Recent Advances in the Role of Rehabilitative Therapies for Parkinson’s Disease: A Literature Review
Abstract
:Introduction
Discussions
Physical therapy
Exercise (Yoga) physical therapy
Pilates therapy
Hydro or Aquatic physical therapy (HPT)
Massage therapy
Virtual physical therapy
Occupational Therapy (OT)
Collaborative approach between physical and occupational therapy
Specific therapies for specific symptoms
Speech therapy
Dysphagia therapy
Music therapy
Hormone therapy
Newly developed non-pharmacological therapeutic strategies
Gene therapy
Stem cell therapy
Light therapy
Deep brain stimulation
Repetitive transcranial magnetic stimulation
Conclusions
Compliance with ethical standards
Conflict of interest disclosure
References
- Wang, P.; Li, J.; Qiu, S.; Wen, H.; Du, J. Hormone replacement therapy and Parkinson's disease risk in women: a meta-analysis of 14 observational studies. Neuropsychiatr Dis Treat. 2014, 11, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature. 1997, 388, 839–840. [Google Scholar] [CrossRef] [PubMed]
- Fahn, S.; Sulzer, D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx. 2004, 1, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Uhrbrand, A.; Stenager, E.; Pedersen, M.S.; Dalgas, U. Parkinson's disease and intensive exercise therapy--a systematic review and meta-analysis of randomized controlled trials. J Neurol Sci. 2015, 353, 9–19. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007, 68, 384–386. [Google Scholar] [CrossRef]
- Hely, M.A.; Morris, J.G.; Traficante, R.; Reid, W.G.; O'Sullivan, D.J.; Williamson, P.M. The sydney multicentre study of Parkinson's disease: progression and mortality at 10 years. J Neurol Neurosurg Psychiatry. 1999, 67, 300–307. [Google Scholar] [CrossRef]
- Noyce, A.J.; Bestwick, J.P.; Silveira-Moriyama, L.; et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012, 72, 893–901. [Google Scholar] [CrossRef]
- Shulman, L.M.; Bhat, V. Gender disparities in Parkinson's disease. Expert Rev Neurother. 2006, 6, 407–416. [Google Scholar] [CrossRef]
- Taylor, K.S.; Cook, J.A.; Counsell, C.E. Heterogeneity in male to female risk for Parkinson's disease. J Neurol Neurosurg Psychiatry. 2007, 78, 905–906. [Google Scholar] [CrossRef]
- Elbaz, A.; Bower, J.H.; Maraganore, D.M.; et al. Risk tables for parkinsonism and Parkinson's disease. J Clin Epidemiol. 2002, 55, 25–31. [Google Scholar] [CrossRef]
- Müller, B.; Assmus, J.; Herlofson, K.; Larsen, J.P.; Tysnes, O.B. Importance of motor vs. non-motor symptoms for health-related quality of life in early Parkinson's disease. Parkinsonism Relat Disord. 2013, 19, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Hurt, C.S.; Rixon, L.; Chaudhuri, K.R.; Moss-Morris, R.; Samuel, M.; Brown, R.G. Barriers to reporting non-motor symptoms to health-care providers in people with Parkinson's. Parkinsonism Relat Disord. 2019, 64, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Templeton, J.M.; Poellabauer, C.; Schneider, S. Classification of Parkinson's disease and its stages using machine learning. Sci Rep. 2022, 12, 14036. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.L.; Herd, C.P.; Clarke, C.E.; et al. Physiotherapy for Parkinson's disease: a comparison of techniques. Cochrane Database Syst Rev. 2014, 2014, CD002815. [Google Scholar] [CrossRef]
- Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinson's disease. Lancet. 2004, 363, 1783–1793. [Google Scholar] [CrossRef]
- Thenganatt, M.A.; Jankovic, J. Parkinson disease subtypes. JAMA Neurol. 2014, 71, 499–504. [Google Scholar] [CrossRef]
- Pike, A.F.; Szabò, I.; Veerhuis, R.; Bubacco, L. The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. NPJ Parkinsons Dis. 2022, 8, 32. [Google Scholar] [CrossRef]
- Lee, T.K.; Yankee, E.L. A review on Parkinson’s disease treatment. Neuroimmunol Neuroinflammation. 2021, 8, 222–244. [Google Scholar] [CrossRef]
- Osborne, J.A.; Botkin, R.; Colon-Semenza, C.; et al. Physical Therapist Management of Parkinson Disease: A Clinical Practice Guideline From the American Physical Therapy Association. Phys Ther. 2022, 102, pzab302. [Google Scholar] [CrossRef]
- Radder, D.L.M.; Lígia Silva de Lima, A.; Domingos, J.; et al. Physiotherapy in Parkinson's Disease: A Meta-Analysis of Present Treatment Modalities. Neurorehabil Neural Repair. 2020, 34, 871–880. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, P.; Bunch, S.J.; Zhang, R. The therapeutic value of yoga in neurological disorders. Ann Indian Acad Neurol. 2012, 15, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Lee, L. The effect of yoga exercises on balance, lower-extremity function and gait in people with Parkinson’s disease. Archiv Phys Med Rehabil. 2006, 87, E19. [Google Scholar] [CrossRef]
- Hall, E.; Verheyden, G.; Ashburn, A. Effect of a yoga programme on an individual with Parkinson's disease: a single-subject design. Disabil Rehabil. 2011, 33, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Colgrove, Y.S.; Sharma, N.; Kluding, P.; Potter, D.; Imming, K.; VandeHoef, J.; Stanhope, J.; Hoffman, K.; White, K. Effect of yoga on motor function in people with Parkinson’s disease: a randomized, controlled pilot study. J Yoga Phys Ther. 2012, 2, 1000112. [Google Scholar] [CrossRef]
- Moriello, G.; Denio, C.; Abraham, M.; DeFrancesco, D.; Townsley, J. Incorporating yoga into an intense physical therapy program in someone with Parkinson's disease: a case report. J Bodyw Mov Ther. 2013, 17, 408–417. [Google Scholar] [CrossRef]
