The Role of Inflammation in Diabetic Retinopathy in Patients with Type II Diabetes; Potential Therapeutic Perspectives
Abstract
:Introduction
Discussions
Conclusions
Compliance with ethical standards
Conflicts of Interest disclosure
References
- Hashemi, H.; Rezvan, F.; Pakzad, R.; et al. Global and Regional Prevalence of Diabetic Retinopathy; A Comprehensive Systematic Review and Meta-analysis. Semin Ophthalmol. 2022, 37, 291–306. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Dascalu, A.M.; Anghelache, A.; Stana, D.; et al. Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med. 2022, 23, 324. [Google Scholar] [CrossRef]
- Rübsam, A.; Parikh, S.; Fort, P.E. Role of Inflammation in Diabetic Retinopathy. Int J Mol Sci. 2018, 19, 942. [Google Scholar] [CrossRef]
- Sinclair, S.H.; Schwartz, S.S. Diabetic Retinopathy-An Underdiagnosed and Undertreated Inflammatory, Neuro-Vascular Complication of Diabetes. Front Endocrinol. 2019, 10, 843. [Google Scholar] [CrossRef]
- Nian, S.; Lo, A.C.Y.; Mi, Y.; Ren, K.; Yang, D. Neurovascular unit in diabetic retinopathy: Pathophysiological roles and potential therapeutical targets. Eye Vis. 2021, 8, 15. [Google Scholar] [CrossRef]
- Shin, J.J.; Lee, E.K.; Park, T.J.; Kim, W. Damage-associated molecular patterns and their pathological relevance in diabetes mellitus. Ageing Res Rev. 2015, 24 (Pt A), 66–76. [Google Scholar] [CrossRef]
- Suceveanu, A.I.; Mazilu, L.; Katsiki, N.; et al. NLRP3 Inflammasome Biomarker-Could Be the New Tool for Improved Cardiometabolic Syndrome Outcome. Metabolites 2020, 10, 448. [Google Scholar] [CrossRef]
- Geraldes, P.; King, G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010, 106, 1319–1331. [Google Scholar] [CrossRef]
- Cai, J.; Boulton, M. The pathogenesis of diabetic retinopathy: Old concepts and new questions. Eye 2002, 16, 242–260. [Google Scholar] [CrossRef] [PubMed]
- Safi, S.Z.; Qvist, R.; Kumar, S.; Batumalaie, K.; Ismail, I.S. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int. 2014, 2014, 801269. [Google Scholar] [CrossRef] [PubMed]
- Erlich, J.R.; To, E.E.; Luong, R.; et al. Glycolysis and the Pentose Phosphate Pathway Promote LPS-Induced NOX2 Oxidaseand IFNβ-Dependent Inflammation in Macrophages. Antioxidants 2022, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
- Ge, T.; Yang, J.; Zhou, S.; Wang, Y.; Li, Y.; Tong, X. The Role of the Pentose Phosphate Pathway in Diabetes and Cancer. Front Endocrinol. 2020, 11, 365. [Google Scholar] [CrossRef]
- Yumnamcha, T.; Guerra, M.; Singh, L.P.; Ibrahim, A.S. Metabolic Dysregulation and Neurovascular Dysfunction in Diabetic Retinopathy. Antioxidants 2020, 9, 1244. [Google Scholar] [CrossRef]
- Paneque, A.; Fortus, H.; Zheng, J.; Werlen, G.; Jacinto, E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes 2023, 14, 933. [Google Scholar] [CrossRef]
- Ma, Z.; Chalkley, R.J.; Vosseller, K. Hyper-O-GlcNAcylation activates nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling through interplay with phosphorylation and acetylation. J Biol Chem. 2017, 292, 9150–9163. [Google Scholar] [CrossRef]
- Sharma, Y.; Saxena, S.; Mishra, A.; Saxena, A.; Natu, S.M. Advanced glycation end products and diabetic retinopathy. J Ocul Biol Dis Infor. 2013, 5, 63–69. [Google Scholar] [CrossRef]
