Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. HR CBCT Protocol and Image Reconstruction
2.2. Spatial Resolution
2.3. Noise Characteristics
2.4. Low-Contrast Detectability
2.5. Radiation Dose
3. Results
3.1. Spatial Resolution
3.2. Noise Characteristics
3.3. Low-Contrast Detectability
3.4. Radiation Dose
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baek, J.H.; Kim, B.M.; Heo, J.H.; Kim, D.J.; Nam, H.S.; Kim, Y.D.; Choi, H.S.; Kim, J.H.; Kim, J.W. Association between flat-panel computed tomography hyperattenuation and clinical outcome after successful recanalization by endovascular treatment. J. Neurosurg. 2020, 135, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Becske, T.; Kallmes, D.F.; Saatci, I.; McDougall, C.G.; Szikora, I.; Lanzino, G.; Moran, C.J.; Woo, H.H.; Lopes, D.K.; Berez, A.L.; et al. Pipeline for uncoilable or failed aneurysms: Results from a multicenter clinical trial. Radiology 2013, 267, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Chalouhi, N.; McMahon, J.F.; Moukarzel, L.A.; Starke, R.M.; Jabbour, P.; Dumont, A.S.; Tjoumakaris, S.; Gingold, E.L.; Rosenwasser, R.; Gonzalez, L.F. Flow diversion versus traditional aneurysm embolization strategies: Analysis of fluoroscopy and procedure times. J. Neurointerv. Surg. 2014, 6, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Sciacca, S.; Bassiouny, A.; Mansoor, N.; Minett, T.; Balasundaram, P.; Siddiqui, J.; Joshi, Y.; Derakhshani, S.; Kandasamy, N.; Booth, T.C.; et al. Early Outcomes of the Pipeline Vantage Flow Diverter: A Multicentre Study. Clin. Neuroradiol. 2023. [Google Scholar] [CrossRef]
- Bai, M.; Liu, B.; Mu, H.; Liu, X.; Jiang, Y. The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT): A phantom study. Eur. J. Radiol. 2012, 81, 3577–3580. [Google Scholar] [CrossRef]
- Cancelliere, N.M.; Hummel, E.; van Nijnatten, F.; van de Haar, P.; Withagen, P.; van Vlimmeren, M.; Hallacoglu, B.; Agid, R.; Nicholson, P.; Mendes Pereira, V. The butterfly effect: Improving brain cone-beam CT image artifacts for stroke assessment using a novel dual-axis trajectory. J. Neurointerv. Surg. 2023, 15, 283–287. [Google Scholar] [CrossRef]
- Hosoo, H.; Ito, Y.; Marushima, A.; Hayakawa, M.; Masumoto, T.; Ishikawa, E.; Matsumaru, Y. Image quality improvements for brain soft tissue in neuro-endovascular treatments: A novel dual-axis “butterfly” trajectory for optimized Cone-Beam CT. Eur. J. Radiol. 2023, 160, 110713. [Google Scholar] [CrossRef]
- Irie, K.; Murayama, Y.; Saguchi, T.; Ishibashi, T.; Ebara, M.; Takao, H.; Abe, T. Dynact soft-tissue visualization using an angiographic C-arm system: Initial clinical experience in the operating room. Neurosurgery 2008, 62, 266–272; discussion 272. [Google Scholar] [CrossRef]
- Jones, A.K.; Odisio, B.C. Comparison of radiation dose and image quality between flat panel computed tomography and multidetector computed tomography in a hybrid CT-angiography suite. J. Appl. Clin. Med. Phys. 2020, 21, 121–127. [Google Scholar] [CrossRef]
- Sánchez, R.; Vañó, E.; Fernández, J.; Rosati, S.; López-Ibor, L. Radiation doses in patient eye lenses during interventional neuroradiology procedures. Am. J. Neuroradiol. 2016, 37, 402–407. [Google Scholar] [CrossRef]
- Chida, K.; Saito, H.; Otani, H.; Kohzuki, M.; Takahashi, S.; Yamada, S.; Shirato, K.; Zuguchi, M. Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. AJR Am. J. Roentgenol. 2006, 186, 774–778. [Google Scholar] [CrossRef]
