebel, T.; et al. Characterization of BRCA1 and BRCA2 mutations in a large United States sample. J Clin Oncol. 2006, 24, 863–871. [Google Scholar] [CrossRef]
- Hankinson, S.E.; Hunter, D.J.; Colditz, G.A.; et al. Tubal ligation, hysterectomy, and risk of ovarian cancer. A prospective study. JAMA. 1993, 270, 2813–2818. [Google Scholar]
- Collaborative Group on Epidemiological Studies of Ovarian Cancer; Beral, V.; Doll, R.; Hermon, C.; Peto, R.; Reeves, G. Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet. 2008, 371, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.M.; Jordan, S.J. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol. 2024, 21, 389–400. [Google Scholar] [CrossRef]
- Hayat, M.J.; Howlader, N.; Reichman, M.E.; Edwards, B.K. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist. 2007, 12, 20–37. [Google Scholar] [CrossRef]
- Morris, C.R.; Rodriguez, A.O.; Epstein, J.; Cress, R.D. Declining trends of epithelial ovarian cancer in California. Gynecol Oncol. 2008, 108, 207–213. [Google Scholar] [CrossRef]
- Brewster, W.R. Temporal trends in ovarian cancer: incidence and mortality across Europe. Nat Clin Pract Oncol. 2005, 2, 286–287. [Google Scholar] [CrossRef]
- Fathalla, M.F. Incessant ovulation--a factor in ovarian neoplasia? Lancet. 1971, 2, 163. [Google Scholar] [CrossRef]
- Cramer, D.W.; Welch, W.R. Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst. 1983, 71, 717–721. [Google Scholar] [PubMed]
- Rodríguez-Burford, C.; Barnes, M.N.; Oelschlager, D.K.; et al. Effects of nonsteroidal anti-inflammatory agents (NSAIDs) on ovarian carcinoma cell lines: preclinical evaluation of NSAIDs as chemopreventive agents. Clin Cancer Res. 2002, 8, 202–209. [Google Scholar] [PubMed]
- Crum, C.P.; Drapkin, R.; Kindelberger, D.; et al. Lessons from BRCA: the tubal fimbria emerges as an origin for pelvic serous cancer. Clin Med Res. 2007, 5, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, S.G. Prognostic significance of pathologic features of ovarian carcinoma. Curr Top Pathol. 1989, 78, 85–109. [Google Scholar] [CrossRef]
- Shih, I.; Kurman, R.J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004, 164, 1511–1518. [Google Scholar] [CrossRef]
- Smith, D.I. Transcriptional profiling develops molecular signatures for ovarian tumors. Cytometry. 2002, 47, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Liu, J.; Yoshida, H.; Rosen, D.; Naora, H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med. 2005, 11, 531–537. [Google Scholar] [CrossRef]
- Hennessy, B.T.; Mills, G.B. Ovarian cancer: homeobox genes, autocrine/paracrine growth, and kinase signaling. Int J Biochem Cell Biol. 2006, 38, 1450–1456. [Google Scholar] [CrossRef]
- Campbell, I.G.; Russell, S.E.; Choong, D.Y.; et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004, 64, 7678–7681. [Google Scholar] [CrossRef]
- Carpten, J.D.; Faber, A.L.; Horn, C.; et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007, 448, 439–444. [Google Scholar] [CrossRef]
- Shaw, P.A.; McLaughlin, J.R.; Zweemer, R.P.; et al. Histopathologic features of genetically determined ovarian cancer. Int J Gynecol Pathol. 2002, 21, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Moore, D.H., 2nd; Ginzinger, D.G.; et al. An approach to analysis of large-scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res. 2000, 60, 5382–5385. [Google Scholar]
- Kamikihara, T.; Arima, T.; Kato, K.; et al. Epigenetic silencing of the imprinted gene ZAC by DNA methylation is an early event in the progression of human ovarian cancer. Int J Cancer. 2005, 115, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Badgwell, D.; Bast, R.C., Jr. Early detection of ovarian cancer. Dis Markers 2007, 23, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.A.; Iversen, E.S., Jr.; Gudbjartsson, D.F.; et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol. 2002, 20, 2701–2712. [Google Scholar] [CrossRef]