- Taylor, M. Yoga therapeutics in neurological physical therapy: application to a patient with Parkinson’s disease. Neurol Report. 2001, 25, 55–62. [Google Scholar]
- Kloubec, J.A. Pilates for improvement of muscle endurance, flexibility, balance, and posture. J Strength Cond Res. 2010, 24, 661–667. [Google Scholar] [CrossRef]
- Newell, D.; Shead, V.; Sloane, L. Changes in gait and balance parameters in elderly subjects attending an 8-week supervised Pilates programme. J Bodyw Mov Ther. 2012, 16, 549–554. [Google Scholar] [CrossRef]
- Bird, M.L.; Hill, K.D.; Fell, J.W. A randomized controlled study investigating static and dynamic balance in older adults after training with Pilates. Arch Phys Med Rehabil. 2012, 93, 43–49. [Google Scholar] [CrossRef]
- Johnson, L.; Putrino, D.; James, I.; Rodrigues, J.; Stell, R.; Thickbroom, G.; Mastaglia, F.L. The effects of a supervised pilates training program on balance in parkinson’s disease. Adv Parkinson’s Dis. 2013, 2, 58–61. [Google Scholar] [CrossRef]
- Pandya, S.; Nagendran, T.; Shah, A.; Chandrabharu, V. Effect of pilates training program on balance in participants with idiopathic Parkinson’s disease-an interventional study. Int J Health Sci Res. 2017, 7, 186–196. [Google Scholar]
- Mollinedo-Cardalda, I.; Cancela-Carral, J.M.; Vila-Suárez, M.H. Effect of a Mat Pilates Program with TheraBand on Dynamic Balance in Patients with Parkinson's Disease: Feasibility Study and Randomized Controlled Trial. Rejuvenation Res. 2018, 21, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Vivas, J.; Arias, P.; Cudeiro, J. Aquatic therapy versus conventional land-based therapy for Parkinson's disease: an open-label pilot study. Arch Phys Med Rehabil. 2011, 92, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Morris, M.E.; O'Connor, W.T.; Clifford, A.M. Is Aquatic Therapy Optimally Prescribed for Parkinson's Disease? A Systematic Review and Meta-Analysis. J Parkinsons Dis. 2020, 10, 59–76. [Google Scholar] [CrossRef]
- Dai, S.; Yuan, H.; Wang, J.; Yang, Y.; Wen, S. Effects of aquatic exercise on the improvement of lower-extremity motor function and quality of life in patients with Parkinson's disease: A meta-analysis. Front Physiol. 2023, 14, 1066718. [Google Scholar] [CrossRef]
- Jessop, R.T.; Horowicz, C.; Dibble, L.E. Motor learning and Parkinson disease: Refinement of movement velocity and endpoint excursion in a limits of stability balance task. Neurorehabil Neural Repair. 2006, 20, 459–467. [Google Scholar] [CrossRef]
- Zotz, T.G.G.; Souza, E.A.; Israel, V.L.; Loureiro, A.P.C. Aquatic physical therapy for Parkinson’s disease. Adv Parkinson’s Dis. 2013, 2, 102–107. [Google Scholar] [CrossRef]
- Siega, J.; Iucksch, D.D.; Israel, V.L. Multicomponent Aquatic Training (MAT) Program for People with Parkinson's Disease: A Protocol for a Controlled Study. Int J Environ Res Public Health. 2022, 19, 1727. [Google Scholar] [CrossRef]
- Pompeu, J.E.; Gimenes, R.O.; Pereira, R.P.; Rocha, S.L.; Santos, M.A. Effects of aquatic physical therapy on balance and gait of patients with Parkinson's disease. J Health Sci Inst. 2013, 31, 201–204. [Google Scholar]
- Volpe, D.; Giantin, M.G.; Maestri, R.; Frazzitta, G. Comparing the effects of hydrotherapy and land-based therapy on balance in patients with Parkinson's disease: a randomized controlled pilot study. Clin Rehabil. 2014, 28, 1210–1217. [Google Scholar] [CrossRef]
- Pinto, C.; Salazar, A.P.; Marchese, R.R.; Stein, C.; Pagnussat, A.S. The Effects of Hydrotherapy on Balance, Functional Mobility, Motor Status, and Quality of Life in Patients with Parkinson Disease: A Systematic Review and Meta-analysis. PM R. 2019, 11, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Donoyama, N.; Ohkoshi, N. Effects of traditional Japanese massage therapy on various symptoms in patients with Parkinson's disease: a case-series study. J Altern Complement Med. 2012, 18, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Craig, L.H.; Svircev, A.; Haber, M.; Juncos, J.L. Controlled pilot study of the effects of neuromuscular therapy in patients with Parkinson's disease. Mov Disord. 2006, 21, 2127–2133. [Google Scholar] [CrossRef] [PubMed]
- Stallibrass, C.; Sissons, P.; Chalmers, C. Randomized controlled trial of the Alexander technique for idiopathic Parkinson's disease. Clin Rehabil. 2002, 16, 695–708. [Google Scholar] [CrossRef]
- Hernandez-Reif, M.; Field, T.; Largie, S.; Cullen, C.; Beutler, J.; Sanders, C.; Weiner, W.; Rodriguez-Bateman, D.; Zelaya, L.; Schanber, S.; Kuhn, C. Parkinson’s disease symptoms are differentially affected by massage therapy vs. progressive muscle relaxation: a pilot study. J Bodywork Mov Ther. 2002, 6, 177–182. [Google Scholar] [CrossRef]
- Paterson, C.; Allen, J.A.; Browning, M.; Barlow, G.; Ewings, P. A pilot study of therapeutic massage for people with Parkinson's disease: the added value of user involvement. Complement Ther Clin Pract. 2005, 11, 161–171. [Google Scholar] [CrossRef]
- Törnhage, C.J.; Skogar, Ö.; Borg, A.; et al. Short- and long-term effects of tactile massage on salivary cortisol concentrations in Parkinson's disease: a randomised controlled pilot study. BMC Complement Altern Med. 2013, 13, 357. [Google Scholar] [CrossRef]
