A Random Particle Swarm Optimization Based on Cosine Similarity for Global Optimization and Classification Problems
Abstract
:1. Introduction
- Introduction of the Random Contrastive Interaction mechanism.
- Introduction of the Quadratic interpolation mechanism.
- Design of a judgment condition based on cosine similarity.
- Comparison of PSO variants and the top algorithm in two dimensions of CEC 2022.
- Optimization of CNN for the diagnosis of two diseases.
2. Related Theories
2.1. Particle Swarm Algorithms
2.2. Cosine Similarity
3. The Proposed Algorithm
3.1. Related Research from PSO
3.2. Random Contrastive Interaction
Algorithm 1. Random Contrastive Interaction (RCI) |
Input: |
t: global optimum position |
T: Matrix of population information |
N: population size |
fit: Matrix of objective function valuesx: Position of the population |
Output: |
X*: Matrix of newly generated stock information |
The number of individuals TS to be selected for this iteration is calculated according to Equation (4); |
1. rs = randperm(N, TS); %Generate non-repeating individual subscripts based on TS. |
2. [af, bf] = sort(fit); % af is the result of the ascending order of the fitness values and bf is the corresponding subscript position. |
3. db = find(bf == rs(1));Find the location of the optimal individual in rs. |
4. dw = find(bf == rs(TS));Find the worst individual position in rs. |
5. dbest = pos(bbb(db),:); |
6. dworst = pos(bbb(dw),:); |
7. For i = 1:size(rs,2) |
8. For j = 1:size(x,2) |
9. Calculate the corresponding new position in rs according to Equation (3). |
10. End |
11. End |
Return X* |
3.3. Quadratic Interpolation (QI)
Algorithm 2. Quadratic interpolation (QI) |
Input: |
gbest: global optimum position |
x: Matrix of population information |
Output: |
x*: Matrix of newly generated stock information |
1. For i = 1:size(x) |
2. k = randperm(N, 2)%Two non-repeating individuals were randomly generated. |
3. The positional information of the new individual is calculated by substituting the three individuals k(1), k(2), and gbest into Equation (5). |
4. End |
Return x* |
3.4. Setting of Parameters
3.5. Selection Mechanisms
3.6. Flow of the Algorithm
Algorithm 3. RPSO |
Input: |
N: population size |
T: Matrix of population information |
Maxfes: Maximum number of iterations |
Dim: Dimension of the problem |
Lb: Lower bound of the problem |
Ub: Upper bound of the problem |
f: objective function |
Output: |
xgbest: Matrix of newly generated stock information |
Fmin: optimal solution |
1. The position matrix x is obtained by random initialization based on the set parameters. |
2. Calculate the objective function value based on f to obtain the optimal position xgbest, the optimal solution fmin |
3. Fes = N; |
4. T = 1; |
5. While (t <= T)&&(Fes <= Maxfes) |
6. Calculate the new population position x according to Equations (1) and (7) |
7. Calculate the objective function value according to f to get the current optimal position xl its subscripts q, update the optimal position xgbest, the optimal solution fmin |
8. Fes = Fes + N; |
9. Nk = 0 |
10. For i = 1:N |
11. If i ≠ q |
12. The cosine similarity between the individual and xl was calculated to obtain nc according to Equation (2) |
13. End |
14. If nc < 0 |
15. Nk = Nk + 1; |
16. end |
17. end |
18. If Nk > N/2 |
19. Perform according to Algorithm 2. |
20. Calculate the objective function value based on f to obtain the optimal position xgbest, the optimal solution fmin |
21. Fes = Fes + TS; |
22. else |
23. Perform according to Algorithm 1. |
24. Calculate the objective function value based on f to obtain the optimal position xgbest, the optimal solution fmin |
25. Fes = Fes + N; |
26. End |
27. t = t + 1; |
28. End |
Return xgbest, fmin |
4. Performance Tests
4.1. Comparison with PSO Variants
4.2. Convergence Analysis
4.3. Comparison with the Top Algorithm
4.4. Ablation Experiments
5. Classification Experiments
5.1. Means
5.2. Training
5.3. Testing
5.4. Experiments
6. Conclusions
- Designing smarter judgment mechanisms for rational global and local searching.
- Incorporating efficient parameter estimation schemes to reduce the time consumption of the optimization process.
- Optimizing the architecture of the neural network to enable automatic architectural tuning for different datasets.
- Applying the algorithm to practical scenarios in high demand today, such as 6G base station deployment, optimization of new energy systems, and structural design optimization.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Eltamaly, A.M. A novel musical chairs algorithm applied for MPPT of PV systems. Renew. Sustain. Energy Rev. 2021, 146, 111135. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, S.; Zhou, C.; Yan, S.; Xue, J. Human memory optimization algorithm: A memory-inspired optimizer for global optimization problems. Expert Syst. Appl. 2024, 237, 121597. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995; pp. 1942–1948. [Google Scholar]
- Eltamaly, A.M. A novel particle swarm optimization optimal control parameter determination strategy for maximum power point trackers of partially shaded photovoltaic systems. Eng. Optim. 2022, 54, 634–650. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, S.; Shen, J.; Zhou, C.; Li, T.; Yan, S. A multi-strategy particle swarm algorithm with exponential noise and fitness-distance balance method for low-altitude penetration in secure space. J. Comput. Sci. 2023, 74, 102149. [Google Scholar] [CrossRef]
- Kocak, O.; Erkan, U.; Toktas, A.; Gao, S. PSO-based image encryption scheme using modular integrated logistic exponential map. Expert Syst. Appl. 2024, 237, 121452. [Google Scholar] [CrossRef]
- Xie, L.; Wang, S.; Zhu, D.; Hu, G.; Zhou, C. DNA Sequence Optimization Design of Arithmetic Optimization Algorithm Based on Billiard Hitting Strategy. Interdisciplinary Sciences. Comput. Life Sci. 2023, 15, 231–248. [Google Scholar]
- Guedria, N.B. Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 2016, 40, 455–467. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Wang, R.; Tang, S.; Su, H.; Cao, K. Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization. Appl. Acoust. 2021, 183, 108336. [Google Scholar] [CrossRef]
- Deng, W.; Yao, R.; Zhao, H.; Yang, X.; Li, G. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput. 2019, 23, 2445–2462. [Google Scholar] [CrossRef]
- Yadav, R.K. PSO-GA based hybrid with Adam Optimization for ANN training with application in Medical Diagnosis. Cogn. Syst. Res. 2020, 64, 191–199. [Google Scholar] [CrossRef]
