You are currently viewing a new version of our website. To view the old version click .
Tomography
  • Tomography is published by MDPI from Volume 7 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Grapho, LLC.
  • Article
  • Open Access

1 March 2017

An MR-Based Viscosity-Type Regularization Method for Electrical Property Tomography

,
and
1
School of Electronics and Information, Northwestern Polytechnical University, China
2
Center for Frontier Medical Engineering, Chiba University, Japan
3
Medical Group, Engineering Product Development, Singapore University of Technology and Design, Singapore
*
Author to whom correspondence should be addressed.

Abstract

Here, a method based on viscosity-type regularization is proposed for magnetic resonance electrical property tomography (MREPT) to mitigate persistent artifacts when it is used to reconstruct a map of electrical properties based on data from a magnetic resonance imaging scanner. The challenges for solving the corresponding partial differential equation (PDE) are discussed in detail. The existing artifacts in the numerical results are pointed out and classified. The methods in the literature for MREPT are mainly based on an assumption of local homogeneity, which makes the approach simple but leads to artifacts in the transition region where electrical properties vary rapidly. Recent work has focused on eliminating the assumption of local homogeneity, and one of the solutions is convection–reaction MREPT that is based on a first-order PDE. Numerical solutions of the PDE have persistent artifacts in certain regions and global spurious oscillations. Here, a method based on viscosity-type regularization is proposed to effectively mitigate the aforementioned problems. Finite difference method is used for discretizing the governing PDE. Numerical experiments are presented to analyze the problem in detail. Electrical properties of different phantoms are successfully retrieved. The efficiency, accuracy, and noise tolerance of the proposed method are illustrated with numerical results.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.