- Casciaro, Y. Massage Therapy Treatment and Outcomes for a Patient with Parkinson's Disease: a Case Report. Int J Ther Massage Bodywork. 2016, 9, 11–18. [Google Scholar] [CrossRef]
- Bisson, E.; Contant, B.; Sveistrup, H.; Lajoie, Y. Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. Cyberpsychol Behav. 2007, 10, 16–23. [Google Scholar] [CrossRef]
- Sevcenko, K.; Lindgren, I. The effects of virtual reality training in stroke and Parkinson's disease rehabilitation: a systematic review and a perspective on usability. Eur Rev Aging Phys Act. 2022, 19, 4. [Google Scholar] [CrossRef]
- Loureiro, A.P.C.; Ribas, C.G.; Zotz, T.G.G.; Chen, R.; Ribas, F. Feasibility of virtual therapy in rehabilitation of Parkinson’s disease patients: pilot study. Fisioter Mov Curitiba. 2012, 25, 659–666. [Google Scholar]
- Severiano, M.I.R.; Zeigelboim, B.S.; Teive, H.A.G.; Santos, G.J.B.; Fonseca, V.R. Effect of virtual reality in Parkinson's disease: a prospective observational study. Arq Neuropsiquiatr. 2018, 76, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; McCormick, D.; Shawis, T.; Impson, R.; Griffin, M. Activity-promoting gaming systems in exercise and rehabilitation. J Rehabil Res Dev. 2011, 48, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- Omar Ahmad, S.; Longhurst, J.; Stiles, D.; Downard, L.; Martin, S. A meta-analysis of exercise intervention and the effect on Parkinson's Disease symptoms. Neurosci Lett. 2023, 801, 137162. [Google Scholar] [CrossRef]
- Nijkrake, M.J.; Keus, S.H.; Quist-Anholts, G.W.; et al. Evaluation of a Patient-Specific Index as an outcome measure for physiotherapy in Parkinson's disease. Eur J Phys Rehabil Med. 2009, 45, 507–512. [Google Scholar]
- Jansa, J.; Aragon, A. Living with Parkinson's and the Emerging Role of Occupational Therapy. Parkinsons Dis. 2015, 2015, 196303. [Google Scholar] [CrossRef]
- Radder, D.L.M.; Sturkenboom, I.H.; van Nimwegen, M.; et al. Physical therapy and occupational therapy in Parkinson's disease. Int J Neurosci. 2017, 127, 930–943. [Google Scholar] [CrossRef]
- Kobayashi, E.; Himuro, N.; Mitani, Y.; Tsunashima, T.; Nomura, K.; Chiba, S. Feasibility and informativeness of the Canadian occupational performance measure for identifying priorities in patients with Parkinson's disease. Physiother Theory Pract. 2023, 39, 607–614. [Google Scholar] [CrossRef]
- Hinkle, J.T.; Pontone, G.M. Psychomotor processing and functional decline in Parkinson's disease predicted by the Purdue Pegboard test. Int J Geriatr Psychiatry. 2021, 36, 909–916. [Google Scholar] [CrossRef]
- Whitehead, L. The measurement of fatigue in chronic illness: a systematic review of unidimensional and multidimensional fatigue measures. J Pain Symptom Manage. 2009, 37, 107–128. [Google Scholar]
- van der Eijk, M.; Faber, M.J.; Al Shamma, S.; Munneke, M.; Bloem, B.R. Moving towards patient-centered healthcare for patients with Parkinson's disease. Parkinsonism Relat Disord. 2011, 17, 360–364. [Google Scholar] [CrossRef] [PubMed]
- van der Marck, M.A.; Bloem, B.R.; Borm, G.F.; Overeem, S.; Munneke, M.; Guttman, M. Effectiveness of multidisciplinary care for Parkinson's disease: a randomized, controlled trial. Mov Disord. 2013, 28, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Monticone, M.; Ambrosini, E.; Laurini, A.; Rocca, B.; Foti, C. In-patient multidisciplinary rehabilitation for Parkinson's disease: A randomized controlled trial. Mov Disord. 2015, 30, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Hartelius, L.; Svensson, P. Speech and swallowing symptoms associated with Parkinson's disease and multiple sclerosis: a survey. Folia Phoniatr Logop. 1994, 46, 9–17. [Google Scholar] [CrossRef]
- Ho, A.K.; Iansek, R.; Marigliani, C.; Bradshaw, J.L.; Gates, S. Speech impairment in a large sample of patients with Parkinson's disease. Behav Neurol. 1999, 11, 131–137. [Google Scholar] [CrossRef]
- Ramig, L.O.; Fox, C.; Sapir, S. Speech treatment for Parkinson's disease. Expert Rev Neurother. 2008, 8, 297–309. [Google Scholar] [CrossRef]
- Helm-Estabrooks, N.; Duffy Yorkston, K.M.; Spencer, K.A.; Joseph, R. Behavioral management of respiratory/ phonatory dysfunction from dysarthria: a systematic review of the evidence. J Med Speech-Lang Pathol. 2003, 11, xiii+. [Google Scholar]
- Pinto, S.; Ozsancak, C.; Tripoliti, E.; Thobois, S.; Limousin-Dowsey, P.; Auzou, P. Treatments for dysarthria in Parkinson's disease. Lancet Neurol. 2004, 3, 547–556. [Google Scholar] [CrossRef]
- Trail, M.; Fox, C.; Ramig, L.O.; Sapir, S.; Howard, J.; Lai, E.C. Speech treatment for Parkinson's disease. NeuroRehabilitation. 2005, 20, 205–221. [Google Scholar] [CrossRef]
- Fox, C.M.; Morrison, C.E.; Ramig, L.O.; Sapir, S. Current perspectives on the Lee Silverman Voice Treatment (LSVT) for people with idiopathic Parkinson’s disease. Am J of Speech-Lang Pathol. 2002, 11, 111–123. [Google Scholar] [CrossRef]
- Albin, R.L.; Young, A.B.; Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989, 12, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Berardelli, A.; Dick, J.P.; Rothwell, J.C.; Day, B.L.; Marsden, C.D. Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 1986, 49, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Demirci, M.; Grill, S.; McShane, L.; Hallett, M. A mismatch between kinesthetic and visual perception in Parkinson's disease. Ann Neurol. 1997, 41, 781–788. [Google Scholar] [CrossRef] [PubMed]