- Zhang, K.; Su, J.; Sun, S.; Liu, Z.; Wang, J.; Du, M.; Zhang, Q. Compressor fault diagnosis system based on PCA-PSO-LSSVM algorithm. Sci. Prog. 2021, 104, 368504211026110. [Google Scholar] [CrossRef] [PubMed]
- Raja, J.B.; Pandian, S.C. PSO-FCM based data mining model to predict diabetic disease. Comput. Methods Programs Biomed. 2020, 196, 105659. [Google Scholar] [CrossRef]
- Al-Andoli, M.N.; Tan, S.C.; Sim, K.S.; Lim, C.P.; Goh, P.Y. Parallel Deep Learning with a hybrid BP-PSO framework for feature extraction and malware classification. Appl. Soft Comput. 2022, 131, 109756. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Z.; Wang, L. PSOPruner: PSO-based deep convolutional neural network pruning method for PV module defects classification. IEEE J. Photovolt. 2022, 12, 1550–1558. [Google Scholar] [CrossRef]
- George, S.T.; Subathra, M.S.P.; Sairamya, N.J.; Susmitha, L.; Premkumar, M.J. Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform. Biocybern. Biomed. Eng. 2020, 40, 709–728. [Google Scholar] [CrossRef]
- Issa, M.; Helmi, A.M.; Elsheikh, A.H.; Abd Elaziz, M. A biological sub-sequences detection using integrated BA-PSO based on infection propagation mechanism: Case study COVID-19. Expert Syst. Appl. 2022, 189, 116063. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Mani, A.; Bansal, R. CoV2-Detect-Net: Design of COVID-19 prediction model based on hybrid DE-PSO with SVM using chest X-ray images. Inf. Sci. 2021, 571, 676–692. [Google Scholar] [CrossRef]
- Sharif, M.; Amin, J.; Raza, M.; Yasmin, M.; Satapathy, S.C. An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognit. Lett. 2020, 129, 150–157. [Google Scholar] [CrossRef]
- Verma, H.; Verma, D.; Tiwari, P.K. A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image. Expert Syst. Appl. 2021, 167, 114121. [Google Scholar] [CrossRef]
- Muduli, D.; Dash, R.; Majhi, B. Fast discrete curvelet transform and modified PSO based improved evolutionary extreme learning machine for breast cancer detection. Biomed. Signal Process. Control 2021, 70, 102919. [Google Scholar] [CrossRef]
- Luo, X.; Chen, J.; Yuan, Y.; Wang, Z. Pseudo Gradient-Adjusted Particle Swarm Optimization for Accurate Adaptive Latent Factor Analysis. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 2213–2226. [Google Scholar] [CrossRef]
- Gupta, A.; Nahar, P. Sandpiper optimization algorithm with cosine similarity based cross-layer routing protocol for smart agriculture in wireless sensor network assisted internet of things systems. Int. J. Commun. Syst. 2023, 36, e5514. [Google Scholar] [CrossRef]
- Kwak, B.I.; Han, M.L.; Kim, H.K. Cosine similarity based anomaly detection methodology for the CAN bus. Expert Syst. Appl. 2021, 166, 114066. [Google Scholar] [CrossRef]
- Zeng, N.; Wang, Z.; Liu, W.; Zhang, H.; Hone, K.; Liu, X. A dynamic neighborhood-based switching particle swarm optimization algorithm. IEEE Trans. Cybern. 2020, 52, 9290–9301. [Google Scholar] [CrossRef]
- Zaman, H.R.R.; Gharehchopogh, F.S. An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems. Eng. Comput. 2022, 38 (Suppl. S4), 2797–2831. [Google Scholar] [CrossRef]
- Xu, H.Q.; Gu, S.; Fan, Y.C.; Li, X.S.; Zhao, Y.F.; Zhao, J.; Wang, J.J. A strategy learning framework for particle swarm optimization algorithm. Inf. Sci. 2023, 619, 126–152. [Google Scholar] [CrossRef]
- Chen, X.; Tianfield, H.; Du, W. Bee-foraging learning particle swarm optimization. Appl. Soft Comput. 2021, 102, 107134. [Google Scholar] [CrossRef]
- Khan, T.A.; Ling, S.H. A novel hybrid gravitational search particle swarm optimization algorithm. Eng. Appl. Artif. Intell. 2021, 102, 104263. [Google Scholar] [CrossRef]
- Molaei, S.; Moazen, H.; Najjar-Ghabel, S.; Farzinvash, L. Particle swarm optimization with an enhanced learning strategy and crossover operator. Knowl.-Based Syst. 2021, 215, 106768. [Google Scholar] [CrossRef]
- Ali, A.F.; Tawhid, M.A. A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems. Ain Shams Eng. J. 2017, 8, 191–206. [Google Scholar] [CrossRef]
- Xia, X.; Gui, L.; Yu, F.; Wu, H.; Wei, B.; Zhang, Y.L.; Zhan, Z.H. Triple archives particle swarm optimization. IEEE Trans. Cybern. 2019, 50, 4862–4875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Bao, F.; Chi, J.; Zhang, C.; Liu, P. Particle swarm optimization with adaptive learning strategy. Knowl.-Based Syst. 2020, 196, 105789. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wu, P.; You, Y.; Zeng, N. A ranking-system-based switching particle swarm optimizer with dynamic learning strategies. Neurocomputing 2022, 494, 356–367. [Google Scholar] [CrossRef]
- Sheng, M.; Wang, Z.; Liu, W.; Wang, X.; Chen, S.; Liu, X. A particle swarm optimizer with multi-level population sampling and dynamic p-learning mechanisms for large-scale optimization. Knowl.-Based Syst. 2022, 242, 108382. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, J.; Sheng, J. Enhanced multi-swarm cooperative particle swarm optimizer. Swarm Evol. Comput. 2022, 69, 100989. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Yuan, Y.; Zeng, N.; Hone, K.; Liu, X. A novel sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE Trans. Cybern. 2019, 51, 1085–1093. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.W.; Tu, L.P. A modified particle swarm optimization using adaptive strategy. Expert Syst. Appl. 2020, 152, 113353. [Google Scholar] [CrossRef]
- Li, Y.; Yu, K.; Liang, J.; Yue, C.; Qiao, K. A landscape-aware particle swarm optimization for parameter identification of photovoltaic models. Appl. Soft Comput. 2022, 131, 109793. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X. A particle swarm optimization algorithm with empirical balance strategy. Chaos Solitons Fractals X 2023, 10, 100089. [Google Scholar] [CrossRef]
- Wang, R.; Hao, K.; Chen, L.; Wang, T.; Jiang, C. A novel hybrid particle swarm optimization using adaptive strategy. Inf. Sci. 2021, 579, 231–250. [Google Scholar] [CrossRef]
- Li, X.; Mao, K.; Lin, F.; Zhang, X. Particle swarm optimization with state-based adaptive velocity limit strategy. Neurocomputing 2021, 447, 64–79. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Sun, S. A reinforcement learning level-based particle swarm optimization algorithm for large-scale optimization. Inf. Sci. 2022, 602, 298–312. [Google Scholar] [CrossRef]
- Tian, J.; Hou, M.; Bian, H.; Li, J. Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems. Complex Intell. Syst. 2023, 9, 3887–3935. [Google Scholar] [CrossRef]