- Moritake, T.; Matsumaru, Y.; Takigawa, T.; Nishizawa, K.; Matsumura, A.; Tsuboi, K. Dose measurement on both patients and operators during neurointerventional procedures using photoluminescence glass dosimeters. AJNR Am. J. Neuroradiol. 2008, 29, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Kizilkilic, O.; Kocer, N.; Metaxas, G.E.; Babic, D.; Homan, R.; Islak, C. Utility of VasoCT in the treatment of intracranial aneurysm with flow-diverter stents. J. Neurosurg. 2012, 117, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Raz, E.; Nossek, E.; Sahlein, D.H.; Sharashidze, V.; Narayan, V.; Ali, A.; Esparza, R.; Peschillo, S.; Chung, C.; Diana, F.; et al. Principles, techniques and applications of high resolution cone beam CT angiography in the neuroangio suite. J. Neurointerv. Surg. 2023, 15, 600–607. [Google Scholar] [CrossRef]
- Snoeren, R.M.; Söderman, M.; Kroon, J.N.; Roijers, R.B.; de With, P.H.; Babic, D. High-resolution 3D X-ray imaging of intracranial nitinol stents. Neuroradiology 2012, 54, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Sato, M.; Matsumaru, Y.; Sakuma, H.; Yoda, S.; Hamada, Y. Intra-arterial Contrasted Cone-beam Computed Tomography Assessment of Vessels Distal from Occluded Site in Acute Ischemic Stroke with Major Vessel Occlusion. Neurol. Med. Chir. 2017, 57, 292–298. [Google Scholar] [CrossRef]
- Iwasaki, M.; Saito, M.; Nemoto, A.; Suzuki, T.; Hikita, C.; Fukuta, S.; Sato, H.; Morimoto, M. Diluted Contrast-enhanced Cone-beam CT during Acute-phase Recanalization Therapy for Occlusion of the Middle Cerebral Artery. J. Neuroendovasc. Ther. 2019, 13, 91–94. [Google Scholar] [CrossRef]
- Abuzaid, M.M.; Elshami, W.; Jayachandran, D.; Korappil, N.; Tekin, H.O. Establishment of Diagnostic Reference Levels in Cone Beam Computed Tomography Scans in the United Arab Emirates. Tomography 2022, 8, 2939–2945. [Google Scholar] [CrossRef]
- Brendlin, A.S.; Estler, A.; Plajer, D.; Lutz, A.; Grözinger, G.; Bongers, M.N.; Tsiflikas, I.; Afat, S.; Artzner, C.P. AI Denoising Significantly Enhances Image Quality and Diagnostic Confidence in Interventional Cone-Beam Computed Tomography. Tomography 2022, 8, 933–947. [Google Scholar] [CrossRef]
- Kawauchi, S.; Chida, K.; Hamada, Y.; Tsuruta, W. Lens dose reduction with a bismuth shield in neuro cone-beam computed tomography: An investigation on optimum shield device placement conditions. Radiol. Phys. Technol. 2022, 15, 25–36. [Google Scholar] [CrossRef]
- Kawauchi, S.; Chida, K.; Moritake, T.; Hamada, Y.; Matsumaru, Y.; Tsuruta, W.; Sato, M.; Hosoo, H.; Sun, L. Treatment of Internal Carotid Aneurysms Using Pipeline Embolization Devices: Measuring the Radiation Dose of the Patient and Determining the Factors Affecting It. Radiat. Prot. Dosim. 2020, 188, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Kawauchi, S.; Chida, K.; Moritake, T.; Hamada, Y.; Tsuruta, W. Radioprotection of eye lens using protective material in neuro cone-beam computed tomography: Estimation of dose reduction rate and image quality. Phys. Med. 2021, 82, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Kawauchi, S.; Chida, K.; Moritake, T.; Matsumaru, Y.; Hamada, Y.; Sakuma, H.; Yoda, S.; Sun, L.; Sato, M.; Tsuruta, W. Estimation of patient lens dose associated with C-arm cone-beam computed tomography usage during interventional neuroradiology. Radiat. Prot. Dosim. 2019, 184, 138–147. [Google Scholar] [CrossRef]