- El Sharkawi, A.; Ramig, L.; Logemann, J.A.; Pauloski, BR; et al. Swallowing and voice effects of Lee Silverman Voice Treatment (LSVT): a pilot study. J Neurol Neurosurg Psychiatry. 2002, 72, 31–36. [Google Scholar] [CrossRef]
- Liotti, M.; Ramig, L.O.; Vogel, D.; et al. Hypophonia in Parkinson's disease: neural correlates of voice treatment revealed by PET. Neurology. 2003, 60, 432–440. [Google Scholar] [CrossRef]
- Sapir, S.; Spielman, J.L.; Ramig, L.O.; Story, B.H.; Fox, C. Effects of intensive voice treatment (the Lee Silverman Voice Treatment [LSVT]) on vowel articulation in dysarthric individuals with idiopathic Parkinson disease: acoustic and perceptual findings. J Speech Lang Hear Res. 2007, 50, 899–912. [Google Scholar] [CrossRef]
- Ramig, L.O.; Sapir, S.; Fox, C.; Countryman, S. Changes in vocal loudness following intensive voice treatment (LSVT) in individuals with Parkinson's disease: a comparison with untreated patients and normal age-matched controls. Mov Disord. 2001, 16, 79–83. [Google Scholar] [CrossRef]
- Gundogdu, A.A.; Akidil, A.O.; Kotan, D. Resolving speech disorders in Parkinson disease: our clinical experience with voice therapy. Biomed Res. 2017, 28, 3313–3317. [Google Scholar]
- Taub, E.; Lum, P.S.; Hardin, P.; Mark, V.W.; Uswatte, G. AutoCITE: automated delivery of CI therapy with reduced effort by therapists. Stroke. 2005, 36, 1301–1304. [Google Scholar] [CrossRef]
- Sadagopan, N.; Huber, J.E. Effects of loudness cues on respiration in individuals with Parkinson's disease. Mov Disord. 2007, 22, 651–659. [Google Scholar] [CrossRef]
- Ayres, A.; Jotz, G.P.; Rieder, C.R.; Schuh, A.F.; Olchik, M.R. The Impact of Dysphagia Therapy on Quality of Life in Patients with Parkinson's Disease as Measured by the Swallowing Quality of Life Questionnaire (SWALQOL). Int Arch Otorhinolaryngol. 2016, 20, 202–206. [Google Scholar] [CrossRef]
- Pinter, B.; Diem-Zangerl, A.; Wenning, G.K.; et al. Mortality in Parkinson's disease: a 38-year follow-up study [published correction appears in Mov Disord. 2017 Jan;32(1):178]. Mov Disord. 2015, 30, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Pitts, T.; Bolser, D.; Rosenbek, J.; Troche, M.; Okun, M.S.; Sapienza, C. Impact of expiratory muscle strength training on voluntary cough and swallow function in Parkinson disease. Chest. 2009, 135, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Regan, J.; Walshe, M.; Tobin, W.O. Immediate effects of thermal-tactile stimulation on timing of swallow in idiopathic Parkinson's disease. Dysphagia. 2010, 25, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.K.; Roddam, H.; Sheldrick, H. Rehabilitation or compensation: time for a fresh perspective on speech and language therapy for dysphagia and Parkinson’s disease? Int J Lang Commun Disord. 2012, 47, 351–364. [Google Scholar] [CrossRef]
- Leow, L.P.; Huckabee, M.L.; Anderson, T.; Beckert, L. The impact of dysphagia on quality of life in ageing and Parkinson's disease as measured by the swallowing quality of life (SWAL-QOL) questionnaire. Dysphagia. 2010, 25, 216–220. [Google Scholar] [CrossRef]
- Heijnen, B.J.; Speyer, R.; Baijens, L.W.; Bogaardt, H.C. Neuromuscular electrical stimulation versus traditional therapy in patients with Parkinson's disease and oropharyngeal dysphagia: effects on quality of life. Dysphagia. 2012, 27, 336–345. [Google Scholar] [CrossRef]
- Argolo, N.; Sampaio, M.; Pinho, P.; Melo, A.; Nóbrega, A.C. Swallowing disorders in Parkinson's disease: impact of lingual pumping. Int J Lang Commun Disord. 2015, 50, 659–664. [Google Scholar] [CrossRef]
- Rinaldi, D.; Imbalzano, G.; Galli, S.; et al. The impact of dysphagia in Parkinson's disease patients treated with levodopa/carbidopa intestinal gel. Parkinsonism Relat Disord. 2023, 109, 105368. [Google Scholar]
- Hsu, P.; Ready, E.A.; Grahn, J.A. The effects of Parkinson's disease, music training, and dance training on beat perception and production abilities. PLoS One. 2022, 17, e0264587. [Google Scholar] [CrossRef]
- Pacchetti, C.; Mancini, F.; Aglieri, R.; Fundarò, C.; Martignoni, E.; Nappi, G. Active music therapy in Parkinson's disease: an integrative method for motor and emotional rehabilitation. Psychosom Med. 2000, 62, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Kitago, T.; Krakauer, J.W. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013, 110, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Hillecke, T.; Nickel, A.; Bolay, H.V. Scientific perspectives on music therapy. Ann N Y Acad Sci. 2005, 1060, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S. A neuroscientific perspective on music therapy. Ann N Y Acad Sci. 2009, 1169, 374–384. [Google Scholar] [CrossRef]
- Thaut, M.H.; McIntosh, G.C.; Rice, R.R.; Miller, R.A.; Rathbun, J.; Brault, J.M. Rhythmic auditory stimulation in gait training for Parkinson's disease patients. Mov Disord. 1996, 11, 193–200. [Google Scholar] [CrossRef]
- Forte, R.; Tocci, N.; De Vito, G. The Impact of Exercise Intervention with Rhythmic Auditory Stimulation to Improve Gait and Mobility in Parkinson Disease: An Umbrella Review. Brain Sci. 2021, 11, 685. [Google Scholar] [CrossRef]
- Naro, A.; Pignolo, L.; Bruschetta, D.; Calabrò, R.S. Data on a novel approach examining the role of the cerebellum in gait performance improvement in patients with Parkinson disease receiving neurologic music therapy. Data Brief. 2023, 47, 109013. [Google Scholar] [CrossRef]