- Liu, Z.; Nishi, T. Strategy dynamics particle swarm optimizer. Inf. Sci. 2022, 582, 665–703. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Zeng, N.; Yuan, Y.; Alsaadi, F.E.; Liu, X. A novel randomised particle swarm optimizer. Int. J. Mach. Learn. Cybern. 2021, 12, 529–540. [Google Scholar] [CrossRef]
- Machado, J.T.; Pahnehkolaei, S.M.A.; Alfi, A. Complex-order particle swarm optimization. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105448. [Google Scholar] [CrossRef]
- Yang, Q.; Song, G.W.; Chen, W.N.; Jia, Y.H.; Gao, X.D.; Lu, Z.Y.; Zhang, J. Random Contrastive Interaction for Particle Swarm Optimization in High-Dimensional Environment. IEEE Trans. Evol. Comput. 2023; in press. [Google Scholar]
- Ye, J.; Xie, L.; Wang, H. A water cycle algorithm based on quadratic interpolation for high-dimensional global optimization problems. Appl. Intell. 2023, 53, 2825–2849. [Google Scholar] [CrossRef]
- Qaraad, M.; Amjad, S.; Hussein, N.K.; Farag, M.A.; Mirjalili, S.; Elhosseini, M.A. Quadratic interpolation and a new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation. Expert Syst. Appl. 2024, 236, 121417. [Google Scholar] [CrossRef]
- Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [Google Scholar] [CrossRef]
- Zhang, Q.; Zou, D.; Duan, N. An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch. Energy 2023, 283, 128421. [Google Scholar] [CrossRef]
- Alazab, M.; Khurma, R.A.; Awajan, A.; Camacho, D. A new intrusion detection system based on Moth–Flame Optimizer algorithm. Expert Syst. Appl. 2022, 210, 118439. [Google Scholar] [CrossRef]
- Li, W.; Liang, P.; Sun, B.; Sun, Y.; Huang, Y. Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy. Swarm Evol. Comput. 2023, 78, 101274. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J.; Huang, C. Adaptive multistrategy ensemble particle swarm optimization with Signal-to-Noise ratio distance metric. Inf. Sci. 2022, 612, 1066–1094. [Google Scholar] [CrossRef]
- Zhang, Y. Elite archives-driven particle swarm optimization for large scale numerical optimization and its engineering applications. Swarm Evol. Comput. 2023, 76, 101212. [Google Scholar] [CrossRef]
- Duman, S.; Kahraman, H.T.; Korkmaz, B.; Bakir, H.; Guvenc, U.; Yilmaz, C. Improved Phasor Particle Swarm Optimization with Fitness Distance Balance for Optimal Power Flow Problem of Hybrid AC/DC Power Grids. In Proceedings of the International Conference on Artificial Intelligence and Applied Mathematics in Engineering, Belek, Turkey, 1–3 October 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 307–336. [Google Scholar]
- Shami, T.M.; Mirjalili, S.; Al-Eryani, Y.; Daoudi, K.; Izadi, S.; Abualigah, L. Velocity pausing particle swarm optimization: A novel variant for global optimization. Neural Comput. Appl. 2023, 35, 9193–9223. [Google Scholar] [CrossRef]
- Meng, Z.; Zhong, Y.; Mao, G.; Liang, Y. PSO-sono: A novel PSO variant for single-objective numerical optimization. Inf. Sci. 2022, 586, 176–191. [Google Scholar] [CrossRef]
- Li, T.; Shi, J.; Deng, W.; Hu, Z. Pyramid particle swarm optimization with novel strategies of competition and cooperation. Appl. Soft Comput. 2022, 121, 108731. [Google Scholar] [CrossRef]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Mohamed, A.W.; Hadi, A.A.; Agrawal, P.; Sallam, K.M.; Mohamed, A.K. Gaining-sharing knowledge based algorithm with adaptive parameters hybrid with IMODE algorithm for solving CEC 2021 benchmark problems. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021; IEEE: New York, NY, USA, 2021; pp. 841–848. [Google Scholar]
- Bujok, P.; Kolenovsky, P. Eigen crossover in cooperative model of evolutionary algorithms applied to CEC 2022 single objective numerical optimization. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022; IEEE: New York, NY, USA, 2022; pp. 1–8. [Google Scholar]
- Sallam, K.M.; Elsayed, S.M.; Chakrabortty, R.K.; Ryan, M.J. Improved multi-operator differential evolution algorithm for solving unconstrained problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2020; IEEE: New York, NY, USA, 2021; pp. 1–8. [Google Scholar]
- dos Santos Coelho, L.; Ayala, H.V.; Freire, R.Z. Population’s variance-based adaptive differential evolution for real parameter optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; IEEE: New York, NY, USA, 2013; pp. 1672–1677. [Google Scholar]
- Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H. Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 1–8. [Google Scholar]
- Da Silva, G.L.F.; Valente, T.L.A.; Silva, A.C.; De Paiva, A.C.; Gattass, M. Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Comput. Methods Programs Biomed. 2018, 162, 109–118. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- El-Kenawy, E.S.M.; Mirjalili, S.; Ibrahim, A.; Alrahmawy, M.; El-Said, M.; Zaki, R.M.; Eid, M.M. Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image classification. IEEE Access 2021, 9, 36019–36037. [Google Scholar] [CrossRef] [PubMed]
- Goel, T.; Murugan, R.; Mirjalili, S.; Chakrabartty, D.K. OptCoNet: An optimized convolutional neural network for an automatic diagnosis of COVID-19. Appl. Intell. 2021, 51, 1351–1366. [Google Scholar] [CrossRef] [PubMed]
F | Index | AMSE PSO | EAPSO | FDBPSO | MPSO | PPSO | PSOsono | VPPSO | RPSO |
---|---|---|---|---|---|---|---|---|---|
F1(x) | Best | 0.00 × 1000 | 1.13 × 1003 | 1.12 × 1003 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 1.93 × 10−9 | 0.00 × 1000 |
Worst | 1.26 × 1002 | 1.76 × 1004 | 1.29 × 1004 | 2.25 × 10−07 | 0.00 × 1000 | 0.00 × 1000 | 7.62 × 10−9 | 0.00 × 1000 | |
Median | 2.49 × 1001 | 6.75 × 1003 | 5.09 × 1003 | 1.38 × 10−10 | 0.00 × 1000 | 0.00 × 1000 | 4.34 × 10−9 | 0.00 × 1000 | |
Mean | 3.25 × 1001 | 6.90 × 1003 | 6.04 × 1003 | 1.40 × 10−8 | 0.00 × 1000 | 0.00 × 1000 | 4.39 × 10−9 | 0.00 × 1000 | |
Standard | 3.56 × 1001 | 4.25 × 1003 | 2.94 × 1003 | 4.57 × 10−8 | 0.00 × 1000 | 0.00 × 1000 | 1.28 × 10−9 | 0.00 × 1000 | |
Contest | 1.94 × 10−9 (+) | 1.21 × 10−12 (+) | 1.21 × 10−12 (+) | 1.21 × 10−12 (+) | N/A (=) | N/A (=) | 1.21 × 10−12 (+) | ||
F2(x) | Best | 9.47 × 10−03 | 4.54 × 1000 | 1.01 × 1001 | 8.20 × 10−8 | 2.45 × 10−04 | 0.00 × 1000 | 1.45 × 10−02 | 1.71 × 10−07 |
Worst | 1.63 × 1001 | 9.26 × 1001 | 9.65 × 1001 | 7.08 × 1001 | 8.92 × 1000 | 1.28 × 1001 | 9.28 × 1000 | 7.32 × 10−02 | |
Median | 1.62 × 1000 | 1.21 × 1001 | 3.11 × 1001 | 7.32 × 1000 | 8.92 × 1000 | 3.99 × 1000 | 6.70 × 1000 | 5.91 × 10−04 | |