- Avilés Lucas, P.; Dance, D.R.; Castellano, I.A.; Vañó, E. Estimation of the peak entrance surface air kerma for patients undergoing computed tomography-guided procedures. Radiat. Prot. Dosim. 2005, 114, 317–320. [Google Scholar] [CrossRef]
- Kirisattayakul, W.; Pattum, P.; Munkong, W.; Prabsattroo, T.; Khottapat, C.; Chomkhunthod, T.; Pungkun, V. Comparing Radiation Dose of Cerebral Angiography Using Conventional and High kV Techniques: A Retrospective Study on Intracranial Aneurysm Patients and a Phantom Study. Tomography 2023, 9, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Sarti, M.; Brehmer, W.P.; Gay, S.B. Low-dose techniques in CT-guided interventions. Radiographics 2012, 32, 1109–1119; discussion 1119–1120. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, N.; Mitsui, K.; Oda, S. Evaluation for Basic Image Qualities Dependence on the Position in XYZ Directions and Acquisition Parameters of the Cone Beam CT for Angiography System with Flat Panel Detector. Nihon Hoshasen Gijutsu Gakkai Zasshi 2016, 72, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Ucar, F.A.; Frenzel, M.; Abello Mercado, M.A.; Altmann, S.; Reder, S.; Brockmann, C.; Brockmann, M.A.; Othman, A.E. Feasibility of Ultra-High Resolution Supra-Aortic CT Angiography: An Assessment of Diagnostic Image Quality and Radiation Dose. Tomography 2021, 7, 711–720. [Google Scholar] [CrossRef]
- Herrero-Moyano, M.; Hernández, P.M.; Castañon, P.G.; Monreal, J.L.C. Transient Rectangular Alopecia after Endovascular Embolization: A Case Series of four Patients Describing Dermoscopic and Histopathologic Findings. Int. J. Trichol. 2022, 14, 138–140. [Google Scholar] [CrossRef]
- Imanishi, Y.; Fukui, A.; Niimi, H.; Itoh, D.; Nozaki, K.; Nakaji, S.; Ishizuka, K.; Tabata, H.; Furuya, Y.; Uzura, M.; et al. Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of MDCT and DSA. Eur. Radiol. 2005, 15, 41–46. [Google Scholar] [CrossRef]
- Román-Sainz, J.; Silvestre-Torner, N.; Gruber-Velasco, F.; Romero-Jiménez, B.; Lobato-Berezo, A.; Imbernón-Moya, A. Square-shaped Alopecia After Embolization of Intracranial Aneurysm: A Case Report and Review. Dermatol. Pract. Concept. 2022, 12, e2022093. [Google Scholar] [CrossRef] [PubMed]
- Thorat, J.D.; Hwang, P.Y. Peculiar geometric alopecia and trigeminal nerve dysfunction in a patient after Guglielmi detachable coil embolization of a ruptured aneurysm. J. Stroke Cerebrovasc. Dis. 2007, 16, 40–42. [Google Scholar] [CrossRef]
- Chida, K.; Kaga, Y.; Haga, Y.; Kataoka, N.; Kumasaka, E.; Meguro, T.; Zuguchi, M. Occupational dose in interventional radiology procedures. AJR Am. J. Roentgenol. 2013, 200, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Haga, Y.; Chida, K.; Kaga, Y.; Sota, M.; Meguro, T.; Zuguchi, M. Occupational eye dose in interventional cardiology procedures. Sci. Rep. 2017, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Inaba, Y.; Hitachi, S.; Watanuki, M.; Chida, K. Radiation Eye Dose for Physicians in CT Fluoroscopy-Guided Biopsy. Tomography 2022, 8, 438–446. [Google Scholar] [CrossRef]
- Kato, M.; Chida, K.; Ishida, T.; Toyoshima, H.; Yoshida, Y.; Yoshioka, S.; Moroi, J.; Kinoshita, T. Occupational Radiation Exposure of the Eye in Neurovascular Interventional Physician. Radiat. Prot. Dosim. 2019, 185, 151–156. [Google Scholar] [CrossRef]
- Nawfel, R.D.; Judy, P.F.; Silverman, S.G.; Hooton, S.; Tuncali, K.; Adams, D.F. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology 2000, 216, 180–184. [Google Scholar] [CrossRef]