- Wu, Z.; Kong, L.; Zhang, Q. Research Progress of Music Therapy on Gait Intervention in Patients with Parkinson's Disease. Int J Environ Res Public Health. 2022, 19, 9568. [Google Scholar] [CrossRef]
- Lee, H.; Ko, B. Effects of Music-Based Interventions on Motor and Non-Motor Symptoms in Patients with Parkinson's Disease: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2023, 20, 1046. [Google Scholar] [CrossRef]
- Bukowska, A.A.; Krężałek, P.; Mirek, E.; Bujas, P.; Marchewka, A. Neurologic Music Therapy Training for Mobility and Stability Rehabilitation with Parkinson's Disease - A Pilot Study. Front Hum Neurosci. 2016, 9, 710. [Google Scholar] [CrossRef]
- Shulman, L.M. Is there a connection between estrogen and Parkinson's disease? Parkinsonism Relat Disord. 2002, 8, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; Dahodwala, N. Sex differences in Parkinson’s disease and other movement disorders. Exp Neurol 2014, 259, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.; D'Esposito, M. Estrogen shapes dopamine-dependent cognitive processes: implications for women's health. J Neurosci. 2011, 31, 5286–5293. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.D.; Maraganore, D.M.; Bower, J.H.; et al. Hysterectomy, menopause, and estrogen use preceding Parkinson's disease: an exploratory case-control study. Mov Disord. 2001, 16, 830–837. [Google Scholar] [CrossRef]
- Currie, L.J.; Harrison, M.B.; Trugman, J.M.; Bennett, J.P.; Wooten, G.F. Postmenopausal estrogen use affects risk for Parkinson disease. Arch Neurol. 2004, 61, 886–888. [Google Scholar] [CrossRef]
- Simon, K.C.; Chen, H.; Gao, X.; Schwarzschild, M.A.; Ascherio, A. Reproductive factors, exogenous estrogen use, and risk of Parkinson’s disease. 2009, 24, 1359–1365. [Google Scholar] [CrossRef]
- Rugbjerg, K.; Christensen, J.; Tjønneland, A.; Olsen, J.H. Exposure to estrogen and women's risk for Parkinson's disease: a prospective cohort study in Denmark. Parkinsonism Relat Disord. 2013, 19, 457–460. [Google Scholar] [CrossRef]
- Blanchet, P.J.; Fang, J.; Hyland, K.; Arnold, L.A.; Mouradian, M.M.; Chase, T.N. Short-term effects of high-dose 17beta-estradiol in postmenopausal PD patients: a crossover study. Neurology. 1999, 53, 91–95. [Google Scholar] [CrossRef]
- Strijks, E.; Kremer, J.A.; Horstink, M.W. Effects of female sex steroids on Parkinson's disease in postmenopausal women. Clin Neuropharmacol. 1999, 22, 93–97. [Google Scholar] [CrossRef]
- Tsang, K.L.; Ho, S.L.; Lo, S.K. Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations. Neurology. 2000, 54, 2292–2298. [Google Scholar] [CrossRef]
- Parkinson Study Group POETRY Investigators. A randomized pilot trial of estrogen replacement therapy in post-menopausal women with Parkinson's disease. Parkinsonism Relat Disord. 2011, 17, 757–760. [Google Scholar] [CrossRef]
- Okun, M.S.; Fernandez, H.H.; Rodriguez, R.L.; et al. Testosterone therapy in men with Parkinson disease: results of the TEST-PD Study. Arch Neurol. 2006, 63, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Rafi, M.A. Gene and stem cell therapy: Alone or in Combination? Bioimpacts. 2011, 1, 213–218. [Google Scholar] [CrossRef]
- Stayte, S.; Vissel, B. Advances in non-dopaminergic treatments for Parkinson's disease. Front Neurosci. 2014, 8, 113. [Google Scholar] [CrossRef]
- Allen, P.J.; Feigin, A. Gene-based therapies in Parkinson's disease. Neurotherapeutics. 2014, 11, 60–67. [Google Scholar] [CrossRef]
- Lewis, T.B.; Glasgow, J.N.; Harms, A.S.; Standaert, D.G.; Curiel, D.T. Fiber-modified adenovirus for central nervous system Parkinson's disease gene therapy. Viruses. 2014, 6, 3293–3310. [Google Scholar] [CrossRef]
- Hegarty, S.V.; O'Keeffe, G.W.; Sullivan, A.M. Neurotrophic factors: from neurodevelopmental regulators to novel therapies for Parkinson's disease. Neural Regen Res. 2014, 9, 1708–1711. [Google Scholar] [CrossRef]
- Eggert, K.; Schlegel, J.; Oertel, W.; Würz, C.; Krieg, J.C.; Vedder, H. Glial cell line-derived neurotrophic factor protects dopaminergic neurons from 6-hydroxydopamine toxicity in vitro. Neurosci Lett. 1999, 269, 178–182. [Google Scholar] [CrossRef]
- Eslamboli, A.; Cummings, R.M.; Ridley, R.M.; et al. Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against 6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Exp Neurol. 2003, 184, 536–548. [Google Scholar] [CrossRef]
- Eslamboli, A.; Georgievska, B.; Ridley, R.M.; et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson's disease. J Neurosci. 2005, 25, 769–777. [Google Scholar] [CrossRef]
- Kirik, D.; Cederfjäll, E.; Halliday, G.; Petersén, Å. Gene therapy for Parkinson's disease: Disease modification by GDNF family of ligands. Neurobiol Dis. 2017, 97 Pt B, 179–188. [Google Scholar] [CrossRef]
- Eberling, J.L.; Kells, A.P.; Pivirotto, P.; et al. Functional effects of AAV2-GDNF on the dopaminergic nigrostriatal pathway in parkinsonian rhesus monkeys. Hum Gene Ther. 2009, 20, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.C.; Eberling, J.; Pivirotto, P.; et al. Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys. Hum Gene Ther. 2009, 20, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Biju, K.C.; Santacruz, R.A.; Chen, C.; et al. Bone marrow-derived microglia-based neurturin delivery protects against dopaminergic neurodegeneration in a mouse model of Parkinson's disease. Neurosci Lett. 2013, 535, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Marks, W.J., Jr.; Ostrem, J.L.; Verhagen, L.; et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial. Lancet Neurol. 2008, 7, 400–408. [Google Scholar] [CrossRef]