Mean | 2.83 × 1000 | 2.17 × 1001 | 4.00 × 1001 | 9.12 × 1000 | 5.44 × 1000 | 4.65 × 1000 | 4.81 × 1000 | 9.12 × 10−03 | |
Standard | 3.58 × 1000 | 2.16 × 1001 | 2.28 × 1001 | 1.73 × 1001 | 4.06 × 1000 | 3.69 × 1000 | 4.33 × 1000 | 1.80 × 10−02 | |
Contest | 9.92 × 10−11 (+) | 3.02 × 10−11 (+) | 3.02 × 10−11 (+) | 3.59 × 10−07 (+) | 7.41 × 10−10 (+) | 7.13 × 10−05 (+) | 2.15 × 10−10 (+) | ||
F3(x) | Best | 0.00 × 1000 | 3.31 × 1000 | 5.74 × 1000 | 2.09 × 10−11 | 0.00 × 1000 | 0.00 × 1000 | 1.44 × 10−04 | 0.00 × 1000 |
Worst | 1.45 × 10−11 | 8.85 × 1000 | 3.02 × 1001 | 2.33 × 10−05 | 1.57 × 10−05 | 1.22 × 10−11 | 8.73 × 1000 | 8.79 × 10−05 | |
Median | 5.53 × 10−03 | 5.38 × 1000 | 1.39 × 1001 | 3.06 × 10−8 | 0.00 × 1000 | 2.56 × 10−06 | 5.67 × 10−11 | 1.42 × 10−06 | |
Mean | 2.40 × 10−02 | 5.75 × 1000 | 1.47 × 1001 | 8.73 × 10−07 | 1.30 × 10−06 | 5.53 × 10−03 | 1.74 × 1000 | 7.62 × 10−06 | |
Standard | 3.41 × 10−02 | 1.55 × 1000 | 5.78 × 1000 | 4.25 × 10−06 | 3.55 × 10−06 | 2.24 × 10−02 | 2.65 × 1000 | 1.90 × 10−05 | |
Contest | 6.48 × 10−11 (=) | 2.95 × 10−11 (+) | 2.95 × 10−11 (+) | 9.43 × 10−03 (−) | 6.38 × 10−05 (−) | 4.67 × 10−11 (=) | 2.95 × 10−11 (+) | ||
F4(X) | Best | 1.55 × 1000 | 2.40 × 1001 | 6.81 × 1000 | 1.99 × 1000 | 0.00 × 1000 | 2.98 × 1000 | 5.97 × 1000 | 2.98 × 1000 |
Worst | 1.60 × 1001 | 6.64 × 1001 | 3.70 × 1001 | 1.69 × 1001 | 6.96 × 1000 | 1.69 × 1001 | 2.59 × 1001 | 9.95 × 1000 | |
Median | 8.46 × 1000 | 4.51 × 1001 | 1.88 × 1001 | 9.45 × 1000 | 1.99 × 1000 | 8.95 × 1000 | 1.69 × 1001 | 8.46 × 1000 | |
Mean | 8.82 × 1000 | 4.44 × 1001 | 1.86 × 1001 | 9.72 × 1000 | 2.32 × 1000 | 9.09 × 1000 | 1.64 × 1001 | 7.63 × 1000 | |
Standard | 3.45 × 1000 | 1.03 × 1001 | 6.25 × 1000 | 3.82 × 1000 | 1.60 × 1000 | 3.07 × 1000 | 5.12 × 1000 | 2.08 × 1000 | |
Contest | 1.58 × 10−11 (=) | 2.93 × 10−11 (+) | 3.72 × 10−10 (+) | 1.94 × 10−03 (+) | 4.00 × 10−10 (−) | 1.64 × 10−11 (=) | 5.96 × 10−10 (+) | ||
F5(X) | Best | 0.00 × 1000 | 3.75 × 1000 | 4.85 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 8.43 × 10−10 | 0.00 × 1000 |
Worst | 2.69 × 10−03 | 9.28 × 1001 | 6.91 × 1002 | 4.54 × 10−11 | 4.54 × 10−11 | 8.95 × 10−02 | 2.82 × 1000 | 0.00 × 1000 | |
Median | 0.00 × 1000 | 1.77 × 1001 | 1.97 × 1002 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 1.53 × 10−9 | 0.00 × 1000 | |
Mean | 2.77 × 10−04 | 2.58 × 1001 | 2.42 × 1002 | 5.44 × 10−02 | 2.41 × 10−02 | 2.98 × 10−03 | 3.99 × 10−11 | 0.00 × 1000 | |
Standard | 7.17 × 10−04 | 2.10 × 1001 | 1.77 × 1002 | 1.38 × 10−11 | 8.57 × 10−02 | 1.63 × 10−02 | 6.90 × 10−11 | 0.00 × 1000 | |
Contest | 2.16 × 10−04 (+) | 1.72 × 10−12 (+) | 1.72 × 10−12 (+) | 1.26 × 10−9 (+) | 1.31 × 10−03 (+) | 1.00 × 1000 (=) | 1.72 × 10−12 (+) | ||
F6(X) | Best | 5.43 × 1001 | 1.84 × 1003 | 1.39 × 1004 | 2.46 × 1001 | 9.30 × 1000 | 4.72 × 1000 | 1.22 × 1002 | 2.70 × 1000 |
Worst | 4.98 × 1002 | 7.29 × 10−14 | 6.85 × 10−14 | 1.96 × 1003 | 4.18 × 1003 | 1.37 × 1003 | 6.25 × 1003 | 1.96 × 1002 | |
Median | 1.26 × 1002 | 7.69 × 1004 | 1.27 × 10−14 | 1.57 × 1002 | 5.23 × 1002 | 5.01 × 1001 | 1.82 × 1003 | 6.32 × 1001 | |
Mean | 1.64 × 1002 | 1.24 × 10−14 | 1.81 × 10−14 | 3.70 × 1002 | 1.13 × 1003 | 1.47 × 1002 | 2.38 × 1003 | 7.83 × 1001 | |
Standard | 1.11 × 1002 | 1.44 × 10−14 | 1.67 × 1005 | 5.25 × 1002 | 1.36 × 1003 | 2.79 × 1002 | 1.92 × 1003 | 6.02 × 1001 | |
Contest | 3.01 × 10−04 (+) | 3.02 × 10−11 (+) | 3.02 × 10−11 (+) | 4.23 × 10−03 (+) | 5.61 × 10−05 (+) | 6.10 × 10−11 (=) | 2.37 × 10−10 (+) | ||
F7(X) | Best | 6.35 × 10−11 | 2.07 × 1001 | 2.74 × 1001 | 6.44 × 10−05 | 2.28 × 10−02 | 2.81 × 10−11 | 1.30 × 1001 | 1.96 × 10−11 |
Worst | 2.73 × 1001 | 7.21 × 1001 | 7.86 × 1001 | 2.25 × 1001 | 2.79 × 1001 | 2.48 × 1001 | 5.04 × 1001 | 2.26 × 1001 | |
Median | 1.83 × 1001 | 4.48 × 1001 | 5.22 × 1001 | 2.62 × 1000 | 7.69 × 1000 | 2.05 × 1001 | 3.00 × 1001 | 5.20 × 1000 | |
Mean | 1.43 × 1001 | 4.73 × 1001 | 5.29 × 1001 | 8.33 × 1000 | 1.23 × 1001 | 1.43 × 1001 | 2.96 × 1001 | 9.88 × 1000 | |
Standard | 1.10 × 1001 | 1.17 × 1001 | 1.27 × 1001 | 9.35 × 1000 | 1.04 × 1001 | 9.93 × 1000 | 8.52 × 1000 | 9.20 × 1000 | |
Contest | 5.94 × 10−02 (=) | 6.70 × 10−11 (+) | 3.02 × 10−11 (+) | 5.69 × 10−11 (=) | 1.71 × 10−11 (=) | 2.34 × 10−11 (=) | 3.50 × 10−9 (+) | ||
F8(X) | Best | 3.80 × 1000 | 2.83 × 1001 | 2.63 × 1001 | 9.43 × 10−11 | 6.80 × 1000 | 1.63 × 10−11 | 3.10 × 1000 | 2.21 × 10−11 |
Worst | 2.61 × 1001 | 4.35 × 1001 | 4.45 × 1001 | 1.43 × 1002 | 2.15 × 1001 | 2.32 × 1001 | 2.78 × 1001 | 2.10 × 1001 | |
Median | 1.98 × 1001 | 3.36 × 1001 | 3.23 × 1001 | 2.09 × 1001 | 2.04 × 1001 | 2.03 × 1001 | 2.33 × 1001 | 4.36 × 1000 | |
Mean | 1.70 × 1001 | 3.47 × 1001 | 3.33 × 1001 | 2.23 × 1001 | 1.99 × 1001 | 1.43 × 1001 | 2.28 × 1001 | 6.25 × 1000 | |
Standard | 8.23 × 1000 | 4.10 × 1000 | 4.77 × 1000 | 2.40 × 1001 | 2.69 × 1000 | 9.38 × 1000 | 4.99 × 1000 | 6.40 × 1000 | |
Contest | 1.17 × 10−05 (+) | 3.02 × 10−11 (+) | 3.02 × 10−11 (+) | 4.42 × 10−06 (+) | 2.57 × 10−07 (+) | 3.64 × 10−02 (+) | 5.07 × 10−10 (+) | ||
F9(X) | Best | 2.31 × 1002 | 2.31 × 1002 | 2.47 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.30 × 1002 | 2.29 × 1002 | 2.29 × 1002 |
Worst | 2.35 × 1002 | 2.52 × 1002 | 5.27 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.31 × 1002 | 2.29 × 1002 | 2.29 × 1002 | |
Median | 2.32 × 1002 | 2.34 × 1002 | 3.77 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.31 × 1002 | 2.29 × 1002 | 2.29 × 1002 | |
Mean | 2.32 × 1002 | 2.35 × 1002 | 3.60 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.31 × 1002 | 2.29 × 1002 | 2.29 × 1002 | |
Standard | 1.07 × 1000 | 4.26 × 1000 | 6.49 × 1001 | 0.00 × 1000 | 0.00 × 1000 | 3.41 × 10−11 | 1.58 × 10−06 | 0.00 × 1000 | |
Contest | 1.21 × 10−12 (+) | 1.21 × 10−12 (+) | 1.21 × 10−12 (+) | N/A (=) | N/A (=) | 1.21 × 10−12 (+) | 1.21 × 10−12 (+) | ||
F10(X) | Best | 1.00 × 1002 | 1.01 × 1002 | 1.01 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 |
Worst | 2.18 × 1002 | 2.60 × 1002 | 3.15 × 1002 | 2.17 × 1002 | 2.13 × 1002 | 2.19 × 1002 | 2.32 × 1002 | 1.00 × 1002 | |
Median | 1.02 × 1002 | 2.39 × 1002 | 1.03 × 1002 | 1.00 × 1002 | 1.01 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | |
Mean | 1.06 × 1002 | 2.26 × 1002 | 1.40 × 1002 | 1.29 × 1002 | 1.33 × 1002 | 1.22 × 1002 | 1.05 × 1002 | 1.00 × 1002 | |
Standard | 2.13 × 1001 | 4.33 × 1001 | 7.33 × 1001 | 4.92 × 1001 | 5.04 × 1001 | 4.46 × 1001 | 2.41 × 1001 | 5.59 × 10−02 | |
