Deep Learning-Assisted Automatic Diagnosis of Anterior Cruciate Ligament Tear in Knee Magnetic Resonance Images
Abstract
:1. Introduction
- (1)
- We established a deep learning-based method to detect ACL tears using MRI as an input.
- (2)
- This study extends the augmentation strategy to both the spatial scale and layer scale, in order to address the challenge of limited data.
- (3)
- The proposed method adopts a selective group attention module that examines the relationships among layers. A fusion module is used to integrate multiple perspectives, which simulates the clinical diagnosis process, to achieve the final classification.
- (4)
- Several experiments were conducted to compare the proposed method and the baseline methods. The experimental results demonstrate the superiority of the proposed method and verify the effectiveness of the modules.
2. Related Works
2.1. Deep Learning in MRI Analysis
2.2. Attention
3. Method
3.1. Dual-Scale Data Augmentation
3.2. Selective Group Attention Module
3.2.1. Group Module
3.2.2. Selective Attention Module
3.3. Fusion Module
4. Experiment
4.1. Data Preparation
4.2. Implementation
4.3. Metrics
5. Results
5.1. ACL Classification
5.2. Module Investigation
5.3. Other Ablation Study
6. Discussion
6.1. ACL Diagnosis
6.2. External Test
6.3. Data
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MRI | magnetic resonance imaging |
ACL | anterior cruciate ligament |
DDA | Dual-Scale Data Augmentation module |
SG | selective group attention |
GPU | graphics processing unit |
ROC | receiver operating characteristic |
AUC | area under the ROC Curve |
TP | true positive sample |
TN | true negative sample |
FN | false negative sample |
FP | false positive sample |
References
- Edwards, J.H.; Jones, G.L.; Herbert, A.; Fisher, J.; Ingham, E. Integration and Functional Performance of a Decellularised Porcine Superflexor Tendon Graft in an Ovine Model of Anterior Cruciate Ligament Reconstruction. Biomaterials 2021, 279, 121204. [Google Scholar] [CrossRef] [PubMed]
- Wellsandt, E.; Gardinier, E.S.; Manal, K.; Axe, M.J.; Buchanan, T.S.; Snyder-Mackler, L. Decreased Knee Joint Loading Associated with Early Knee Osteoarthritis after Anterior Cruciate Ligament Injury. Am. J. Sport. Med. 2016, 44, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Øiestad, B.E.; Engebretsen, L.; Storheim, K.; Risberg, M.A. Winner of the 2008 Systematic Review Competition: Knee Osteoarthritis after Anterior Cruciate Ligament Injury. Am. J. Sport. Med. 2009, 37, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Filbay, S.R.; Roos, E.M.; Frobell, R.B.; Roemer, F.; Ranstam, J.; Lohmander, L.S. Delaying ACL Reconstruction and Treating with Exercise Therapy Alone May Alter Prognostic Factors for 5-Year Outcome: An Exploratory Analysis of the KANON Trial. Br. J. Sport. Med. 2017, 51, 1622–1629. [Google Scholar] [CrossRef]
- Ahn, J.H.; Jeong, S.H.; Kang, H.W. Risk Factors of False-Negative Magnetic Resonance Imaging Diagnosis for Meniscal Tear Associated with Anterior Cruciate Ligament Tear. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Kopkow, C.; Lange, T.; Hoyer, A.; Lützner, J.; Schmitt, J. Physical Tests for Diagnosing Anterior Cruciate Ligament Rupture. Cochrane Database Syst. Rev. 2018, 2018, CD011925. [Google Scholar] [CrossRef]
- Solomon, D.H.; Simel, D.L.; Bates, D.W.; Katz, J.N.; Schaffer, J.L. Does This Patient Have a Torn Meniscus or Ligament of the Knee? JAMA 2001, 286, 1610–1620. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.S.; Henschke, N.; Kamper, S.J.; Downie, A.S.; Koes, B.W.; Maher, C.G. Accuracy of Clinical Tests in the Diagnosis of Anterior Cruciate Ligament Injury: A Systematic Review. Chiropr. Man. Ther. 2014, 22, 25. [Google Scholar] [CrossRef]