- Marks, W.J., Jr.; Bartus, R.T.; Siffert, J.; et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010, 9, 1164–1172. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Bychkov, E.; Gurevich, V.V.; Benovic, J.L.; Gurevich, E.V. Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem. 2008, 104, 1622–1636. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Berthet, A.; Bychkov, E.; et al. Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson's disease. Sci Transl Med. 2010, 2, 28ra28. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Bychkov, E.; Kook, S.; Zurkovsky, L.; Dalby, K.N.; Gurevich, E.V. Overexpression of GRK6 rescues L-DOPA-induced signaling abnormalities in the dopamine-depleted striatum of hemiparkinsonian rats. Exp Neurol. 2015, 266, 42–54. [Google Scholar] [CrossRef]
- Pardal, R.; López-Barneo, J. Neural stem cells and transplantation studies in Parkinson's disease. Adv Exp Med Biol. 2012, 741, 206–216. [Google Scholar] [CrossRef]
- Gandhi, V.; Burle, S.; Kosalge, S. Stem cell therapy for Parkinson’s disease: A Review. PharmaTutor. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Wang, S.; Okun, M.S.; Suslov, O.; et al. Neurogenic potential of progenitor cells isolated from postmortem human Parkinsonian brains. Brain Res. 2012, 1464, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Kim, J.H.; Kim, S.M.; Kang, K.; Han, D.W.; Lee, J. Therapeutic Potential of Induced Neural Stem Cells for Parkinson's Disease. Int J Mol Sci. 2017, 18, 224. [Google Scholar] [CrossRef]
- Lindvall, O.; Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature. 2006, 441, 1094–1096. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Wang, F.; et al. Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors. Front Neural Circuits. 2016, 10, 29. [Google Scholar] [CrossRef]
- Hwang, S.; Gill, S.; Pathak, S.; Subramanian, S. A Comparison of stem cell therapies for parkinson disease. Georgetown Med Rev. 2018, 2. [Google Scholar] [CrossRef]
- Lige, L.; Zengmin, T. Transplantation of Neural Precursor Cells in the Treatment of Parkinson Disease: An Efficacy and Safety Analysis. Turk Neurosurg. 2016, 26, 378–383. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Li, J.Y. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Prog Neurobiol. 2015, 134, 161–177. [Google Scholar] [CrossRef]
- Pei, Y.; Peng, J.; Behl, M.; et al. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res 2016, 1638 Pt A, 57–73. [Google Scholar] [CrossRef]
- Han, F.; Wang, W.; Chen, B.; et al. Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson's disease. Cytotherapy. 2015, 17, 665–679. [Google Scholar] [CrossRef]
- Via, A.G.; Frizziero, A.; Oliva, F. Biological properties of mesenchymal Stem Cells from different sources. Muscles Ligaments Tendons J. 2012, 2, 154–162. [Google Scholar] [PubMed]
- Tomita, K.; Madura, T.; Sakai, Y.; Yano, K.; Terenghi, G.; Hosokawa, K. Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience. 2013, 236, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13, 4279–4295. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, H.J.; Oh, J.H.; et al. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease. Neurobiol Aging. 2015, 36, 2885–2892. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, M.; Li, H.; et al. Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy. Cytotherapy. 2013, 15, 467–480. [Google Scholar] [CrossRef]
- Hamblin, M.R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016, 6, 113–124. [Google Scholar] [CrossRef]
- Babtan, A.M.; Ilea, A.; Feurdean, C.N.; et al. Biostimulation with low-level laser therapy and its effects on soft and hard tissue regeneration. Literature review. J Mind Med Sci. 2022, 9, 28–37. [Google Scholar] [CrossRef]
- Mitrofanis, J. Why and how does light therapy offer neuroprotection in Parkinson's disease? Neural Regen Res. 2017, 12, 574–575. [Google Scholar] [CrossRef]
- Liang, H.L.; Whelan, H.T.; Eells, J.T.; Wong-Riley, M.T. Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience. 2008, 153, 963–974. [Google Scholar] [CrossRef]
- Ying, R.; Liang, H.L.; Whelan, H.T.; Eells, J.T.; Wong-Riley, M.T. Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain Res. 2008, 1243, 167–173. [Google Scholar] [CrossRef]
- Ahrabi, B.; Tabatabaei Mirakabad, F.S.; Niknazar, S.; et al. Photobiomodulation Therapy and Cell Therapy Improved Parkinson's Diseases by Neuro-regeneration and Tremor Inhibition. J Lasers Med Sci. 2022, 13, e28. [Google Scholar] [CrossRef]
- Salehpour, F.; Gholipour-Khalili, S.; Farajdokht, F.; Kamari, F.; Walski, T.; Hamblin, M.R.; DiDuro, J.O.; Cassano, P. Therapeutic potential of intranasal photobiomodulation therapy for neurological and neuropsychiatric disorders: a narrative review. Rev Neurosci. 2020, 31, 269–286. [Google Scholar] [CrossRef]
- Liebert, A.; Bicknell, B.; Johnstone, D.M.; Gordon, L.C.; Kiat, H.; Hamblin, M.R. "Photobiomics": Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodul Photomed Laser Surg. 2019, 37, 681–693. [Google Scholar] [CrossRef]
- Hamilton, C.; Hamilton, D.; Nicklason, F.; El Massri, N.; Mitrofanis, J. Exploring the use of transcranial photobiomodulation in Parkinson's disease patients. Neural Regen Res. 2018, 13, 1738–1740. [Google Scholar] [CrossRef]