Contest | 5.53 × 10−8 (+) | 3.02 × 10−11 (+) | 3.02 × 10−11 (+) | 1.69 × 10−9 (+) | 4.98E-1 (+)1 | 3.26 × 10−07 (+) | 2.20 × 10−07 (+) | 0.00 × 1000 | |
F11(X) | Best | 0.00 × 1000 | 6.70 × 1001 | 1.55 × 1002 | 5.78 × 10−11 | 0.00 × 1000 | 0.00 × 1000 | 4.29 × 10−04 | 0.00 × 1000 |
Worst | 1.89 × 1002 | 1.52 × 1002 | 5.27 × 1002 | 3.00 × 1002 | 3.00 × 1002 | 4.00 × 1002 | 4.00 × 1002 | 0.00 × 1000 | |
Median | 0.00 × 1000 | 1.09 × 1002 | 1.98 × 1002 | 1.87 × 1000 | 1.50 × 1002 | 0.00 × 1000 | 5.48 × 10−04 | 0.00 × 1000 | |
Mean | 2.41 × 1001 | 1.13 × 1002 | 2.26 × 1002 | 6.99 × 1001 | 1.26 × 1002 | 1.13 × 1002 | 6.39 × 1001 | 0.00 × 1000 | |
Standard | 5.06 × 1001 | 3.00 × 1001 | 8.51 × 1001 | 9.28 × 1001 | 1.05 × 1002 | 1.51 × 1002 | 1.25 × 1002 | 0.00 × 1000 | |
Contest | 5.70 × 10−03 (+) | 1.68 × 10−11 (+) | 1.68 × 10−11 (+) | 1.68 × 10−11 (+) | 7.30 × 10−04 (+) | 3.48 × 10−11 (=) | 1.68 × 10−11 (+) | 0.00 × 1000 | |
F12(X) | Best | 1.65 × 1002 | 1.61 × 1002 | 1.64 × 1002 | 1.61 × 1002 | 1.61 × 1002 | 1.63 × 1002 | 1.59 × 1002 | 1.65 × 1002 |
Worst | 1.70 × 1002 | 1.69 × 1002 | 2.26 × 1002 | 1.70 × 1002 | 1.74 × 1002 | 2.20 × 1002 | 1.65 × 1002 | 1.68 × 1002 | |
Median | 1.67 × 1002 | 1.66 × 1002 | 1.71 × 1002 | 1.64 × 1002 | 1.66 × 1002 | 1.65 × 1002 | 1.61 × 1002 | 1.66 × 1002 | |
Mean | 1.67 × 1002 | 1.66 × 1002 | 1.77 × 1002 | 1.64 × 1002 | 1.66 × 1002 | 1.67 × 1002 | 1.62 × 1002 | 1.66 × 1002 | |
Standard | 1.07 × 1000 | 1.27 × 1000 | 1.54 × 1001 | 2.40 × 1000 | 2.38 × 1000 | 9.96 × 1000 | 1.58 × 1000 | 8.15 × 10−11 | |
Contest | 4.22 × 10−04 (+) | 5.49 × 10−11 (=) | 5.46 × 10−9 (+) | 1.44 × 10−03 (−) | 4.12 × 10−11 (=) | 4.08 × 10−05 (+) | 4.98 × 10−11 (−) | ||
+/=/− | 9/3/0 | 11/1/0 | 12/0/0 | 2008/2/2 | 2006/4/2 | 5/7/0 | 11/0/1 | ||
Rank | 3.83 | 6.83 | 7.67 | 3.83 | 3.83 | 3.67 | 4.42 | 1.92 |
F | Index | AMSE PSO | EAPSO | FDBPSO | MPSO | PPSO | PSOsono | VPPSO | RPSO |
---|---|---|---|---|---|---|---|---|---|
F1(x) | Best | 0.00 × 1000 | 2.34 × 1003 | 7.81 × 1003 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 1.02 × 10−8 | 0.00 × 1000 |
Worst | 1.87 × 1002 | 1.78 × 1004 | 3.39 × 1004 | 0.00 × 1000 | 7.59 × 10−11 | 0.00 × 1000 | 2.35 × 10−8 | 0.00 × 1000 | |
Median | 4.17 × 1001 | 9.44 × 1003 | 1.88 × 1004 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 1.59 × 10−8 | 0.00 × 1000 | |
Mean | 5.48 × 1001 | 8.82 × 1003 | 1.88 × 1004 | 0.00 × 1000 | 2.53 × 10−02 | 0.00 × 1000 | 1.57 × 10−8 | 0.00 × 1000 | |
Standard | 5.89 × 1001 | 4.09 × 1003 | 6.63 × 1003 | 0.00 × 1000 | 1.38 × 10−11 | 0.00 × 1000 | 2.94 × 10−9 | 0.00 × 1000 | |
Contest | 3.98 × 10−8 (+) | 7.57 × 10−12 (+) | 7.57 × 10−12 (+) | 2.63 × 10−8 (+) | 7.46 × 10−12 (+) | 3.43 × 10−02 (+) | 7.57 × 10−12 (+) | ||
F2(x) | Best | 2.28 × 1001 | 4.91 × 1001 | 8.97 × 1001 | 2.66 × 10−11 | 2.39 × 10−8 | 2.32 × 10−04 | 2.47 × 10−02 | 6.67 × 1000 |
Worst | 7.85 × 1001 | 7.43 × 1001 | 4.98 × 1002 | 6.73 × 1001 | 6.66 × 1001 | 7.15 × 1001 | 7.07 × 1001 | 4.91 × 1001 | |
Median | 5.94 × 1001 | 4.91 × 1001 | 1.62 × 1002 | 4.91 × 1001 | 4.91 × 1001 | 5.14 × 1001 | 4.70 × 1001 | 4.91 × 1001 | |
Mean | 5.86 × 1001 | 5.68 × 1001 | 1.96 × 1002 | 4.45 × 1001 | 4.15 × 1001 | 5.09 × 1001 | 3.12 × 1001 | 4.54 × 1001 | |
Standard | 1.07 × 1001 | 1.11 × 1001 | 1.05 × 1002 | 1.71 × 1001 | 1.88 × 1001 | 1.50 × 1001 | 2.55 × 1001 | 8.82 × 1000 | |
Contest | 5.04 × 10−10 (+) | 3.00 × 10−11 (+) | 3.00 × 10−11 (+) | 8.19 × 10−11 (=) | 4.97 × 10−03 (−) | 8.44 × 10−9 (+) | 7.51 × 10−11 (=) | ||
F3(x) | Best | 0.00 × 1000 | 9.09 × 10−02 | 1.02 × 1001 | 0.00 × 1000 | 3.19 × 10−07 | 0.00 × 1000 | 6.42 × 10−11 | 7.22 × 10−04 |
Worst | 7.91 × 10−02 | 4.40 × 10−11 | 3.43 × 1001 | 9.10 × 10−02 | 5.53 × 10−03 | 5.94 × 10−11 | 1.85 × 1001 | 8.08 × 10−11 | |
Median | 1.14 × 10−13 | 1.82 × 10−11 | 1.75 × 1001 | 0.00 × 1000 | 1.69 × 10−05 | 8.24 × 10−03 | 4.70 × 1000 | 6.66 × 10−02 | |
Mean | 1.21 × 10−02 | 2.02 × 10−11 | 1.83 × 1001 | 3.03 × 10−03 | 4.48 × 10−04 | 1.02 × 10−11 | 7.11 × 1000 | 1.28 × 10−11 | |
Standard | 2.06 × 10−02 | 8.29 × 10−02 | 6.23 × 1000 | 1.66 × 10−02 | 1.21 × 10−03 | 1.68 × 10−11 | 6.15 × 1000 | 1.71 × 10−11 | |
Contest | 1.17 × 10−06 (−) | 9.52 × 10−04 (+) | 3.02 × 10−11 (+) | 1.37 × 10−11 (−) | 5.46 × 10−11 (−) | 2.71 × 10−02 (−) | 4.08 × 10−11 (+) | ||
F4(X) | Best | 8.33 × 1000 | 1.81 × 1001 | 3.08 × 1001 | 1.69 × 1001 | 5.97 × 1000 | 5.97 × 1000 | 3.28 × 1001 | 6.96 × 1000 |
Worst | 6.07 × 1001 | 1.14 × 1002 | 6.69 × 1001 | 5.27 × 1001 | 1.49 × 1001 | 4.38 × 1001 | 9.15 × 1001 | 1.99 × 1001 | |
Median | 3.89 × 1001 | 4.33 × 1001 | 4.98 × 1001 | 3.34 × 1001 | 8.95 × 1000 | 1.99 × 1001 | 4.97 × 1001 | 1.69 × 1001 | |
Mean | 4.01 × 1001 | 4.71 × 1001 | 5.00 × 1001 | 3.20 × 1001 | 9.42 × 1000 | 2.07 × 1001 | 5.38 × 1001 | 1.62 × 1001 | |
Standard | 1.08 × 1001 | 1.75 × 1001 | 9.60 × 1000 | 1.08 × 1001 | 2.66 × 1000 | 8.06 × 1000 | 1.54 × 1001 | 3.27 × 1000 | |
Contest | 4.48 × 10−10 (+) | 5.31 × 10−11 (+) | 2.92 × 10−11 (+) | 5.55 × 10−10 (+) | 1.91 × 10−8 (−) | 2.78 × 10−02 (+) | 2.92 × 10−11 (+) | ||
F5(X) | Best | 1.77 × 10−07 | 2.37 × 10−02 | 5.38 × 1002 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 3.51 × 10−9 | 0.00 × 1000 |
Worst | 1.56 × 1000 | 2.64 × 1000 | 2.93 × 1003 | 3.34 × 1001 | 3.97 × 1000 | 1.29 × 1001 | 8.87 × 1002 | 0.00 × 1000 | |
Median | 5.08 × 10−11 | 2.00 × 10−11 | 1.33 × 1003 | 2.24 × 1000 | 4.48 × 10−02 | 1.14 × 10−13 | 9.09 × 10−11 | 0.00 × 1000 | |
Mean | 6.13 × 10−11 | 4.13 × 10−11 | 1.41 × 1003 | 5.77 × 1000 | 4.27 × 10−11 | 1.11 × 1000 | 3.98 × 1001 | 0.00 × 1000 | |
Standard | 4.49 × 10−11 | 5.54 × 10−11 | 5.85 × 1002 | 8.84 × 1000 | 8.98 × 10−11 | 2.89 × 1000 | 1.62 × 1002 | 0.00 × 1000 | |
Contest | 1.40 × 10−11 (+) | 1.40 × 10−11 (+) | 1.40 × 10−11 (+) | 7.34 × 10−11 (+) | 4.94 × 10−11 (=) | 8.70 × 10−11 (=) | 1.40 × 10−11 (+) | ||
F6(X) | Best | 1.86 × 1002 | 2.53 × 1002 | 2.78 × 10−14 | 3.82 × 1001 | 6.54 × 1001 | 2.16 × 1001 | 1.44 × 1002 | 5.55 × 1001 |
Worst | 3.29 × 1003 | 2.17 × 1004 | 6.58E+08 | 4.52 × 1003 | 6.74 × 1003 | 7.07 × 1003 | 2.30 × 1004 | 2.47 × 1002 | |
Median | 8.08 × 1002 | 3.82 × 1003 | 2.79E+06 | 7.34 × 1002 | 1.49 × 1003 | 3.14 × 1002 | 1.95 × 1003 | 1.26 × 1002 | |
Mean | 1.03 × 1003 | 5.20 × 1003 | 4.94E+07 | 1.29 × 1003 | 2.01 × 1003 | 1.65 × 1003 | 3.46 × 1003 | 1.30 × 1002 | |
Standard | 8.26 × 1002 | 5.68 × 1003 | 1.41E+08 | 1.21 × 1003 | 1.76 × 1003 | 2.31 × 1003 | 5.12 × 1003 | 5.08 × 1001 | |