- Sell, D.R.; Biemel, K.M.; Reihl, O.; Lederer, M.O.; Strauch, C.M.; Monnier, V.M. Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J Biol Chem. 2005, 280, 12310–12315. [Google Scholar] [CrossRef]
- Suryavanshi, S.V.; Kulkarni, Y.A. NF-κβ: A Potential Target in the Management of Vascular Complications of Diabetes. Front Pharmacol. 2017, 8, 798. [Google Scholar] [CrossRef]
- Helmersson, J.; Vessby, B.; Larsson, A.; Basu, S. Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation. 2004, 109, 17291734. [Google Scholar] [CrossRef] [PubMed]
- Schoenberger, S.D.; Kim, S.J.; Sheng, J.; Rezaei, K.A.; Lalezary, M.; Cherney, E. Increased prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy, and correlation with VEGF and inflammatory cytokines. Invest Ophthalmol Vis Sci. 2012, 53, 5906–5911. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S. Interleukin-6 Trans-signaling: A Pathway With Therapeutic Potential for Diabetic Retinopathy. Front Physiol. 2021, 12, 689429. [Google Scholar] [CrossRef]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef]
- Stanimirovic, J.; Radovanovic, J.; Banjac, K.; et al. Role of C-Reactive Protein in Diabetic Inflammation. Mediators Inflamm. 2022, 2022, 3706508. [Google Scholar] [CrossRef]
- Favero, G.; Paganelli, C.; Buffoli, B.; Rodella, L.F.; Rezzani, R. Endothelium and its alterations in cardiovascular diseases: Life style intervention. Biomed Res Int. 2014, 2014, 801896. [Google Scholar] [CrossRef]
- Ionescu, M.; Stoian, A.P.; Rizzo, M.; et al. The Role of Endothelium in COVID-19. Int J Mol Sci. 2021, 22, 11920. [Google Scholar] [CrossRef]
- Kowluru, R.A.; Zhong, Q.; Santos, J.M. Matrix metalloproteinases in diabetic retinopathy: Potential role of MMP-9. Expert Opin Investig Drugs. 2012, 21, 797–805. [Google Scholar] [CrossRef]
- Chan, P.S.; Kanwar, M.; Kowluru, R.A. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: Novel mechanism for metabolic memory. J Diabetes Complications. 2010, 24, 55–63. [Google Scholar] [CrossRef]
- Esposito, G.; Balzamino, B.O.; Bruno, L.; Cacciamani, A.; Micera, A. NGF in Inflammatory and Neurodegenerative Diseases of the Eye: New Findings Supporting Neuroprotection and Proper Tissue Remodeling in Vitreoretinal Disorders. Adv Exp Med Biol. 2021, 1331, 265–273. [Google Scholar] [CrossRef]
- Nardelli, G.M.; Guastamacchia, E.; Di Paolo, S.; et al. Plasmatic levels of fibronectin in diabetics with and without retinopathy. Correlation with some hormonal and metabolic parameters. Acta Diabetol Lat. 1987, 24, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Costagliola, C.; Romano, V.; De Tollis, M.; et al. TNF-alpha levels in tears: A novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm. 2013, 2013, 629529. [Google Scholar] [CrossRef] [PubMed]
- Hollborn, M.; Stathopoulos, C.; Steffen, A.; Wiedemann, P.; Kohen, L.; Bringmann, A. Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci. 2007, 48, 4360–4367. [Google Scholar] [CrossRef]
- Mysona, B.A.; Shanab, A.Y.; Elshaer, S.L.; El-Remessy, A.B. Nerve growth factor in diabetic retinopathy: Beyond neurons. Expert Rev Ophthalmol. 2014, 9, 99–107. [Google Scholar] [CrossRef]
- Beltramo, E.; Porta, M. Pericyte loss in diabetic retinopathy: Mechanisms and consequences. Curr Med Chem. 2013, 20, 32183225. [Google Scholar] [CrossRef]