- ACOG Practice Bulletin No. 103: Hereditary breast and ovarian cancer syndrome. Obstet Gynecol. 2009, 113, 957–966. [CrossRef]
- Burke, W.; Daly, M.; Garber, J.; et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA. 1997, 277, 997–1003. [Google Scholar]
- Daly, M.B.; Pal, T.; Berry, M.P.; et al. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021, 19, 77–102. [Google Scholar] [CrossRef]
- Rebbeck, T.R.; Lynch, H.T.; Neuhausen, S.L.; et al. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med. 2002, 346, 1616–1622. [Google Scholar] [CrossRef]
- Narod, S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol. 2016, 13, 255–261. [Google Scholar] [CrossRef]
- Kang, J.; D'Andrea, A.D.; Kozono, D. A DNA repair pathway-focused score for prediction of outcomes in ovarian cancer treated with platinum-based chemotherapy. J Natl Cancer Inst. 2012, 104, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Yu, S.L.; Chen, C.H.; et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med. 2007, 356, 11–20. [Google Scholar] [CrossRef]
- Aktas, B.; Kasimir-Bauer, S.; Heubner, M.; Kimmig, R.; Wimberger, P. Molecular profiling and prognostic relevance of circulating tumor cells in the blood of ovarian cancer patients at primary diagnosis and after platinum-based chemotherapy. Int J Gynecol Cancer. 2011, 21, 822–830. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2014, 13, 8–17. [Google Scholar] [CrossRef]
- Lu, M.; Fan, Z.; Xu, B.; et al. Using machine learning to predict ovarian cancer. Int J Med Inform. 2020, 141, 104195. [Google Scholar] [CrossRef] [PubMed]
- Barber, E.L.; Garg, R.; Persenaire, C.; Simon, M. Natural language processing with machine learning to predict outcomes after ovarian cancer surgery. Gynecol Oncol. 2021, 160, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yang, J.; Jin, Y.; et al. Artificial Intelligence Based on Blood Biomarkers Including CTCs Predicts Outcomes in Epithelial Ovarian Cancer: A Prospective Study. Onco Targets Ther. 2021, 14, 3267–3280. [Google Scholar] [CrossRef]
- Kawakami, E.; Tabata, J.; Yanaihara, N.; et al. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers. Clin Cancer Res. 2019, 25, 3006–3015. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, S.; Liu, Y.; Zhai, L.; Sun, X. Prognostic value of systemic inflammatory markers in ovarian Cancer: a PRISMA-compliant meta-analysis and systematic review. BMC Cancer. 2018, 18, 443. [Google Scholar] [CrossRef]
- Matassa, D.S.; Amoroso, M.R.; Lu, H.; et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016, 23, 1542–1554. [Google Scholar] [CrossRef] [PubMed]
- Sahni, A.; Simpson-Haidaris, P.J.; Sahni, S.K.; Vaday, G.G.; Francis, C.W. Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2). J Thromb Haemost. 2008, 6, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Allensworth, S.K.; Langstraat, C.L.; Martin, J.R.; et al. Evaluating the prognostic significance of preoperative thrombocytosis in epithelial ovarian cancer. Gynecol Oncol. 2013, 130, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Savlovschi, C.; Serban, D.; Trotea, T.; Borcan, R.; Dumitrescu, D. Post-surgery morbidity and mortality in colorectal cancer in elderly subjects. Chirurgia (Bucur). 2013, 108, 177–179. [Google Scholar]
- Budd, G.T.; Cristofanilli, M.; Ellis, M.J.; et al. Circulating tumor cells versus imaging--predicting overall survival in metastatic breast cancer. Clin Cancer Res. 2006, 12, 6403–6409. [Google Scholar] [CrossRef]
- Hayes, D.F.; Cristofanilli, M.; Budd, G.T.; et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006, 12, 4218–4224. [Google Scholar] [CrossRef]
- Scher, H.I.; Jia, X.; de Bono, J.S.; et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009, 10, 233–239. [Google Scholar] [CrossRef]
- Fan, T.; Zhao, Q.; Chen, J.J.; Chen, W.T.; Pearl, M.L. Clinical significance of circulating tumor cells detected by an invasion assay in peripheral blood of patients with ovarian cancer. Gynecol Oncol. 2009, 112, 185–191. [Google Scholar] [CrossRef]