Contest | 6.70 × 10−11 (+) | 3.02 × 10−11 (+) | 3.02 × 10−11 (+) | 9.26 × 10−9 (+) | 7.77 × 10−9 (+) | 2.07 × 10−02 (+) | 1.17 × 10−9 (+) | ||
F7(X) | Best | 2.13 × 1001 | 1.82 × 1001 | 5.92 × 1001 | 2.19 × 1001 | 2.31 × 1001 | 2.63 × 1001 | 2.20 × 1001 | 2.11 × 1001 |
Worst | 5.24 × 1001 | 9.03 × 1001 | 2.05 × 1002 | 6.74 × 1001 | 7.53 × 1001 | 5.35 × 1001 | 8.82 × 1001 | 3.00 × 1001 | |
Median | 3.82 × 1001 | 4.03 × 1001 | 1.14 × 1002 | 3.70 × 1001 | 3.87 × 1001 | 3.28 × 1001 | 3.74 × 1001 | 2.66 × 1001 | |
Mean | 3.67 × 1001 | 4.49 × 1001 | 1.20 × 1002 | 3.81 × 1001 | 4.16 × 1001 | 3.58 × 1001 | 4.16 × 1001 | 2.58 × 1001 | |
Standard | 7.47 × 1000 | 1.79 × 1001 | 3.97 × 1001 | 1.24 × 1001 | 1.31 × 1001 | 7.73 × 1000 | 1.51 × 1001 | 2.75 × 1000 | |
Contest | 3.01 × 10−07 (−) | 6.01 × 10−8 (+) | 3.02 × 10−11 (+) | 1.53 × 10−05 (+) | 5.00 × 10−9 (+) | 1.31 × 10−8 (+) | 2.60 × 10−8 (+) | ||
F8(X) | Best | 2.16 × 1001 | 2.18 × 1001 | 2.96 × 1001 | 2.04 × 1001 | 2.04 × 1001 | 2.06 × 1001 | 2.34 × 1001 | 1.90 × 1001 |
Worst | 3.17 × 1001 | 2.62 × 1002 | 3.25 × 1002 | 1.21 × 1002 | 1.42 × 1002 | 2.51 × 1001 | 4.13 × 1001 | 2.91 × 1001 | |
Median | 2.70 × 1001 | 1.44 × 1002 | 3.88 × 1001 | 2.12 × 1001 | 2.13 × 1001 | 2.18 × 1001 | 2.62 × 1001 | 2.40 × 1001 | |
Mean | 2.70 × 1001 | 1.07 × 1002 | 7.49 × 1001 | 2.47 × 1001 | 2.92 × 1001 | 2.21 × 1001 | 2.69 × 1001 | 2.46 × 1001 | |
Standard | 2.36 × 1000 | 7.85 × 1001 | 8.19 × 1001 | 1.82 × 1001 | 3.04 × 1001 | 1.08 × 1000 | 3.31 × 1000 | 2.60 × 1000 | |
Contest | 7.70 × 10−04 (+) | 1.29 × 10−06 (+) | 3.02 × 10−11 (+) | 6.05 × 10−07 (+) | 3.83 × 10−06 (+) | 4.08 × 10−05 (−) | 2.89 × 10−03 (+) | ||
F9(X) | Best | 1.83 × 1002 | 1.81 × 1002 | 2.35 × 1002 | 1.81 × 1002 | 1.81 × 1002 | 1.83 × 1002 | 1.81 × 1002 | 1.82 × 1002 |
Worst | 1.84 × 1002 | 1.81 × 1002 | 5.39 × 1002 | 1.81 × 1002 | 1.81 × 1002 | 1.89 × 1002 | 1.81 × 1002 | 1.85 × 1002 | |
Median | 1.84 × 1002 | 1.81 × 1002 | 3.90 × 1002 | 1.81 × 1002 | 1.81 × 1002 | 1.85 × 1002 | 1.81 × 1002 | 1.84 × 1002 | |
Mean | 1.84 × 1002 | 1.81 × 1002 | 3.83 × 1002 | 1.81 × 1002 | 1.81 × 1002 | 1.85 × 1002 | 1.81 × 1002 | 1.84 × 1002 | |
Standard | 4.88 × 10−11 | 1.60 × 10−02 | 7.32 × 1001 | 0.00 × 1000 | 4.51 × 10−05 | 1.67 × 1000 | 2.48 × 10−05 | 7.37 × 10−11 | |
Contest | 4.20 × 10−11 (=) | 3.02 × 10−11 (−) | 3.02 × 10−11 (+) | 2.36 × 10−12 (−) | 3.01 × 10−11 (−) | 5.32 × 10−03 (+) | 3.02 × 10−11 (−) | ||
F10(X) | Best | 6.60 × 1001 | 2.16 × 1002 | 1.01 × 1002 | 1.27 × 1001 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 |
Worst | 1.24 × 1002 | 2.61 × 1002 | 2.80 × 1003 | 4.98 × 1002 | 8.76 × 1002 | 2.78 × 1002 | 1.71 × 1003 | 1.01 × 1002 | |
Median | 1.06 × 1002 | 2.39 × 1002 | 1.13 × 1002 | 1.01 × 1002 | 1.01 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | |
Mean | 1.06 × 1002 | 2.39 × 1002 | 4.53 × 1002 | 1.80 × 1002 | 1.87 × 1002 | 1.35 × 1002 | 1.85 × 1002 | 1.00 × 1002 | |
Standard | 1.01 × 1001 | 1.10 × 1001 | 7.57 × 1002 | 1.21 × 1002 | 1.76 × 1002 | 6.39 × 1001 | 2.97 × 1002 | 8.67 × 10−02 | |
Contest | 4.80 × 10−07 (+) | 3.02 × 10−11 (+) | 3.02 × 10−11 (+) | 2.43 × 10−05 (+) | 5.00 × 10−9 (+) | 1.05 × 10−11 (=) | 7.06 × 10−11 (=) | ||
F11(X) | Best | 5.60 × 10−11 | 3.01 × 1002 | 8.19 × 1002 | 3.00 × 1002 | 3.00 × 1002 | 0.00 × 1000 | 2.67 × 10−03 | 0.00 × 1000 |
Worst | 5.43 × 1002 | 4.02 × 1002 | 4.10 × 1003 | 9.06 × 1002 | 4.00 × 1002 | 4.00 × 1002 | 1.76 × 1003 | 3.00 × 1002 | |
Median | 3.00 × 1002 | 3.02 × 1002 | 1.60 × 1003 | 3.00 × 1002 | 3.00 × 1002 | 3.00 × 1002 | 3.00 × 1002 | 3.00 × 1002 | |
Mean | 3.21 × 1002 | 3.09 × 1002 | 1.91 × 1003 | 4.29 × 1002 | 3.10 × 1002 | 3.13 × 1002 | 3.86 × 1002 | 2.80 × 1002 | |
Standard | 1.23 × 1002 | 2.52 × 1001 | 9.73 × 1002 | 2.09 × 1002 | 3.05 × 1001 | 7.30 × 1001 | 3.32 × 1002 | 7.61 × 1001 | |
Contest | 5.21 × 10−04 (+) | 4.11 × 10−12 (+) | 4.11 × 10−12 (+) | 4.08 × 10−12 (+) | 2.38 × 10−11 (=) | 5.64 × 10−02 (=) | 1.28 × 10−9 (+) | ||
F12(X) | Best | 2.42 × 1002 | 2.36 × 1002 | 2.65 × 1002 | 2.34 × 1002 | 2.37 × 1002 | 2.47 × 1002 | 2.36 × 1002 | 2.53 × 1002 |
Worst | 3.00 × 1002 | 2.73 × 1002 | 5.30 × 1002 | 2.95 × 1002 | 2.76 × 1002 | 3.50 × 1002 | 5.03 × 1002 | 2.70 × 1002 | |
Median | 2.69 × 1002 | 2.44 × 1002 | 3.19 × 1002 | 2.50 × 1002 | 2.53 × 1002 | 2.75 × 1002 | 2.52 × 1002 | 2.62 × 1002 | |
Mean | 2.69 × 1002 | 2.48 × 1002 | 3.39 × 1002 | 2.53 × 1002 | 2.55 × 1002 | 2.77 × 1002 | 2.67 × 1002 | 2.62 × 1002 | |
Standard | 1.22 × 1001 | 9.10 × 1000 | 6.34 × 1001 | 1.35 × 1001 | 1.10 × 1001 | 2.22 × 1001 | 4.92 × 1001 | 3.94 × 1000 | |
Contest | 3.85 × 10−03 (+) | 3.65 × 10−8 (−) | 7.39 × 10−11 (+) | 7.70 × 10−04 (−) | 1.52 × 10−03 (−) | 4.98 × 10−04 (+) | 1.70 × 10−02 (+) | ||
+/=/− | 2009/1/2 | 10/0/2 | 12/0/0 | 2008/1/3 | 2005/2/5 | 2007/3/2 | 2009/2/1 | ||
Rank | 4.42 | 5.12 | 7.83 | 3.50 | 3.58 | 3.92 | 5.00 | 2.58 |
F | Index | APGSK−IMODE | EA4eig | IMODE | PVADE | AGSK | RPSO |
---|---|---|---|---|---|---|---|
F1(x) | Best | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 |
Worst | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
Median | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
Mean | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
Standard | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
Contest | N/A (=) | N/A (=) | N/A (=) | N/A (=) | N/A (=) | ||
F2(x) | Best | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 1.71 × 10−07 |
Worst | 0.00 × 1000 | 3.99 × 1000 | 0.00 × 1000 | 8.92 × 1000 | 8.92 × 1000 | 7.32 × 10−02 | |
Median | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 8.92 × 1000 | 3.99 × 1000 | 5.91 × 10−04 | |
Mean | 0.00 × 1000 | 6.64 × 10−11 | 0.00 × 1000 | 5.55 × 1000 | 3.09 × 1000 | 9.12 × 10−03 | |
Standard | 0.00 × 1000 | 1.51 × 1000 | 0.00 × 1000 | 3.91 × 1000 | 2.09 × 1000 | 1.80 × 10−02 | |
Contest | 1.21 × 10−12 (−) | 4.70 × 10−06 (+) | 1.21 × 10−12 (−) | 1.74 × 10−03 (+) | 1.53 × 10−03 (+) | ||
F3(x) | Best | 0.00 × 1000 | 0.00 × 1000 | 2.69 × 10−07 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 |
Worst | 0.00 × 1000 | 0.00 × 1000 | 4.86 × 10−05 | 4.85 × 10−05 | 2.08 × 10−05 | 8.79 × 10−05 | |
Median | 0.00 × 1000 | 0.00 × 1000 | 1.73 × 10−06 | 0.00 × 1000 | 1.42 × 10−06 | 1.42 × 10−06 | |
Mean | 0.00 × 1000 | 0.00 × 1000 | 5.93 × 10−06 | 1.93 × 10−06 | 2.75 × 10−06 | 7.62 × 10−06 | |
Standard | 0.00 × 1000 | 0.00 × 1000 | 9.55 × 10−06 | 8.84 × 10−06 | 4.75 × 10−06 | 1.90 × 10−05 | |
Contest | 9.65 × 10−11 (−) | 5.63 × 10−11 (−) | 8.75 × 10−02 (=) | 1.98 × 10−06 (−) | 1.62 × 10−11 (=) | ||