- Stewart, F.A.; Akleyev, A.V.; Hauer-Jensen, M.; Hendry, J.H.; Kleiman, N.J.; Macvittie, T.J.; Aleman, B.M.; Edgar, A.B.; Mabuchi, K.; Muirhead, C.R.; et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs-threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 2012, 41, 1–322. [Google Scholar] [CrossRef]
- Ciarmatori, A.; Nocetti, L.; Mistretta, G.; Zambelli, G.; Costi, T. Reducing absorbed dose to eye lenses in head CT examinations: The effect of bismuth shielding. Australas. Phys. Eng. Sci. Med. 2016, 39, 583–589. [Google Scholar] [CrossRef]
- Hopper, K.D.; Neuman, J.D.; King, S.H.; Kunselman, A.R. Radioprotection to the eye during CT scanning. AJNR Am. J. Neuroradiol. 2001, 22, 1194–1198. [Google Scholar] [CrossRef]
- Inoue, Y.; Itoh, H.; Miyatake, H.; Hata, H.; Sasa, R.; Shiibashi, N.; Mitsui, K. Automatic Exposure Control Attains Radiation Dose Modulation Matched with the Head Size in Pediatric Brain CT. Tomography 2022, 8, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kwon, S.M.; Kim, J.M.; Yoon, S.W. New organ-based tube current modulation method to reduce the radiation dose during computed tomography of the head: Evaluation of image quality and radiation dose to the eyes in the phantom study. Radiol. Med. 2017, 122, 601–608. [Google Scholar] [CrossRef]
- Mehnati, P.; Malekzadeh, R.; Sooteh, M.Y. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: A literature review and meta-analysis. Radiol. Phys. Technol. 2019, 12, 6–25. [Google Scholar] [CrossRef] [PubMed]
- Nikupaavo, U.; Kaasalainen, T.; Reijonen, V.; Ahonen, S.M.; Kortesniemi, M. Lens dose in routine head CT: Comparison of different optimization methods with anthropomorphic phantoms. AJR Am. J. Roentgenol. 2015, 204, 117–123. [Google Scholar] [CrossRef]
- Ota, J.; Yokota, H.; Kobayashi, T.; Ogata, Y.; Kubo, T.; Chida, K.; Masuda, Y.; Uno, T. Head CT dose reduction with organ-based tube current modulation. Med. Phys. 2022, 49, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Summerlin, D.; Willis, J.; Boggs, R.; Johnson, L.M.; Porter, K.K. Radiation Dose Reduction Opportunities in Vascular Imaging. Tomography 2022, 8, 2618–2638. [Google Scholar] [CrossRef]
- Valentin, J. The 2007 Recommendations of the International Commission on Radiological Protection; ICRP publication 103; Elsevier: Amsterdam, The Netherlands, 2007; Volume 37, pp. 1–332. [Google Scholar]
- International Atomic Energy Agency. Implications for Occupational Radiation Protection of the New Dose Limit for the Lens of the Eye; International Atomic Energy Agency: Vienna, Austria, 2014. [Google Scholar]
- International Atomic Energy Agency. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards; International Atomic Energy Agency: Vienna, Austria, 2014. [Google Scholar]
- Chida, K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol. Phys. Technol. 2022, 15, 101–115. [Google Scholar] [CrossRef]
- Endo, M.; Haga, Y.; Sota, M.; Tanaka, A.; Otomo, K.; Murabayashi, Y.; Abe, M.; Kaga, Y.; Inaba, Y.; Suzuki, M.; et al. Evaluation of novel X-ray protective eyewear in reducing the eye dose to interventional radiology physicians. J. Radiat. Res. 2021, 62, 414–419. [Google Scholar] [CrossRef]
- Fujibuchi, T. Radiation protection education using virtual reality for the visualisation of scattered distributions during radiological examinations. J. Radiol. Prot. 2021, 41, S317–S328. [Google Scholar] [CrossRef]