- Manea, C.A.; Badiu, D.C.; Ploscaru, I.C.; et al. A review of NTRK fusions in cancer. Ann Med Surg. 2022, 79, 103893. [Google Scholar] [CrossRef]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; et al. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef]
- Kolluru, G.K.; Bir, S.C.; Kevil, C.G. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012, 2012, 918267. [Google Scholar] [CrossRef]
- Muniyappa, R.; Sowers, J.R. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013, 14, 5–12. [Google Scholar] [CrossRef]
- Noma, H.; Yasuda, K.; Shimura, M. Involvement of Cytokines in the Pathogenesis of Diabetic Macular Edema. Int J Mol Sci. 2021, 22, 3427. [Google Scholar] [CrossRef]
- Sarker, B.; Cardona, S.M.; Church, K.A.; et al. Defibrinogenation Ameliorates Retinal Microgliosis and Inflammation in A CX3CR1Independent Manner. ASN Neuro. 2022, 14, 17590914221131446. [Google Scholar] [CrossRef] [PubMed]
- Serban, D.; Papanas, N.; Dascalu, A.M.; et al. Diabetic Retinopathy in Patients With Diabetic Foot Ulcer: A Systematic Review. Int J Low Extrem Wounds. 2021, 20, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Quevedo-Martínez, J.U.; Garfias, Y.; Jimenez, J.; Garcia, O.; Venegas, D.; Bautista de Lucio, V.M. Pro-inflammatory cytokine profile is present in the serum of Mexican patients with different stages of diabetic retinopathy secondary to type 2 diabetes. BMJ Open Ophthalmol. 2021, 6, e000717. [Google Scholar] [CrossRef] [PubMed]
- Muni, R.H.; Kohly, R.P.; Lee, E.Q.; et al. Prospective study of inflammatory biomarkers and risk of diabetic retinopathy in the diabetes control and complications trial. JAMA Ophthalmol. 2013, 131, 514–521. [Google Scholar] [CrossRef]
- Jain, A.; Saxena, S.; Khanna, V.K.; Shukla, R.K.; Meyer, C.H. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Mol Vis. 2013, 19, 1760–1768. [Google Scholar]
- Song, J.; Chen, S.; Liu, X.; Duan, H.; Kong, J.; Li, Z. Relationship between C-Reactive Protein Level and Diabetic Retinopathy: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0144406. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Nordestgaard, B.G.; Nielsen, S.F. Complement C3 and Risk of Diabetic Microvascular Disease: A Cohort Study of 95202 Individuals from the General Population. Clin Chem. 2018, 64, 1113–1124. [Google Scholar] [CrossRef]
- Kang, H.M.; Hasanuzzaman, M.; Kim, S.W.; Koh, H.J.; Lee, S.C. Elevated aqueous endothelin-1 concentrations in advanced diabetic retinopathy. PLoS ONE 2022, 17, e0268353. [Google Scholar] [CrossRef]
- Brănescu, C.; Serban, D.; Dascălu, A.M.; Oprescu, S.M.; Savlovschi, C. Interleukin 6 and lipopolysaccharide binding protein markers of inflammation in acute appendicitis. Chirurgia 2013, 108, 206–214. [Google Scholar]
- Vagaja, N.N.; Binz, N.; McLenachan, S.; Rakoczy, E.P.; McMenamin, P.G. Influence of endotoxin-mediated retinal inflammation on phenotype of diabetic retinopathy in Ins2 Akita mice. Br J Ophthalmol. 2013, 97, 1343–1350. [Google Scholar] [CrossRef]
- Tsioti, I.; Steiner, B.L.; Escher, P.; Zinkernagel, M.S.; Benz, P.M.; Kokona, D. Endothelial Toll-like receptor 4 is required for microglia activation in the murine retina after systemic lipopolysaccharide exposure. J Neuroinflammation. 2023, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Dando, S.J.; Kazanis, R.; McMenamin, P.G. Myeloid Cells in the Mouse Retina and Uveal Tract Respond Differently to Systemic Inflammatory Stimuli. Invest Ophthalmol Vis Sci. 2021, 62, 10. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zou, H. The role of lipopolysaccharides in diabetic retinopathy. BMC Ophthalmol. 2022, 22, 86. [Google Scholar] [CrossRef]