F4(X) | Best | 9.96 × 10−11 | 0.00 × 1000 | 4.97 × 1000 | 2.72 × 1000 | 3.02 × 1000 | 2.98 × 1000 |
Worst | 6.96 × 1000 | 2.98 × 1000 | 1.29 × 1001 | 8.68 × 1000 | 1.13 × 1001 | 9.95 × 1000 | |
Median | 4.97 × 1000 | 9.95 × 10−11 | 8.95 × 1000 | 5.48 × 1000 | 7.97 × 1000 | 8.46 × 1000 | |
Mean | 4.61 × 1000 | 9.62 × 10−11 | 9.02 × 1000 | 5.45 × 1000 | 7.63 × 1000 | 7.63 × 1000 | |
Standard | 1.21 × 1000 | 9.23 × 10−11 | 2.20 × 1000 | 1.65 × 1000 | 2.14 × 1000 | 2.08 × 1000 | |
Contest | 7.86 × 10−06 (−) | 2.39 × 10−11 (−) | 2.06 × 10−02 (+) | 9.69 × 10−05 (−) | 9.06 × 10−11 (=) | ||
F5(X) | Best | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 |
Worst | 0.00 × 1000 | 0.00 × 1000 | 1.68 × 1001 | 0.00 × 1000 | 1.14 × 10−13 | 0.00 × 1000 | |
Median | 0.00 × 1000 | 0.00 × 1000 | 6.33 × 10−11 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
Mean | 0.00 × 1000 | 0.00 × 1000 | 1.83 × 1000 | 0.00 × 1000 | 7.58 × 10−15 | 0.00 × 1000 | |
Standard | 0.00 × 1000 | 0.00 × 1000 | 3.20 × 1000 | 0.00 × 1000 | 2.88 × 10−14 | 0.00 × 1000 | |
Contest | N/A (=) | N/A (=) | 6.93 × 10−12 (+) | N/A (=) | 5.70 × 10−11 (=) | ||
F6(X) | Best | 6.55 × 10−02 | 1.63 × 10−03 | 9.90 × 10−02 | 2.67 × 10−02 | 5.02 × 10−03 | 2.70 × 1000 |
Worst | 4.49 × 10−11 | 4.28 × 10−11 | 4.99 × 1000 | 1.70 × 1001 | 4.75 × 10−11 | 1.96 × 1002 | |
Median | 1.86 × 10−11 | 1.85 × 10−02 | 1.18 × 1000 | 3.72 × 10−11 | 2.47 × 10−11 | 6.32 × 1001 | |
Mean | 2.30 × 10−11 | 5.70 × 10−02 | 1.65 × 1000 | 1.48 × 1000 | 2.50 × 10−11 | 7.83 × 1001 | |
Standard | 1.17 × 10−11 | 9.46 × 10−02 | 1.29 × 1000 | 3.57 × 1000 | 1.32 × 10−11 | 6.02 × 1001 | |
Contest | 3.01 × 10−11 (−) | 3.02 × 10−11 (−) | 4.98 × 10−11 (−) | 6.70 × 10−11 (−) | 3.02 × 10−11 (−) | ||
F7(X) | Best | 0.00 × 1000 | 0.00 × 1000 | 2.65 × 10−05 | 0.00 × 1000 | 0.00 × 1000 | 1.96 × 10−11 |
Worst | 1.94 × 10−07 | 3.76 × 10−9 | 1.24 × 10−03 | 2.10 × 1001 | 2.09 × 10−10 | 2.26 × 1001 | |
Median | 0.00 × 1000 | 5.68 × 10−13 | 1.71 × 10−04 | 3.12 × 10−11 | 4.55 × 10−13 | 5.20 × 1000 | |
Mean | 6.47 × 10−9 | 2.77 × 10−10 | 3.05 × 10−04 | 3.76 × 1000 | 1.83 × 10−11 | 9.88 × 1000 | |
Standard | 3.54 × 10−8 | 8.53 × 10−10 | 3.52 × 10−04 | 7.67 × 1000 | 5.06 × 10−11 | 9.20 × 1000 | |
Contest | 1.65 × 10−11 (−) | 2.71 × 10−11 (−) | 3.02 × 10−11 (−) | 7.49 × 10−06 (−) | 2.70 × 10−11 (−) | ||
F8(X) | Best | 2.17 × 10−02 | 1.39 × 10−03 | 4.30 × 10−02 | 7.44 × 10−11 | 1.19 × 10−11 | 2.21 × 10−11 |
Worst | 2.64 × 1000 | 8.21 × 10−11 | 8.09 × 1000 | 2.16 × 1001 | 1.61 × 1000 | 2.10 × 1001 | |
Median | 1.99 × 10−11 | 3.37 × 10−11 | 1.42 × 1000 | 1.17 × 1000 | 6.47 × 10−11 | 4.36 × 1000 | |
Mean | 3.68 × 10−11 | 3.24 × 10−11 | 2.72 × 1000 | 4.35 × 1000 | 7.84 × 10−11 | 6.25 × 1000 | |
Standard | 5.11 × 10−11 | 2.21 × 10−11 | 2.34 × 1000 | 7.15 × 1000 | 4.37 × 10−11 | 6.40 × 1000 | |
Contest | 2.66 × 10−9 (−) | 2.44 × 10−9 (−) | 2.32 × 10−02 (−) | 4.06 × 10−02 (−) | 1.03 × 10−06 (−) | ||
F9(X) | Best | 2.29 × 1002 | 1.86 × 1002 | 1.37 × 10−06 | 2.29 × 1002 | 2.29 × 1002 | 2.29 × 1002 |
Worst | 2.29 × 1002 | 1.86 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.29 × 1002 | |
Median | 2.29 × 1002 | 1.86 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.29 × 1002 | |
Mean | 2.29 × 1002 | 1.86 × 1002 | 2.14 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.29 × 1002 | |
Standard | 0.00 × 1000 | 4.22 × 10−13 | 5.82 × 1001 | 0.00 × 1000 | 8.67 × 10−14 | 0.00 × 1000 | |
Contest | N/A (=) | 4.16 × 10−14 (−) | 7.64 × 10−9 (−) | 1.69 × 10−14 (−) | N/A (=) | ||
F10(X) | Best | 6.72 × 1001 | 1.00 × 1002 | 3.75 × 1000 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 |
Worst | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | |
Median | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | |
Mean | 9.91 × 1001 | 1.00 × 1002 | 8.35 × 1001 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | |
Standard | 6.02 × 1000 | 3.69 × 10−02 | 3.45 × 1001 | 3.82 × 10−02 | 3.49 × 10−02 | 5.59 × 10−02 | |
Contest | 9.47 × 10−11 (=) | 1.24 × 10−03 (−) | 1.63 × 10−02 (−) | 6.10 × 10−03 (−) | 4.20 × 10−11 (=) | ||
F11(X) | Best | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 |
Worst | 4.55 × 10−13 | 0.00 × 1000 | 2.61 × 10−07 | 3.00 × 1002 | 4.55 × 10−13 | 0.00 × 1000 | |
Median | 0.00 × 1000 | 0.00 × 1000 | 2.96 × 10−8 | 0.00 × 1000 | 4.55 × 10−13 | 0.00 × 1000 | |
Mean | 1.36 × 10−13 | 0.00 × 1000 | 5.19 × 10−8 | 1.00 × 1001 | 3.49 × 10−13 | 0.00 × 1000 | |
Standard | 2.12 × 10−13 | 0.00 × 1000 | 6.11 × 10−8 | 5.48 × 1001 | 1.96 × 10−13 | 0.00 × 1000 | |
Contest | 5.19 × 10−02 (=) | N/A (=) | 6.92 × 10−8 (+) | 4.76 × 10−05 (+) | 1.56 × 10−11 (=) | ||
F12(X) | Best | 1.59 × 1002 | 1.45 × 1002 | 1.63 × 1002 | 1.59 × 1002 | 1.59 × 1002 | 1.65 × 1002 |
Worst | 1.63 × 1002 | 1.59 × 1002 | 1.65 × 1002 | 1.65 × 1002 | 1.61 × 1002 | 1.68 × 1002 | |
Median | 1.62 × 1002 | 1.46 × 1002 | 1.64 × 1002 | 1.63 × 1002 | 1.60 × 1002 | 1.66 × 1002 | |
Mean | 1.61 × 1002 | 1.47 × 1002 | 1.64 × 1002 | 1.63 × 1002 | 1.60 × 1002 | 1.66 × 1002 | |
Standard | 1.54 × 1000 | 3.55 × 1000 | 6.54 × 10−11 | 2.08 × 1000 | 9.91 × 10−11 | 8.15 × 10−11 | |
Contest | 2.52 × 10−11 (−) | 3.02 × 10−11 (−) | 4.08 × 10−11 (−) | 9.36 × 10−11 (−) | 2.56 × 10−11 (−) | ||
+/=/− | 2000/5/7 | 2001/3/8 | 2003/2/7 | 2002/2/8 | 2001/7/4 | ||
Rank | 2.54 | 1.96 | 4.00 | 4.12 | 3.83 | 4.50 |
F | Index | APGSK−IMODE | EA4eig | IMODE | PVADE | AGSK | RPSO |
---|---|---|---|---|---|---|---|
F1(x) | Best | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 |
Worst | 5.68 × 10−14 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 5.68 × 10−14 | 0.00 × 1000 | |
Median | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
Mean | 7.58 × 10−15 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 1.89 × 10−14 | 0.00 × 1000 | |
Standard | 1.97 × 10−14 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 2.73 × 10−14 | 0.00 × 1000 | |
Contest | N/A (=) | N/A (=) | N/A (=) | N/A (=) | N/A (=) | ||
F2(x) | Best | 3.63 × 10−06 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 6.67 × 1000 |
Worst | 4.91 × 1001 | 3.99 × 1000 | 4.91 × 1001 | 8.92 × 1000 | 4.91 × 1001 | 4.91 × 1001 | |
Median | 4.91 × 1001 | 0.00 × 1000 | 4.91 × 1001 | 3.99 × 1000 | 4.91 × 1001 | 4.91 × 1001 | |
Mean | 4.47 × 1001 | 7.97 × 10−11 | 3.45 × 1001 | 5.36 × 1000 | 2.92 × 1001 | 4.54 × 1001 | |
Standard | 1.18 × 1001 | 1.62 × 1000 | 2.27 × 1001 | 3.69 × 1000 | 2.42 × 1001 | 8.82 × 1000 | |