- Kulwin, R.L.; Schmidt, G.J.; Snyder, D.A.; Klitzman, R.G. Clinical Examination in the Diagnosis of Anterior Cruciate Ligament Injury: A Blinded, Cross-sectional Evaluation. JAAOS Glob. Res. Rev. 2023, 7, e22.00123. [Google Scholar] [CrossRef]
- Chambers, S.; Cooney, A.; Caplan, N.; Dowen, D.; Kader, D. The Accuracy of Magnetic Resonance Imaging (MRI) in Detecting Meniscal Pathology. J. R. Nav. Med. Serv. 2014, 100, 157–160. [Google Scholar]
- Hardy, J.C.; Evangelista, G.T.; Grana, W.A.; Hunter, R.E. Accuracy of Magnetic Resonance Imaging of the Knee in the Community Setting. Sport. Health A Multidiscip. Approach 2012, 4, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.; Walley, G.; Bridgman, S.; Maffulli, N. Magnetic Resonance Imaging versus Arthroscopy in the Diagnosis of Knee Pathology, Concentrating on Meniscal Lesions and ACL Tears: A Systematic Review. Br. Med Bull. 2007, 84, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Khoury, L.; Schweitzer, M.; Jazrawi, L.; Ishak, C.; Meislin, R.; Kummer, F.; Sherman, O.H. Effect of Specialty and Experience on the Interpretation of Knee MRI Scans. Bull. NYU Hosp. Jt. Dis. 2008, 66, 272–275. [Google Scholar] [PubMed]
- Chang, P.D.; Wong, T.T.; Rasiej, M.J. Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear. J. Digit. Imaging 2019, 32, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K.; et al. Deep-Learning-Assisted Diagnosis for Knee Magnetic Resonance Imaging: Development and Retrospective Validation of MRNet. PLoS Med. 2018, 15, e1002699. [Google Scholar] [CrossRef] [PubMed]
- Helito, P.V.P.; Helito, C.P.; Rodrigues, M.B. Anterolateral Ligament MRI of the Knee in ACL Injuries: MRI Abnormalities Association with Instability. Eur. Radiol. 2023, 33, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Kebaili, A.; Lapuyade-Lahorgue, J.; Ruan, S. Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review. J. Imaging 2023, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Marwa, E.G.; Moustafa, H.E.D.; Khalifa, F.; Khater, H.; AbdElhalim, E. An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alex. Eng. J. 2023, 63, 211–221. [Google Scholar]
- Chaki, J.; Woźniak, M. A deep learning based four-fold approach to classify brain MRI: BTSCNet. Biomed. Signal Process. Control 2023, 85, 104902. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, H.; Saldanha, O.L.; Nebelung, S.; Kuhl, C.; Amygdalos, I.; Lang, S.A.; Wu, X.; Meng, X.; Truhn, D.; et al. An MRI deep learning model predicts outcome in rectal cancer. Radiology 2023, 307, e222223. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the design of spatial attention in vision transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 9355–9366. [Google Scholar]
- Sangui, S.; Iqbal, T.; Chandra, P.C.; Ghosh, S.K.; Ghosh, A. 3D MRI Segmentation using U-Net Architecture for the detection of Brain Tumor. Procedia Comput. Sci. 2023, 218, 542–553. [Google Scholar] [CrossRef]
- Wu, Z.; Liao, W.; Yan, C.; Zhao, M.; Liu, G.; Ma, N.; Li, X. Deep learning based MRI reconstruction with transformer. Comput. Methods Programs Biomed. 2023, 233, 107452. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Zeng, G.; Fu, H.; Wang, Z.; Yang, Y.; Qu, X. A Joint Group Sparsity-based deep learning for multi-contrast MRI reconstruction. J. Magn. Reson. 2023, 346, 107354. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 ×16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial learning. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–9 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Pramanik, R.; Biswas, M.; Sen, S.; de Souza Júnior, L.A.; Papa, J.P.; Sarkar, R. A fuzzy distance-based ensemble of deep models for cervical cancer detection. Comput. Methods Programs Biomed. 2022, 219, 106776. [Google Scholar] [CrossRef]
