Rim Enhancement after Technically Successful Transarterial Chemoembolization in Hepatocellular Carcinoma: A Potential Mimic of Incomplete Embolization or Reactive Hyperemia?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CT Protocol
2.3. DCE-CT Analysis
2.4. Chemoembolization
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Perfusion-CT Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llovet, J.; Brú, C.; Bruix, J. Prognosis of Hepatocellular Carcinoma: The BCLC Staging Classification. Semin. Liver Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Piñero, F.; Poniachik, J.; Ridruejo, E.; Silva, M. Hepatocellular carcinoma in Latin America: Diagnosis and treatment challenges. World J. Gastroenterol. 2018, 24, 4224–4229. [Google Scholar] [CrossRef]
- Agnello, F.; Salvaggio, G.; Cabibbo, G.; Maida, M.; Lagalla, R.; Midiri, M.; Brancatelli, G. Imaging appearance of treated hepatocellular carcinoma. World J. Hepatol. 2013, 5, 417–424. [Google Scholar] [CrossRef]
- Mendiratta-Lala, M.; Masch, W.R.; Shampain, K.; Zhang, A.; Jo, A.S.; Moorman, S.; Aslam, A.; Maturen, K.E.; Davenport, M.S. MRI Assessment of Hepatocellular Carcinoma after Local-Regional Therapy: A Comprehensive Review. Radiol. Imaging Cancer 2020, 2, e190024. [Google Scholar] [CrossRef]
- Chung, W.-S.; Lee, K.-H.; Park, M.-S.; Lee, Y.J.; Kwon, J.; Baek, S.-E.; Kim, M.-J. Enhancement Patterns of Hepatocellular Carcinoma after Transarterial Chemoembolization Using Drug-Eluting Beads on Arterial Phase CT Images: A Pilot Retrospective Study. Am. J. Roentgenol. 2012, 199, 349–359. [Google Scholar] [CrossRef]
- Kim, S.K.; Lim, H.K.; Kim, Y.H.; Lee, W.J.; Lee, S.J.; Kim, S.H.; Lim, J.H.; Kim, S.A. Hepatocellular Carcinoma Treated with Radio-frequency Ablation: Spectrum of Imaging Findings. RadioGraphics 2003, 23, 107–121. [Google Scholar] [CrossRef]
- Kim, Y.; Rhim, H.; Lim, H.K. Imaging After Radiofrequency Ablation of Hepatic Tumors. Semin. Ultrasound CT MRI 2009, 30, 49–66. [Google Scholar] [CrossRef]
- Riaz, A.; Kulik, L.; Lewandowski, R.J.; Ryu, R.K.; Giakoumis Spear, G.; Mulcahy, M.F.; Abecassis, M.; Baker, T.; Gates, V.; Nayar, R.; et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology 2008, 49, 1185–1193. [Google Scholar] [CrossRef]
- Baur, J.; Ritter, C.O.; Germer, C.-T.; Klein, I.; Kickuth, R.; Steger, U. Transarterial chemoembolization with drug-eluting beads versus conventional transarterial chemoembolization in locally advanced hepatocellular carcinoma. Hepatic Med. 2016, 8, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Yaghmai, V.; Salem, R.; Lewandowski, R.J.; Nikolaidis, P.; Larson, A.C.; Miller, F.H. Imaging tumor response following liver-directed intra-arterial therapy. Abdom. Imaging 2013, 38, 1286–1299. [Google Scholar] [CrossRef] [PubMed]