- Hwang, D.J.; Lee, K.M.; Park, M.S.; et al. Association between diabetic foot ulcer and diabetic retinopathy. PLoS ONE 2017, 12, e0175270. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Guérin, A.; Sundaram, M.; et al. Psoriasis and risk of diabetesassociated microvascular and macrovascular complications. J Am Acad Dermatol. 2015, 72, 968–977.e2. [Google Scholar] [CrossRef]
- Lyons, C.E.; Zhu, I.; Gill, M.K. Accelerated progression of diabetic retinopathy following severe COVID-19 infection. Am J Ophthalmol Case Rep. 2023, 32, 101911. [Google Scholar] [CrossRef]
- Serban, D.; Smarandache, A.M.; Cristian, D.; Tudor, C.; Duta, L.; Dascalu, A.M. Medical errors and patient safety culture shifting the healthcare paradigm in Romanian hospitals. Rom J Leg Med. 2020, 28, 195–201. [Google Scholar] [CrossRef]
- Raony, Í.; Saggioro de Figueiredo, C. Retinal outcomes of COVID-19: Possible role of CD147 and cytokine storm in infected patients with diabetes mellitus. Diabetes Res Clin Pract. 2020, 165, 108280. [Google Scholar] [CrossRef]
- Tham, Y.C.; Liu, L.; Rim, T.H.; et al. Association of Cataract Surgery With Risk of Diabetic Retinopathy Among Asian Participants in the Singapore Epidemiology of Eye Diseases Study. JAMA Netw Open. 2020, 3, e208035. [Google Scholar] [CrossRef]
- Jeng, C.J.; Hsieh, Y.T.; Yang, C.M.; Yang, C.H.; Lin, C.L.; Wang, I.J. Development of diabetic retinopathy after cataract surgery. PLoS ONE 2018, 13, e0202347. [Google Scholar] [CrossRef]
- Chu, C.J.; Johnston, R.L.; Buscombe, C.; et al. Risk Factors and Incidence of Macular Edema after Cataract Surgery: A Database Study of 81984 Eyes. Ophthalmology 2016, 123, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Knol, J.A.; van Kooij, B.; de Valk, H.W.; Rothova, A. Rapid progression of diabetic retinopathy in eyes with posterior uveitis. Am J Ophthalmol. 2006, 141, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Scialdone, A.; Menchini, U.; Pietroni, C.; Brancato, R. Unilateral proliferative diabetic retinopathy and uveitis in the fellow eye: Report of a case. Ann Ophthalmol. 1991, 23, 259–261. [Google Scholar] [PubMed]
- Oswal, K.S.; Sivaraj, R.R.; Murray, P.I.; Stavrou, P. Clinical course and visual outcome in patients with diabetes mellitus and uveitis. BMC Res Notes. 2013, 6, 167. [Google Scholar] [CrossRef]
- Rodríguez, M.L.; Millán, I.; Ortega, Á.L. Cellular targets in diabetic retinopathy therapy. World J Diabetes. 2021, 12, 1442–1462. [Google Scholar] [CrossRef]
- Bahr, T.A.; Bakri, S.J. Update on the Management of Diabetic Retinopathy: Anti-VEGF Agents for the Prevention of Complications and Progression of Nonproliferative and Proliferative Retinopathy. Life 2023, 13, 1098. [Google Scholar] [CrossRef]
- Khazeei Tabari, M.A.; Mirjalili, R.; Khoshhal, H.; et al. Nature against Diabetic Retinopathy: A Review on Antiangiogenic, Antioxidant, and Anti-Inflammatory Phytochemicals. Evid Based Complement Alternat Med. 2022, 2022, 4708527. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, B.; Sheng, Y.; Zhou, L.; Ji, L.; Wang, Z. Andrographolide ameliorates diabetic retinopathy by inhibiting retinal angiogenesis and inflammation. Biochim Biophys Acta. 2015, 1850, 824–831. [Google Scholar] [CrossRef]