- Tran, A.; Lassalle, L.; Zille, P.; Guillin, R.; Pluot, E.; Adam, C.; Charachon, M.; Brat, H.; Wallaert, M.; d’Assignies, G.; et al. Deep learning to detect anterior cruciate ligament tear on knee MRI: Multi-continental external validation. Eur. Radiol. 2022, 32, 8394–8403. [Google Scholar] [CrossRef]
- Tsai, C.H.; Kiryati, N.; Konen, E.; Eshed, I.; Mayer, A. Knee injury detection using MRI with efficiently-layered network (ELNet). In Proceedings of the Medical Imaging with Deep Learning, PMLR, Montreal, QC, Canada, 6–8 July 2020; pp. 784–794. [Google Scholar]
- Oquab, M.; Darcet, T.; Moutakanni, T.; Vo, H.; Szafraniec, M.; Khalidov, V.; Fernandez, P.; Haziza, D.; Massa, F.; El-Nouby, A.; et al. Dinov2: Learning robust visual features without supervision. arXiv 2023, arXiv:2304.07193. [Google Scholar]
- Chen, S.; Ma, K.; Zheng, Y. Med3d: Transfer learning for 3d medical image analysis. arXiv 2019, arXiv:1904.00625. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Štajduhar, I.; Mamula, M.; Miletić, D.; Uenal, G. Semi-automated detection of anterior cruciate ligament injury from MRI. Comput. Methods Programs Biomed. 2017, 140, 151–164. [Google Scholar] [CrossRef]
Statistic | Training | Validation |
---|---|---|
Number of exams | 1130 | 120 |
Number of patients | 1088 | 111 |
Number of female patients (%) | 480 (42.5) | 50 (41.7) |
Age, mean (SD) | 38.3 (16.9) | 36.3 (16.9) |
Number with ACL tear (%) | 208 (18.4) | 54 (45.0) |
Number w/o ACL tear (%) | 922 (81.6) | 66 (55.0) |
Model | ACC | SEN | SPE | AUC |
---|---|---|---|---|
MRNet | 0.8670 | 0.7590 | 0.9680 | 0.9650 |
DLD | 0.8750 | 0.8500 | 0.8900 | 0.9620 |
ELNet | 0.9000 | 0.9070 | 0.8940 | 0.9560 |
VIT | 0.8500 | 0.8182 | 0.8889 | 0.9043 |
Med3D | 0.8917 | 0.8788 | 0.9074 | 0.9290 |
SGNET | 0.9250 | 0.9259 | 0.9242 | 0.9747 |
View | Modules | ACC | SEN | SPE | |||
---|---|---|---|---|---|---|---|
Base | DDA | SG | Fusion | ||||
Axial | ✓ | 0.8250 | 0.7424 | 0.9259 * | |||
✓ | ✓ | 0.8333 | 0.8333 | 0.8333 | |||
✓ | ✓ | ✓ | 0.8917 * | 0.9091 * | 0.8704 | ||
Coronal | ✓ | 0.8083 | 0.8182 | 0.7963 | |||
✓ | ✓ | 0.8333 | 0.8182 | 0.8519 | |||
✓ | ✓ | ✓ | 0.8583 * | 0.8333 * | 0.8889 * | ||
Sagittal | ✓ | 0.8333 | 0.8030 | 0.8704 | |||
✓ | ✓ | 0.8917 | 0.9091 * | 0.8704 | |||
✓ | ✓ | ✓ | 0.9000 * | 0.8939 | 0.9074 * | ||
All | ✓ | ✓ | ✓ | ✓ | 0.9250 | 0.9259 | 0.9242 |
Strategy | ACC | SEN | SPE | AUC |
---|---|---|---|---|
Erasingrate = 0.25 | 0.8650 | 0.8606 | 0.8704 | 0.9447 |
Erasingrate = 0.50 | 0.8767 | 0.8545 | 0.9037 | 0.9594 |
Erasingrate = 0.75 | 0.8683 | 0.8485 | 0.8926 | 0.9403 |
Mixuprate = 0.25 | 0.8933 | 0.8879 | 0.9000 | 0.9628 |
Mixuprate = 0.50 | 0.8700 | 0.8697 | 0.8704 | 0.9498 |
Mixuprate = 0.75 | 0.8117 | 0.8424 | 0.7741 | 0.9044 |
Erasing + Mixup | 0.8667 | 0.8788 | 0.8519 | 0.9400 |
KneeMRI | Not-Injured | Partially-Injured | Completely-Ruptured | Total |
---|---|---|---|---|
Count | 690 | 172 | 55 | 917 |
Percentage (%) | 75.25 | 18.75 | 6.00 | 100 |
ACC | SEN | SPE | AUC | |
---|---|---|---|---|
Basic methods | 0.8667 | 0.8636 | 0.8704 | 0.9234 |
DDA module | 0.8833 | 0.8788 | 0.8889 | 0.9405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, Y.; Li, J.; Li, Y.; Xu, S. Deep Learning-Assisted Automatic Diagnosis of Anterior Cruciate Ligament Tear in Knee Magnetic Resonance Images. Tomography 2024, 10, 1263-1276. https://doi.org/10.3390/tomography10080094
Wang X, Wu Y, Li J, Li Y, Xu S. Deep Learning-Assisted Automatic Diagnosis of Anterior Cruciate Ligament Tear in Knee Magnetic Resonance Images. Tomography. 2024; 10(8):1263-1276. https://doi.org/10.3390/tomography10080094
Chicago/Turabian StyleWang, Xuanwei, Yuanfeng Wu, Jiafeng Li, Yifan Li, and Sanzhong Xu. 2024. "Deep Learning-Assisted Automatic Diagnosis of Anterior Cruciate Ligament Tear in Knee Magnetic Resonance Images" Tomography 10, no. 8: 1263-1276. https://doi.org/10.3390/tomography10080094