- Kallini, J.R.; Miller, F.H.; Gabr, A.; Salem, R.; Lewandowski, R.J. Hepatic imaging following intra-arterial embolotherapy. Abdom. Radiol. 2016, 41, 600–616. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Sharma, P.; Bhatt, N.; Hooda, K. Transarterial Therapies for Hepatocellular Carcinoma: A Comprehensive Review with Current Updates and Future Directions. Asian Pac. J. Cancer Prev. 2016, 17, 473–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syha, R.; Grözinger, G.; Grosse, U.; Maurer, M.; Zender, L.; Horger, M.; Nikolaou, K.; Ketelsen, D. Parenchymal Blood Volume Assessed by C-Arm–Based Computed Tomography in Immediate Posttreatment Evaluation of Drug-Eluting Bead Transarterial Chemoembolization in Hepatocellular Carcinoma. Investig. Radiol. 2016, 51, 121–126. [Google Scholar] [CrossRef]
- Yaghmai, V.; Besa, C.; Kim, E.; Gatlin, J.L.; Siddiqui, N.A.; Taouli, B. Imaging Assessment of Hepatocellular Carcinoma Response to Locoregional and Systemic Therapy. Am. J. Roentgenol. 2013, 201, 80–96. [Google Scholar] [CrossRef]
- Zou, J.H.; Zhang, L.; Ren, Z.G.; Ye, S.L. Efficacy and safety of cTACEversusDEB-TACE in patients with hepatocellular carcinoma: A meta-analysis. J. Dig. Dis. 2016, 17, 510–517. [Google Scholar] [CrossRef]
- Ippolito, D.; Fior, D.; Bonaffini, P.A.; Capraro, C.; Leni, D.; Corso, R.; Sironi, S. Quantitative evaluation of CT-perfusion map as indicator of tumor response to transarterial chemoembolization and radiofrequency ablation in HCC patients. Eur. J. Radiol. 2014, 83, 1665–1671. [Google Scholar] [CrossRef]
- Ippolito, D.; Bonaffini, P.-A.; Ratti, L.; Antolini, L.; Corso, R.; Fazio, F.; Sironi, S. Hepatocellular carcinoma treated with transarterial chemoembolization: Dynamic perfusion-CT in the assessment of residual tumor. World J. Gastroenterol. 2010, 16, 5993–6000. [Google Scholar] [CrossRef]
- Kaufmann, S.; Horger, T.; Oelker, A.; Beck, S.; Schulze, M.; Nikolaou, K.; Ketelsen, D.; Horger, M. Volume perfusion computed tomography (VPCT)—Based evaluation of response to TACE using two different sized drug eluting beads in patients with nonresectable hepatocellular carcinoma: Impact on tumor and liver parenchymal vascularisation. Eur. J. Radiol. 2015, 84, 2548–2554. [Google Scholar] [CrossRef]
- Ronot, M.; Lambert, S.; Daire, J.-L.; Lagadec, M.; Doblas, S.; Garteiser, P.; Kerbaol, A.; Sinkus, R.; Van Beers, B.E.; Vilgrain, V. Can we justify not doing liver perfusion imaging in 2013? Diagn. Interv. Imaging 2013, 94, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
- EASL–EORTC Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2012, 56, 908–943. [CrossRef] [PubMed] [Green Version]
- Chandler, A.; Wei, W.; Anderson, E.F.; Herron, D.H.; Ye, Z.; Ng, C.S. Validation of motion correction techniques for liver CT perfusion studies. Br. J. Radiol. 2012, 85, e514–e522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compagnone, G.; Giampalma, E.; Domenichelli, S.; Renzulli, M.; Golfieri, R. Calculation of conversion factors for effective dose for various interventional radiology procedures. Med. Phys. 2012, 39, 2491–2498. [Google Scholar] [CrossRef] [PubMed]