- Inaba, Y.; Hitachi, S.; Watanuki, M.; Chida, K. Occupational Radiation Dose to Eye Lenses in CT-Guided Interventions Using MDCT-Fluoroscopy. Diagnostics 2021, 11, 646. [Google Scholar] [CrossRef]
- Koenig, A.M.; Etzel, R.; Greger, W.; Viniol, S.; Fiebich, M.; Thomas, R.P.; Mahnken, A.H. Protective Efficacy of Different Ocular Radiation Protection Devices: A Phantom Study. Cardiovasc. Intervent. Radiol. 2020, 43, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.J. A 20 mSv dose limit for the eye: Sense or no sense? J. Radiol. Prot. 2011, 31, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K. Assessment of Radiation Dose in Medical Imaging and Interventional Radiology Procedures for Patient and Staff Safety. Diagnostics 2021, 11, 1116. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Lertsuwunseri, V.; Srimahachota, S.; Krisanachinda, A.; Tulvatana, W.; Khambhiphant, B.; Sudchai, W.; Rehani, M. Eye lens dosimetry and the study on radiation cataract in interventional cardiologists. Phys. Med. 2017, 44, 232–235. [Google Scholar] [CrossRef]
- Matsunaga, Y.; Kawaguchi, A.; Kobayashi, K.; Kobayashi, M.; Asada, Y.; Minami, K.; Suzuki, S.; Chida, K. Effective radiation doses of CT examinations in Japan: A nationwide questionnaire-based study. Br. J. Radiol. 2016, 89, 20150671. [Google Scholar] [CrossRef]
- Valentin, J. Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85. Ann. ICRP 2000, 30, 7. [Google Scholar] [CrossRef]
- Vañó, E.; González, L.; Beneytez, F.; Moreno, F. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br. J. Radiol. 1998, 71, 728–733. [Google Scholar] [CrossRef]
- Khatri, P.; Abruzzo, T.; Yeatts, S.D.; Nichols, C.; Broderick, J.P.; Tomsick, T.A. Good clinical outcome after ischemic stroke with successful revascularization is time-dependent. Neurology 2009, 73, 1066–1072. [Google Scholar] [CrossRef]
- Khatri, P.; Yeatts, S.D.; Mazighi, M.; Broderick, J.P.; Liebeskind, D.S.; Demchuk, A.M.; Amarenco, P.; Carrozzella, J.; Spilker, J.; Foster, L.D.; et al. Time to angiographic reperfusion and clinical outcome after acute ischaemic stroke: An analysis of data from the Interventional Management of Stroke (IMS III) phase 3 trial. Lancet Neurol. 2014, 13, 567–574. [Google Scholar] [CrossRef]
Matrix | 50% MTF | 10% MTF | |
---|---|---|---|
C-HR CBCT | 256 × 256 | 0.620 | 1.031 |
384 × 384 | 0.929 | 1.527 | |
512 × 512 | 1.240 | 2.015 | |
W-HR CBCT | 256 × 256 | 0.366 | 0.760 |
384 × 384 | 0.675 | 1.218 | |
512 × 512 | 0.929 | 1.705 |
Reference Air-Kerma (mGy) | Kerma Area Product (Gy·cm2) | |
---|---|---|
C-HR CBCT | 157 | 12.8 |
W-HR CBCT | 157 | 18.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawauchi, S.; Chida, K.; Hamada, Y.; Tsuruta, W. Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study. Tomography 2023, 9, 1683-1693. https://doi.org/10.3390/tomography9050134
Kawauchi S, Chida K, Hamada Y, Tsuruta W. Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study. Tomography. 2023; 9(5):1683-1693. https://doi.org/10.3390/tomography9050134
Chicago/Turabian StyleKawauchi, Satoru, Koichi Chida, Yusuke Hamada, and Wataro Tsuruta. 2023. "Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study" Tomography 9, no. 5: 1683-1693. https://doi.org/10.3390/tomography9050134
APA StyleKawauchi, S., Chida, K., Hamada, Y., & Tsuruta, W. (2023). Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study. Tomography, 9(5), 1683-1693. https://doi.org/10.3390/tomography9050134