- Poveda, A.; Kaye, S.B.; McCormack, R.; et al. Circulating tumor cells predict progression free survival and overall survival in patients with relapsed/recurrent advanced ovarian cancer. Gynecol Oncol. 2011, 122, 567–572. [Google Scholar] [CrossRef]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef]
- Qi, L.N.; Xiang, B.D.; Wu, F.X.; et al. Circulating Tumor Cells Undergoing EMT Provide a Metric for Diagnosis and Prognosis of Patients with Hepatocellular Carcinoma. Cancer Res. 2018, 78, 4731–4744. [Google Scholar] [CrossRef] [PubMed]
- Loret, N.; Denys, H.; Tummers, P.; Berx, G. The Role of Epithelial-to-Mesenchymal Plasticity in Ovarian Cancer Progression and Therapy Resistance. Cancers (Basel). 2019, 11, 838. [Google Scholar] [CrossRef]
- van Nimwegen, L.W.E.; Mavinkurve-Groothuis, A.M.C.; de Krijger, R.R.; et al. MR imaging in discriminating between benign and malignant paediatric ovarian masses: a systematic review. Eur Radiol. 2020, 30, 1166–1181. [Google Scholar] [CrossRef] [PubMed]
- Ruytenberg, T.; Verbist, B.M.; Vonk-Van Oosten, J.; Astreinidou, E.; Sjögren, E.V.; Webb, A.G. Improvements in High Resolution Laryngeal Magnetic Resonance Imaging for Preoperative Transoral Laser Microsurgery and Radiotherapy Considerations in Early Lesions. Front Oncol. 2018, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Yang, L.; Zeng, B.; et al. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: A systematic review and meta-analysis. EClinicalMedicine. 2020, 31, 100669. [Google Scholar] [CrossRef]
- Outwater, E.K.; Dunton, C.J. Imaging of the ovary and adnexa: clinical issues and applications of MR imaging. Radiology. 1995, 194, 1–18. [Google Scholar] [CrossRef]
- Medeiros, L.R.; Freitas, L.B.; Rosa, D.D.; et al. Accuracy of magnetic resonance imaging in ovarian tumor: a systematic quantitative review. Am J Obstet Gynecol. 2011, 204. [Google Scholar] [CrossRef]
- Khiewvan, B.; Torigian, D.A.; Emamzadehfard, S.; et al. An update on the role of PET/CT and PET/MRI in ovarian cancer. Eur J Nucl Med Mol Imaging. 2017, 44, 1079–1091. [Google Scholar] [CrossRef]
- Virarkar, M.; Ganeshan, D.; Gulati, A.T.; Palmquist, S.; Iyer, R.; Bhosale, P. Diagnostic performance of PET/CT and PET/MR in the management of ovarian carcinoma-a literature review. Abdom Radiol (NY). 2021, 46, 2323–2349. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Xiong, Y.; et al. A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography. Sci Rep. 2021, 11, 8730. [Google Scholar] [CrossRef]
- Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin. 2019, 69, 280–304. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Li, Q.; Zhao, M.H.; Zhan, Q.M. Big data and medical research in China. BMJ. 2018, 360, j5910. [Google Scholar] [CrossRef]
- Mollura, D.J.; Culp, M.P.; Pollack, E.; et al. Artificial Intelligence in Low-and Middle-Income Countries: Innovating Global Health Radiology. Radiology. 2020, 297, 513–520. [Google Scholar] [CrossRef]
- Mookiah, M.R.; Acharya, U.R.; Chua, C.K.; et al. Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med. 2013, 43, 2136–2155. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Tunali, I.; Gillies, R.J.; Schabath, M.B. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. Cold Spring Harb Perspect Med. 2021, 11, a039537. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, Y.; Chen, X.; et al. Magnetic resonance imaging radiomics in categorizing ovarian masses and predicting clinical outcome: a preliminary study. Eur Radiol. 2019, 29, 3358–3371. [Google Scholar] [CrossRef] [PubMed]
- Aramendía-Vidaurreta, V.; Cabeza, R.; Villanueva, A.; et al. Ultrasound Image Discrimination between Benign and Malignant Adnexal Masses Based on a Neural Network Approach. Ultrasound Med Biol. 2016, 42, 742–752. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, S.; Xu, X.; et al. Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study. Lancet Digit Health. 2022, 4, e179–e187. [Google Scholar] [CrossRef]