- Kurucay, M.; Kloth, C.; Kaufmann, S.; Nikolaou, K.; Bösmüller, H.; Horger, M.; Thaiss, W.M. Multiparametric imaging for detection and characterization of hepatocellular carcinoma using gadoxetic acid-enhanced MRI and perfusion-CT: Which parameters work best? Cancer Imaging 2017, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Thaiss, W.M.; Kaufmann, S.; Kloth, C.; Nikolaou, K.; Bösmüller, H.; Horger, M. VEGFR-2 expression in HCC, dysplastic and regenerative liver nodules, and correlation with pre-biopsy Dynamic Contrast Enhanced CT. Eur. J. Radiol. 2016, 85, 2036–2041. [Google Scholar] [CrossRef]
- Kaufmann, S.; Horger, T.; Oelker, A.; Kloth, C.; Nikolaou, K.; Schulze, M.; Horger, M. Characterization of hepatocellular carcinoma (HCC) lesions using a novel CT-based volume perfusion (VPCT) technique. Eur. J. Radiol. 2015, 84, 1029–1035. [Google Scholar] [CrossRef]
- Kaufmann, S.; Thaiss, W.M.; Schulze, M.; Bitzer, M.; Lauer, U.; Nikolaou, K.; Horger, M. Prognostic value of perfusion CT in hepatocellular carcinoma treatment with sorafenib: Comparison with mRECIST in longitudinal follow-up. Acta Radiol. 2017, 59, 765–772. [Google Scholar] [CrossRef]
- Ippolito, D.; Sironi, S.; Pozzi, M.; Antolini, L.; Ratti, L.; Alberzoni, C.; Leone, E.B.; Meloni, F.; Valsecchi, M.G.; Fazio, F. Hepatocellular Carcinoma in Cirrhotic Liver Disease. Acad. Radiol. 2008, 15, 919–927. [Google Scholar] [CrossRef]
- Ippolito, D.; Querques, G.; Okolicsanyi, S.; Talei Franzesi, C.; Pecorelli, A.; Lombardi, S.; Orsini, E.; Strazzabosco, M.; Sironi, S. Dynamic contrast enhanced perfusion CT imaging: A diagnostic biomarker tool for survival prediction of tumour response to antiangiogenetic treatment in patients with advanced HCC lesions. Eur. J. Radiol. 2018, 106, 62–68. [Google Scholar] [CrossRef]
- Ippolito, D.; Querques, G.; Pecorelli, A.; Talei Franzesi, C.; Okolicsanyi, S.; Strazzabosco, M.; Sironi, S. Diagnostic Value of Quantitative Perfusion Computed Tomography Technique in the Assessment of Tumor Response to Sorafenib in Patients with Advanced Hepatocellular Carcinoma. J. Comput. Assist. Tomogr. 2019, 43, 206–213. [Google Scholar] [CrossRef]
- Lencioni, R.; Montal, R.; Torres, F.; Park, J.-W.; Decaens, T.; Raoul, J.-L.; Kudo, M.; Chang, C.; Ríos, J.; Boige, V.; et al. Objective response by mRECIST as a predictor and potential surrogate end-point of overall survival in advanced HCC. J. Hepatol. 2017, 66, 1166–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tovoli, F.; Renzulli, M.; Negrini, G.; Brocchi, S.; Ferrarini, A.; Andreone, A.; Benevento, F.; Golfieri, R.; Morselli-Labate, A.M.; Mastroroberto, M.; et al. Inter-operator variability and source of errors in tumour response assessment for hepatocellular carcinoma treated with sorafenib. Eur. Radiol. 2018, 28, 3611–3620. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.S.K.; Yu, N.C.; Raman, S.S.; Limanond, P.; Lassman, C.; Murray, K.; Tong, M.J.; Amado, R.G.; Busuttil, R.W. Radiofrequency Ablation of Hepatocellular Carcinoma: Treatment Success as Defined by Histologic Examination of the Explanted Liver. Radiology 2005, 234, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Hahn, F.; Jungmann, F.; Mähringer-Kunz, A.; Stoehr, F.; Halfmann, M.C.; Pinto Dos Santos, D.; Hinrichs, J.; Auer, T.A.; Düber, C.; et al. Quantitative washout in patients with hepatocellular carcinoma undergoing TACE: An imaging biomarker for predicting prognosis? Cancer Imaging 2022, 22, 5. [Google Scholar] [CrossRef]
