Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images
Abstract
Share and Cite
Bradshaw, T.J.; Zhao, G.; Jang, H.; Liu, F.; McMillan, A.B. Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images. Tomography 2018, 4, 138-147. https://doi.org/10.18383/j.tom.2018.00016
Bradshaw TJ, Zhao G, Jang H, Liu F, McMillan AB. Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images. Tomography. 2018; 4(3):138-147. https://doi.org/10.18383/j.tom.2018.00016
Chicago/Turabian StyleBradshaw, Tyler J., Gengyan Zhao, Hyungseok Jang, Fang Liu, and Alan B. McMillan. 2018. "Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images" Tomography 4, no. 3: 138-147. https://doi.org/10.18383/j.tom.2018.00016
APA StyleBradshaw, T. J., Zhao, G., Jang, H., Liu, F., & McMillan, A. B. (2018). Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images. Tomography, 4(3), 138-147. https://doi.org/10.18383/j.tom.2018.00016