- Bălălău, O.D.; Ciupitu, I.A.; Bogheanu, D.M.; Ghiocel-Zariosu, A.I.; Bălălău, C.; Pleș, L.; Bălan, D.G.; Paunica, I.; Sima, R.M. Management of pelvic pain caused by endometriosis. J Mind Med Sci. 2023, 10, 79–84. [Google Scholar] [CrossRef]
- Xu, H.L.; Gong, T.T.; Liu, F.H.; et al. Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis. EClinicalMedicine. 2022, 53, 101662. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Ciompi, F.; Wolterink, J.M.; et al. State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC Cardiovasc Imaging. 2019, 12, 1549–1565. [Google Scholar] [CrossRef]
- Lee, J.G.; Jun, S.; Cho, Y.W.; et al. Deep Learning in Medical Imaging: General Overview. Korean J Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Manco, L.; Maffei, N.; Strolin, S.; et al. Basic of machine learning and deep learning in imaging for medical physicists. Phys Med. 2021, 83, 194–205. [Google Scholar] [CrossRef]
- Sounderajah, V.; Ashrafian, H.; Rose, S.; et al. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med. 2021, 27, 1663–1665. [Google Scholar] [CrossRef]
- Shimizu, H.; Nakayama, K.I. Artificial intelligence in oncology. Cancer Sci. 2020, 111, 1452–1460. [Google Scholar] [CrossRef]
- Geras, K.J.; Mann, R.M.; Moy, L. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Radiology. 2019, 293, 246–259. [Google Scholar] [CrossRef]
- Ursprung, S.; Beer, L.; Bruining, A.; et al. Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis. Eur Radiol. 2020, 30, 3558–3566. [Google Scholar] [CrossRef]
- Wei, J.; Jiang, H.; Gu, D.; et al. Radiomics in liver diseases: Current progress and future opportunities. Liver Int. 2020, 40, 2050–2063. [Google Scholar] [CrossRef] [PubMed]
- Bleker, J.; Kwee, T.C.; Rouw, D.; et al. A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics. Eur Radiol. 2022, 32, 6526–6535. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Royston, P. What do we mean by validating a prognostic model? Stat Med. 2000, 19, 453–73. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Faes, L.; Kale, A.U.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Xue, P.; Wang, J.; Qin, D.; et al. Deep learning in image-based breast and cervical cancer detection: a systematic review and meta-analysis. NPJ Digit Med. 2022, 5, 19. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health. 2018, 3, e419–e428. [Google Scholar] [CrossRef]
© 2024 by the authors. 2024 Cristina Bucur, Irina Balescu, Sorin Petrea, Bodan Gaspar, Lucian Pop, Valentin Varlas, Marilena Stoian, Cristian Balalau, Nicolae Bacalbasa
Share and Cite
Bucur, C.; Balescu, I.; Petrea, S.; Gaspar, B.; Pop, L.; Varlas, V.; Stoian, M.; Balalau, C.; Bacalbasa, N. Artificial Intelligence in Ovarian Cancers—From Diagnosis to Treatment; A Literature Review. J. Mind Med. Sci. 2024, 11, 277-284. https://doi.org/10.22543/2392-7674.1531
Bucur C, Balescu I, Petrea S, Gaspar B, Pop L, Varlas V, Stoian M, Balalau C, Bacalbasa N. Artificial Intelligence in Ovarian Cancers—From Diagnosis to Treatment; A Literature Review. Journal of Mind and Medical Sciences. 2024; 11(2):277-284. https://doi.org/10.22543/2392-7674.1531
Chicago/Turabian StyleBucur, Cristina, Irina Balescu, Sorin Petrea, Bodan Gaspar, Lucian Pop, Valentin Varlas, Marilena Stoian, Cristian Balalau, and Nicolae Bacalbasa. 2024. "Artificial Intelligence in Ovarian Cancers—From Diagnosis to Treatment; A Literature Review" Journal of Mind and Medical Sciences 11, no. 2: 277-284. https://doi.org/10.22543/2392-7674.1531
APA StyleBucur, C., Balescu, I., Petrea, S., Gaspar, B., Pop, L., Varlas, V., Stoian, M., Balalau, C., & Bacalbasa, N. (2024). Artificial Intelligence in Ovarian Cancers—From Diagnosis to Treatment; A Literature Review. Journal of Mind and Medical Sciences, 11(2), 277-284. https://doi.org/10.22543/2392-7674.1531