- Fronda, M.; Doriguzzi Breatta, A.; Gatti, M.; Calandri, M.; Maglia, C.; Bergamasco, L.; Righi, D.; Faletti, R.; Fonio, P. Quantitative assessment of HCC wash-out on CT is a predictor of early complete response to TACE. Eur. Radiol. 2021, 31, 6578–6588. [Google Scholar] [CrossRef]
- Paul, R.; Shafiq-Ul Hassan, M.; Moros, E.G.; Gillies, R.J.; Hall, L.O.; Goldgof, D.B. Deep Feature Stability Analysis Using CT Images of a Physical Phantom across Scanner Manufacturers, Cartridges, Pixel Sizes, and Slice Thickness. Tomography 2020, 6, 250–260. [Google Scholar] [CrossRef]
- Paul, R.; Hawkins, S.H.; Balagurunathan, Y.; Schabath, M.B.; Gillies, R.J.; Hall, L.O.; Goldgof, D.B. Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival among Patients with Lung Adenocarcinoma. Tomography 2016, 2, 388–395. [Google Scholar] [CrossRef]
- Enjilela, E.; Lee, T.-Y.; Hsieh, J.; Murjoomdar, A.; Stewart, E.; Dekaban, M.; Su, F.; So, A. Ultra-Low-Dose Sparse-View Quantitative CT Liver Perfusion Imaging. Tomography 2017, 3, 175–179. [Google Scholar] [CrossRef]
- Kalarakis, G.; Perisinakis, K.; Akoumianakis, E.; Karageorgiou, I.; Hatzidakis, A. CT liver perfusion in patients with hepatocellular carcinoma: Can we modify acquisition protocol to reduce patient exposure? Eur. Radiol. 2021, 31, 1410–1419. [Google Scholar] [CrossRef]
- Park, H.J.; Jang, H.Y.; Kim, S.Y.; Lee, S.J.; Won, H.J.; Byun, J.H.; Choi, S.H.; Lee, S.S.; An, J.; Lim, Y.-S. Non-enhanced magnetic resonance imaging as a surveillance tool for hepatocellular carcinoma: Comparison with ultrasound. J. Hepatol. 2020, 72, 718–724. [Google Scholar] [CrossRef]
- Tzartzeva, K.; Obi, J.; Rich, N.E.; Parikh, N.D.; Marrero, J.A.; Yopp, A.; Waljee, A.K.; Singal, A.G. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology 2018, 154, 1706–1718.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levillain, H.; Bagni, O.; Deroose, C.M.; Dieudonné, A.; Gnesin, S.; Grosser, O.S.; Kappadath, S.C.; Kennedy, A.; Kokabi, N.; Liu, D.M.; et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1570–1584. [Google Scholar] [CrossRef] [PubMed]
Number of patients (male/female) | 52 (40/12) |
Child–Pugh score | A (32), B (20) |
BCLC Stage | B (52) |
Underlying etiology | alcohol abuse (29), HCV (18), NASH (3), unknown (2) |
Number of lesions | 1–4 |
HCC tumor size | 30.1 ± 11.6 mm |
Mean | SD | Minimum | Maximum | |||
---|---|---|---|---|---|---|
Liver parenchyma (n = 52) | ALP | 13.4 | 6.8 | 3.0 | 30.9 | mL/100 mL/min |
PVP | 60.3 | 25.2 | 23.3 | 137.6 | mL/100 mL/min | |
HPI | 25.2 | 16.1 | 4.4 | 61.8 | % | |
Liver parenchyma | ALP | 16.3 | 10.1 | 1.9 | 48.9 | mL/100 mL/min |
post-TACE (n = 52) | PVP | 62.3 | 26.6 | 16.9 | 112.6 | mL/100 mL/min |
HPI | 27.1 | 19.8 | 2.7 | 65.1 | % | |
Liver parenchyma | ALP | 9.0 | 12.4 | 0.9 | 38.4 | mL/100 mL/min |
follow-up (n = 23) | PVP | 62.5 | 26.7 | 22.5 | 129.5 | mL/100 mL/min |
HPI | 25.4 | 25.0 | 1.4 | 73.1 | % | |