- Lin, W.; Tu, H.; Zhu, Y.; et al. Curcumolide, a unique sesquiterpenoid from Curcuma wenyujin displays anti-angiogenic activity and attenuates ischemia-induced retinal neovascularization. Phytomedicine 2019, 64, 152923. [Google Scholar] [CrossRef]
- Soufi, F.G.; Vardyani, M.; Sheervalilou, R.; et al. Long-term treatment with resveratrol attenuates oxidative stress pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys. 2012, 31, 431–438. [Google Scholar] [CrossRef]
- Soufi, F.G.; Mohammad-Nejad, D.; Ahmadieh, H. Resveratrol improves diabetic retinopathy possibly through oxidative stress nuclear factor κB apoptosis pathway. Pharmacol Rep. 2012, 64, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Gu, J.; Chen, W.; Chang, Q. Resveratrol inhibits high-glucoseinduced inflammatory “metabolic memory” in human retinal vascular endothelial cells through SIRT1-dependent signaling. Can J Physiol Pharmacol. 2019, 97, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Chatziralli, I.; Dimitriou, E.; Chatzirallis, A.; et al. Efficacy and safety of vitamin supplements with resveratrol in diabetic macular edema: Long-term results of a comparative study. Eur J Ophthalmol. 2022, 32, 2735–2739. [Google Scholar] [CrossRef] [PubMed]
- Mantelli, F.; Lambiase, A.; Colafrancesco, V.; Rocco, M.L.; Macchi, I.; Aloe, L. NGF and VEGF effects on retinal ganglion cell fate: New evidence from an animal model of diabetes. Eur J Ophthalmol. 2014, 24, 247–253. [Google Scholar] [CrossRef]
© 2024 by the author. 2024 Adriana Georgescu, Ana Maria Dascalu, Daniela Stana, Cristina Alexandrescu, Anca Bobirca, Bogdan Mihai Cristea, Geta Vancea, Crenguta Sorina Serboiu, Dragos Serban, Corneliu Tudor, Andreea Letitia Arsene, Laura Carina Tribus
Share and Cite
Georgescu, A.; Dascalu, A.M.; Stana, D.; Alexandrescu, C.; Bobirca, A.; Cristea, B.M.; Vancea, G.; Serboiu, C.S.; Serban, D.; Tudor, C.; et al. The Role of Inflammation in Diabetic Retinopathy in Patients with Type II Diabetes; Potential Therapeutic Perspectives. J. Mind Med. Sci. 2024, 11, 17-23. https://doi.org/10.22543/2392-7674.1485
Georgescu A, Dascalu AM, Stana D, Alexandrescu C, Bobirca A, Cristea BM, Vancea G, Serboiu CS, Serban D, Tudor C, et al. The Role of Inflammation in Diabetic Retinopathy in Patients with Type II Diabetes; Potential Therapeutic Perspectives. Journal of Mind and Medical Sciences. 2024; 11(1):17-23. https://doi.org/10.22543/2392-7674.1485
Chicago/Turabian StyleGeorgescu, Adriana, Ana Maria Dascalu, Daniela Stana, Cristina Alexandrescu, Anca Bobirca, Bogdan Mihai Cristea, Geta Vancea, Crenguta Sorina Serboiu, Dragos Serban, Corneliu Tudor, and et al. 2024. "The Role of Inflammation in Diabetic Retinopathy in Patients with Type II Diabetes; Potential Therapeutic Perspectives" Journal of Mind and Medical Sciences 11, no. 1: 17-23. https://doi.org/10.22543/2392-7674.1485
APA StyleGeorgescu, A., Dascalu, A. M., Stana, D., Alexandrescu, C., Bobirca, A., Cristea, B. M., Vancea, G., Serboiu, C. S., Serban, D., Tudor, C., Arsene, A. L., & Tribus, L. C. (2024). The Role of Inflammation in Diabetic Retinopathy in Patients with Type II Diabetes; Potential Therapeutic Perspectives. Journal of Mind and Medical Sciences, 11(1), 17-23. https://doi.org/10.22543/2392-7674.1485