- Reinhart, F.; Massri, N.E.; Chabrol, C.; et al. Intracranial application of near-infrared light in a hemi-parkinsonian rat model: the impact on behavior and cell survival. J Neurosurg. 2016, 124, 1829–1841. [Google Scholar] [CrossRef]
- Ma, J.; Shaw, V.E.; Mitrofanis, J. Does melatonin help save dopaminergic cells in MPTP-treated mice? Parkinsonism Relat Disord. 2009, 15, 307–314. [Google Scholar] [CrossRef]
- Wallace, B.A.; Ashkan, K.; Heise, C.E.; et al. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 2007, 130 Pt 8, 2129–2145. [Google Scholar] [CrossRef]
- Quirk, B.J.; Whelan, H.T. Near-infrared irradiation photobiomodulation: the need for basic science. Photomed Laser Surg. 2011, 29, 143–144. [Google Scholar] [CrossRef]
- Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.Y.; Carroll, J.D.; Hamblin, M.R. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef]
- Moro, C.; Massri, N.E.; Torres, N.; et al. Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. J Neurosurg. 2014, 120, 670–683. [Google Scholar] [CrossRef]
- Benabid, A.L.; Chabardes, S.; Mitrofanis, J.; Pollak, P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol. 2009, 8, 67–81. [Google Scholar] [CrossRef]
- Ditthaphongphakdee, S.; Gaogasigam, C. The effects of light touch cue on gait initiation in patients with Parkinson's disease. J Bodyw Mov Ther. 2021, 26, 187–192. [Google Scholar] [CrossRef]
- Fraint, A.; Ouyang, B.; Metman, L.V.; et al. Patient Knowledge and Attitudes towards Genetic Testing in Parkinson's Disease Subjects with Deep Brain Stimulation. Parkinsons Dis. 2019, 2019, 3494609. [Google Scholar] [CrossRef]
- Deuschl, G.; Schüpbach, M.; Knudsen, K.; et al. Stimulation of the subthalamic nucleus at an earlier disease stage of Parkinson's disease: concept and standards of the EARLYSTIM-study. Parkinsonism Relat Disord. 2013, 19, 56–61. [Google Scholar] [CrossRef]
- Perestelo-Pérez, L.; Rivero-Santana, A.; Pérez-Ramos, J.; Serrano-Pérez, P.; Panetta, J.; Hilarion, P. Deep brain stimulation in Parkinson's disease: meta-analysis of randomized controlled trials. J Neurol. 2014, 261, 2051–2060. [Google Scholar] [CrossRef]
- Daniels, C.; Krack, P.; Volkmann, J.; et al. Is improvement in the quality of life after subthalamic nucleus stimulation in Parkinson's disease predictable? Mov Disord. 2011, 26, 2516–2521. [Google Scholar] [CrossRef]
- Soulas, T.; Sultan, S.; Gurruchaga, J.M.; Palfi, S.; Fénelon, G. Depression and coping as predictors of change after deep brain stimulation in Parkinson's disease. World Neurosurg. 2011, 75, 525–532. [Google Scholar] [CrossRef]
- Drapier, S.; Raoul, S.; Drapier, D.; et al. Only physical aspects of quality of life are significantly improved by bilateral subthalamic stimulation in Parkinson's disease. J Neurol. 2005, 252, 583–588. [Google Scholar] [CrossRef]
- Schuepbach, W.M.; Rau, J.; Knudsen, K.; et al. Neurostimulation for Parkinson's disease with early motor complications. N Engl J Med. 2013, 368, 610–622. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Parkinson’s disease in adults. (NG71); London: NICE. 2017. Available online: https://www.nice.org.uk/guidance/ng71/chapter/Updat e-information.
- Herrington, T.M.; Cheng, J.J.; Eskandar, E.N. Mechanisms of deep brain stimulation. J Neurophysiol. 2016, 115, 19–38. [Google Scholar] [CrossRef]
- Mansouri, A.; Taslimi, S.; Badhiwala, J.H.; et al. Deep brain stimulation for Parkinson's disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J Neurosurg. 2018, 128, 1199–1213. [Google Scholar] [CrossRef]
- Follett, K.A.; Weaver, F.M.; Stern, M.; et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N Engl J Med. 2010, 362, 2077–2091. [Google Scholar] [CrossRef]
- Weaver, F.M.; Follett, K.A.; Stern, M.; et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012, 79, 55–65. [Google Scholar] [CrossRef]
- Southwell, D.G.; Rutkowski, M.J.; San Luciano, M.; et al. Before and after the veterans affairs cooperative program 468 study: Deep brain stimulator target selection for treatment of Parkinson's disease. Parkinsonism Relat Disord. 2018, 48, 40–44. [Google Scholar] [CrossRef]
- Ramirez-Zamora, A.; Ostrem, J.L. Globus Pallidus Interna or Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease: A Review. JAMA Neurol. 2018, 75, 367–372. [Google Scholar] [CrossRef]
- Tröster, A.I.; Jankovic, J.; Tagliati, M.; Peichel, D.; Okun, M.S. Neuropsychological outcomes from constant current deep brain stimulation for Parkinson's disease. Mov Disord. 2017, 32, 433–440. [Google Scholar] [CrossRef]
- Odekerken, V.J.; Boel, J.A.; Schmand, B.A.; et al. GPi vs STN deep brain stimulation for Parkinson disease: Three-year follow-up. Neurology. 2016, 86, 755–761. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Tan, C.; et al. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease. J Neurosurg. 2014, 121, 709–718. [Google Scholar] [CrossRef]
- Evidente, V.G.; Premkumar, A.P.; Adler, C.H.; Caviness, J.N.; Driver-Dunckley, E.; Lyons, M.K. Medication dose reductions after pallidal versus subthalamic stimulation in patients with Parkinson's disease. Acta Neurol Scand. 2011, 124, 211–214. [Google Scholar] [CrossRef]
- Downar, J.; Blumberger, D.M.; Daskalakis, Z.J. Repetitive transcranial magnetic stimulation: an emerging treatment for medication-resistant depression. CMAJ. 2016, 188, 1175–1177. [Google Scholar] [CrossRef]