HCC pre-TACE (n = 52) | ALP | 44.7 | 15.0 | 14.3 | 101.6 | mL/100 mL/min |
PVP | 12.3 | 16.3 | 0.0 | 72.3 | mL/100 mL/min | |
HPI | 85.8 | 16.6 | 18.2 | 100 | % | |
HCC post-TACE, | ALP | 4.4 | 5.3 | 0.0 | 21.5 | mL/100 mL/min |
responder (n = 42) | PVP | 32.0 | 27.7 | 1.4 | 102.0 | mL/100 mL/min |
HPI | 30.4 | 26.8 | 0.0 | 83.4 | % | |
HCC post-TACE, | ALP | 34.7 | 10.1 | 20.6 | 43.2 | mL/100 mL/min |
non-responder (n = 10) | PVP | 18.8 | 14.1 | 4.1 | 40.6 | mL/100 mL/min |
HPI | 67.7 | 21.4 | 39.8 | 93.4 | % | |
Post-TACE rim region, | ALP | 8.8 | 8.7 | 0.8 | 37.5 | mL/100 mL/min |
responder (n = 42) | PVP | 49.2 | 42.4 | 4.0 | 186.3 | mL/100 mL/min |
HPI | 31.1 | 26.5 | 0.8 | 89.0 | % | |
Post-TACE rim region, | ALP | 23.4 | 8.6 | 12.3 | 33.2 | mL/100 mL/min |
non-responder (n = 10) | PVP | 53.2 | 16.9 | 34.5 | 70.9 | mL/100 mL/min |
HPI | 33.0 | 7.0 | 27.0 | 42.6 | % |
Mean | SD | Minimum | Maximum | |||
---|---|---|---|---|---|---|
Follow-up TACE region, | ALP | 10.0 | 7.4 | 3.0 | 19.9 | mL/100 mL/min |
no recurrence (n = 15) | PVP | 37.5 | 5.3 | 33.5 | 45.2 | mL/100 mL/min |
HPI | 41.3 | 15.6 | 20.1 | 54.9 | % | |
Follow-up TACE region, | ALP | 39.1 | 10.1 | 22.3 | 61.4 | mL/100 mL/min |
recurrence (n = 17) | PVP | 12.4 | 13.3 | 0.2 | 49.7 | mL/100 mL/min |
HPI | 85.6 | 15.4 | 50.4 | 99.3 | % | |
Follow-up rim region, | ALP | 13.1 | 10.0 | 6.0 | 20.2 | mL/100 mL/min |
no recurrence (n = 15) | PVP | 39.4 | 34.7 | 14.9 | 63.9 | mL/100 mL/min |
HPI | 47.0 | 54.7 | 8.3 | 85.7 | % | |
Follow-up rim region, | ALP | 29.2 | 6.3 | 20.2 | 38.8 | mL/100 mL/min |
recurrence (n = 17) | PVP | 22.3 | 13.1 | 5.8 | 45.6 | mL/100 mL/min |
HPI | 72.7 | 17.5 | 38.1 | 93.2 | % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekert, K.; Kloth, C.; Nikolaou, K.; Grözinger, G.; Horger, M.; Thaiss, W. Rim Enhancement after Technically Successful Transarterial Chemoembolization in Hepatocellular Carcinoma: A Potential Mimic of Incomplete Embolization or Reactive Hyperemia? Tomography 2022, 8, 1148-1158. https://doi.org/10.3390/tomography8020094
Ekert K, Kloth C, Nikolaou K, Grözinger G, Horger M, Thaiss W. Rim Enhancement after Technically Successful Transarterial Chemoembolization in Hepatocellular Carcinoma: A Potential Mimic of Incomplete Embolization or Reactive Hyperemia? Tomography. 2022; 8(2):1148-1158. https://doi.org/10.3390/tomography8020094
Chicago/Turabian StyleEkert, Kaspar, Christopher Kloth, Konstantin Nikolaou, Gerd Grözinger, Marius Horger, and Wolfgang Thaiss. 2022. "Rim Enhancement after Technically Successful Transarterial Chemoembolization in Hepatocellular Carcinoma: A Potential Mimic of Incomplete Embolization or Reactive Hyperemia?" Tomography 8, no. 2: 1148-1158. https://doi.org/10.3390/tomography8020094
APA StyleEkert, K., Kloth, C., Nikolaou, K., Grözinger, G., Horger, M., & Thaiss, W. (2022). Rim Enhancement after Technically Successful Transarterial Chemoembolization in Hepatocellular Carcinoma: A Potential Mimic of Incomplete Embolization or Reactive Hyperemia? Tomography, 8(2), 1148-1158. https://doi.org/10.3390/tomography8020094