- Reithler, J.; Peters, J.C.; Sack, A.T. Multimodal transcranial magnetic stimulation: using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog Neurobiol. 2011, 94, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Peinemann, A.; Reimer, B.; Löer, C.; et al. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol. 2004, 115, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron. 2005, 45, 201–206. [Google Scholar] [CrossRef]
- Chou, Y.H.; Hickey, P.T.; Sundman, M.; Song, A.W.; Chen, N.K. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol. 2015, 72, 432–440. [Google Scholar] [CrossRef]
- Zhu, H.; Lu, Z.; Jin, Y.; Duan, X.; Teng, J.; Duan, D. Low-frequency repetitive transcranial magnetic stimulation on Parkinson motor function: a meta-analysis of randomised controlled trials. Acta Neuropsychiatr. 2015, 27, 82–89. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ugawa, Y. Repetitive transcranial magnetic stimulation for Parkinson's disease: A Review. Brain Nerve. 2017, 69, 219–225. [Google Scholar] [CrossRef]
- Khedr, E.M.; Al-Fawal, B.; Abdel Wraith, A.; et al. The Effect of 20 Hz versus 1 Hz Repetitive Transcranial Magnetic Stimulation on Motor Dysfunction in Parkinson's Disease: Which Is More Beneficial? J Parkinsons Dis. 2019, 9, 379–387. [Google Scholar] [CrossRef]
- Hai-Jiao, W.; Ge, T.; Li-Na, Z.; et al. The efficacy of repetitive transcranial magnetic stimulation for Parkinson disease patients with depression. Int J Neurosci. 2020, 130, 19–27. [Google Scholar] [CrossRef]
- Flamez, A.; Cordenier, A.; De Raedt, S.; et al. Bilateral low frequency rTMS of the primary motor cortex may not be a suitable treatment for levodopa-induced dyskinesias in late stage Parkinson's disease. Parkinsonism Relat Disord. 2016, 22, 54–61. [Google Scholar] [CrossRef]
- Yokoe, M.; Mano, T.; Maruo, T.; et al. The optimal stimulation site for high-frequency repetitive transcranial magnetic stimulation in Parkinson's disease: A double-blind crossover pilot study. J Clin Neurosci. 2018, 47, 72–78. [Google Scholar] [CrossRef]
- Eggers, C.; Günther, M.; Rothwell, J.; Timmermann, L.; Ruge, D. Theta burst stimulation over the supplementary motor area in Parkinson's disease. J Neurol. 2015, 262, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Brys, M.; Fox, M.D.; Agarwal, S.; et al. Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: A randomized trial. Neurology. 2016, 87, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Sedlácková, S.; Rektorová, I.; Srovnalová, H.; Rektor, I. Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson's disease. J Neural Transm (Vienna). 2009, 116, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Nardone, R.; De Blasi, P.; Höller, Y.; et al. Repetitive transcranial magnetic stimulation transiently reduces punding in Parkinson's disease: a preliminary study. J Neural Transm (Vienna). 2014, 121, 267–274. [Google Scholar] [CrossRef]
- Merlo, E.M.; MacKenzie Myles, L.A.; Pappalardo, S.M. The VESPA Project: Virtual Reality Interventions for Neurocognitive and Developmental Disorders. J Mind Med Sci. 2022, 9, 16–27. [Google Scholar] [CrossRef]
- Benninger, D.H.; Iseki, K.; Kranick, S.; Luckenbaugh, D.A.; Houdayer, E.; Hallett, M. Controlled study of 50-Hz repetitive transcranial magnetic stimulation for the treatment of Parkinson disease. Neurorehabil Neural Repair. 2012, 26, 1096–1105. [Google Scholar] [CrossRef]
- Kim, M.S.; Chang, W.H.; Cho, J.W.; et al. Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson's disease. Restor Neurol Neurosci. 2015, 33, 521–530. [Google Scholar] [CrossRef]
- Shirota, Y.; Ohtsu, H.; Hamada, M.; Enomoto, H.; Ugawa, Y. Research Committee on rTMS Treatment of Parkinson's Disease. Supplementary motor area stimulation for Parkinson disease: a randomized controlled study. Neurology. 2013, 80, 1400–1405. [Google Scholar] [CrossRef]
Therapies | Number of Selected Studies |
---|---|
Physical therapy | 34 |
Occupational therapy | 10 |
Speech therapy | 17 |
Dysphagia therapy | 9 |
Music therapy | 10 |
Hormone therapy | 13 |
Gene therapy | 17 |
Stem cell therapy | 16 |
Light therapy | 17 |
Deep brain stimulation | 18 |
Repetitive transcranial magnetic stimulation | 19 |
© 2023 by the author. 2023 Bazza Sohail, Muhammad Affan Iqbal, Aisha Razzaq, Abdul Wasay Nafe, Robina Malik
Share and Cite
Sohail, B.; Iqbal, M.A.; Razzaq, A.; Nafe, A.W.; Malik, R. Recent Advances in the Role of Rehabilitative Therapies for Parkinson’s Disease: A Literature Review. J. Mind Med. Sci. 2023, 10, 85-105. https://doi.org/10.22543/2392-7674.1365
Sohail B, Iqbal MA, Razzaq A, Nafe AW, Malik R. Recent Advances in the Role of Rehabilitative Therapies for Parkinson’s Disease: A Literature Review. Journal of Mind and Medical Sciences. 2023; 10(1):85-105. https://doi.org/10.22543/2392-7674.1365
Chicago/Turabian StyleSohail, Bazza, Muhammad Affan Iqbal, Aisha Razzaq, Abdul Wasay Nafe, and Robina Malik. 2023. "Recent Advances in the Role of Rehabilitative Therapies for Parkinson’s Disease: A Literature Review" Journal of Mind and Medical Sciences 10, no. 1: 85-105. https://doi.org/10.22543/2392-7674.1365
APA StyleSohail, B., Iqbal, M. A., Razzaq, A., Nafe, A. W., & Malik, R. (2023). Recent Advances in the Role of Rehabilitative Therapies for Parkinson’s Disease: A Literature Review. Journal of Mind and Medical Sciences, 10(1), 85-105. https://doi.org/10.22543/2392-7674.1365