Contest | 1.20 × 10−03 (−) | 6.27 × 10−12 (−) | 3.14 × 10−11 (=) | 8.20 × 10−11 (−) | 2.95 × 10−05 (−) | ||
F3(x) | Best | 0.00 × 1000 | 0.00 × 1000 | 2.11 × 10−11 | 0.00 × 1000 | 0.00 × 1000 | 3.49 × 10−03 |
Worst | 1.14 × 10−13 | 1.14 × 10−13 | 3.49 × 1000 | 1.42 × 10−06 | 8.36 × 10−11 | 4.56 × 1000 | |
Median | 1.14 × 10−13 | 1.14 × 10−13 | 1.03 × 1000 | 0.00 × 1000 | 3.41 × 10−13 | 1.61 × 1000 | |
Mean | 1.06 × 10−13 | 7.96 × 10−14 | 1.08 × 1000 | 7.11 × 10−8 | 3.56 × 10−12 | 1.75 × 1000 | |
Standard | 2.88 × 10−14 | 5.30 × 10−14 | 6.96 × 10−11 | 2.70 × 10−07 | 1.52 × 10−11 | 1.30 × 1000 | |
Contest | 2.36 × 10−12 (−) | 1.01 × 10−11 (−) | 2.37 × 10−10 (−) | 3.16 × 10−12 (−) | 2.89 × 10−11 (−) | ||
F4(X) | Best | 1.29 × 1001 | 3.98 × 1000 | 3.68 × 1001 | 0.00 × 1000 | 1.98 × 1001 | 6.96 × 1000 |
Worst | 2.98 × 1001 | 1.69 × 1001 | 8.36 × 1001 | 5.97 × 1000 | 4.58 × 1001 | 1.99 × 1001 | |
Median | 2.19 × 1001 | 8.95 × 1000 | 5.62 × 1001 | 1.99 × 1000 | 3.72 × 1001 | 1.69 × 1001 | |
Mean | 2.23 × 1001 | 9.22 × 1000 | 5.86 × 1001 | 2.46 × 1000 | 3.63 × 1001 | 1.62 × 1001 | |
Standard | 4.51 × 1000 | 3.49 × 1000 | 1.23 × 1001 | 1.32 × 1000 | 6.85 × 1000 | 3.27 × 1000 | |
Contest | 2.58 × 10−06 (+) | 4.59 × 10−8 (−) | 2.92 × 10−11 (+) | 2.58 × 10−11 (−) | 3.56 × 10−11 (+) | ||
F5(X) | Best | 0.00 × 1000 | 0.00 × 1000 | 2.61 × 1002 | 0.00 × 1000 | 1.14 × 10−13 | 0.00 × 1000 |
Worst | 0.00 × 1000 | 0.00 × 1000 | 1.03 × 1003 | 0.00 × 1000 | 5.44 × 10−11 | 0.00 × 1000 | |
Median | 0.00 × 1000 | 0.00 × 1000 | 6.72 × 1002 | 0.00 × 1000 | 8.95 × 10−02 | 0.00 × 1000 | |
Mean | 0.00 × 1000 | 0.00 × 1000 | 6.82 × 1002 | 0.00 × 1000 | 7.48 × 10−02 | 0.00 × 1000 | |
Standard | 0.00 × 1000 | 0.00 × 1000 | 2.08 × 1002 | 0.00 × 1000 | 1.11 × 10−11 | 0.00 × 1000 | |
Contest | N/A (=) | N/A (=) | 1.40 × 10−11 (+) | N/A (=) | 1.53 × 10−9 (+) | ||
F6(X) | Best | 1.04 × 1000 | 2.18 × 10−02 | 9.17 × 1000 | 2.20 × 10−02 | 2.18 × 10−11 | 5.55 × 1001 |
Worst | 2.48 × 1001 | 2.08 × 1000 | 4.54 × 1001 | 1.12 × 1000 | 1.90 × 1000 | 2.47 × 1002 | |
Median | 6.91 × 1000 | 1.20 × 10−11 | 2.19 × 1001 | 1.25 × 10−11 | 3.95 × 10−11 | 1.26 × 1002 | |
Mean | 9.11 × 1000 | 2.13 × 10−11 | 2.36 × 1001 | 3.23 × 10−11 | 6.36 × 10−11 | 1.30 × 1002 | |
Standard | 6.77 × 1000 | 3.69 × 10−11 | 8.37 × 1000 | 3.73 × 10−11 | 5.27 × 10−11 | 5.08 × 1001 | |
Contest | 3.01 × 10−11 (−) | 3.02 × 10−11 (−) | 3.02 × 10−11 (−) | 3.02 × 10−11 (−) | 3.02 × 10−11 (−) | ||
F7(X) | Best | 2.51 × 10−02 | 0.00 × 1000 | 2.51 × 1001 | 0.00 × 1000 | 3.12 × 10−11 | 2.11 × 1001 |
Worst | 2.10 × 1001 | 2.10 × 1001 | 4.48 × 1001 | 2.10 × 1001 | 2.25 × 1001 | 3.00 × 1001 | |
Median | 3.86 × 1000 | 1.80 × 1000 | 3.36 × 1001 | 0.00 × 1000 | 2.11 × 1001 | 2.66 × 1001 | |
Mean | 7.00 × 1000 | 4.23 × 1000 | 3.36 × 1001 | 3.68 × 1000 | 1.82 × 1001 | 2.58 × 1001 | |
Standard | 7.08 × 1000 | 6.18 × 1000 | 5.16 × 1000 | 7.62 × 1000 | 6.09 × 1000 | 2.75 × 1000 | |
Contest | 3.01 × 10−11 (−) | 3.00 × 10−11 (−) | 2.39 × 10−8 (−) | 1.78 × 10−11 (−) | 8.89 × 10−10 (−) | ||
F8(X) | Best | 1.41 × 1001 | 2.69 × 10−11 | 2.08 × 1001 | 5.64 × 10−05 | 1.61 × 1001 | 1.90 × 1001 |
Worst | 2.09 × 1001 | 2.07 × 1001 | 2.33 × 1001 | 2.04 × 1001 | 2.29 × 1001 | 2.91 × 1001 | |
Median | 2.04 × 1001 | 2.02 × 1001 | 2.18 × 1001 | 1.06 × 10−11 | 2.21 × 1001 | 2.40 × 1001 | |
Mean | 2.01 × 1001 | 1.77 × 1001 | 2.19 × 1001 | 1.69 × 1000 | 2.20 × 1001 | 2.46 × 1001 | |
Standard | 1.44 × 1000 | 6.14 × 1000 | 6.63 × 10−11 | 5.16 × 1000 | 1.16 × 1000 | 2.60 × 1000 | |
Contest | 4.61 × 10−10 (−) | 3.16 × 10−10 (−) | 3.83 × 10−06 (−) | 3.69 × 10−11 (−) | 1.02 × 10−05 (−) | ||
F9(X) | Best | 1.81 × 1002 | 1.65 × 1002 | 1.81 × 1002 | 2.29 × 1002 | 1.81 × 1002 | 1.82 × 1002 |
Worst | 1.81 × 1002 | 1.65 × 1002 | 1.81 × 1002 | 2.29 × 1002 | 1.81 × 1002 | 1.85 × 1002 | |
Median | 1.81 × 1002 | 1.65 × 1002 | 1.81 × 1002 | 2.29 × 1002 | 1.81 × 1002 | 1.84 × 1002 | |
Mean | 1.81 × 1002 | 1.65 × 1002 | 1.81 × 1002 | 2.29 × 1002 | 1.81 × 1002 | 1.84 × 1002 | |
Standard | 8.67 × 10−14 | 0.00 × 1000 | 1.18 × 10−07 | 0.00 × 1000 | 8.67 × 10−14 | 7.37 × 10−11 | |
Contest | 1.21 × 10−12 (−) | 1.21 × 10−12 (−) | 3.02 × 10−11 (−) | 1.21 × 10−12 (+) | 1.21 × 10−12 (−) | ||
F10(X) | Best | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 |
Worst | 1.00 × 1002 | 2.24 × 1002 | 1.01 × 1002 | 2.00 × 1002 | 1.00 × 1002 | 1.01 × 1002 | |
Median | 1.00 × 1002 | 1.00 × 1002 | 1.01 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | |
Mean | 1.00 × 1002 | 1.08 × 1002 | 1.01 × 1002 | 1.03 × 1002 | 1.00 × 1002 | 1.00 × 1002 | |
Standard | 3.76 × 10−02 | 3.06 × 1001 | 7.66 × 10−02 | 1.82 × 1001 | 2.85 × 10−02 | 8.67 × 10−02 | |
Contest | 9.21 × 10−05 (−) | 1.01 × 10−8 (−) | 6.53 × 10−8 (+) | 5.57 × 10−10 (−) | 8.99 × 10−11 (−) | ||
F11(X) | Best | 0.00 × 1000 | 3.00 × 1002 | 3.35 × 10−04 | 0.00 × 1000 | 3.00 × 1002 | 0.00 × 1000 |
Worst | 3.00 × 1002 | 4.00 × 1002 | 3.22 × 1002 | 1.50 × 1002 | 4.00 × 1002 | 3.00 × 1002 | |
Median | 3.00 × 1002 | 3.00 × 1002 | 3.00 × 1002 | 0.00 × 1000 | 4.00 × 1002 | 3.00 × 1002 | |
Mean | 2.50 × 1002 | 3.23 × 1002 | 2.81 × 1002 | 5.01 × 1000 | 3.87 × 1002 | 2.80 × 1002 | |
Standard | 1.14 × 1002 | 4.30 × 1001 | 7.64 × 1001 | 2.75 × 1001 | 3.46 × 1001 | 7.61 × 1001 | |
Contest | 1.08 × 10−11 (=) | 2.18 × 10−02 (+) | 1.28 × 10−9 (+) | 6.71 × 10−13 (−) | 8.54 × 10−12 (+) | ||
F12(X) | Best | 2.31 × 1002 | 1.89 × 1002 | 2.40 × 1002 | 1.60 × 1002 | 2.31 × 1002 | 2.53 × 1002 |
Worst | 2.37 × 1002 | 2.00 × 1002 | 2.67 × 1002 | 1.65 × 1002 | 2.39 × 1002 | 2.70 × 1002 | |
Median | 2.33 × 1002 | 2.00 × 1002 | 2.53 × 1002 | 1.64 × 1002 | 2.34 × 1002 | 2.62 × 1002 | |
Mean | 2.34 × 1002 | 2.00 × 1002 | 2.53 × 1002 | 1.63 × 1002 | 2.34 × 1002 | 2.62 × 1002 | |
Standard | 1.52 × 1000 | 2.05 × 1000 | 7.63 × 1000 | 1.51 × 1000 | 2.07 × 1000 | 3.94 × 1000 | |
Contest | 3.02 × 10−11 (−) | 3.02 × 10−11 (−) | 7.74 × 10−06 (−) | 2.89 × 10−11 (−) | 2.97 × 10−11 (−) | ||
+/=/− | 2001/3/8 | 2001/2/9 | 2004/2/6 | 2001/2/9 | 2003/1/8 | ||
Rank | 3.21 | 2.33 | 4.54 | 2.42 | 4.00 | 4.50 |
F | Index | Best | Worst | Median | Mean | Standard |
---|---|---|---|---|---|---|
F1(x) | PSO−1 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 |
PSO−2 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
PSO−3 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
RPSO | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
F2(x) | PSO−1 | 0.00 × 1000 | 1.08 × 1001 | 3.99 × 1000 | 5.15 × 1000 | 4.29 × 1000 |
PSO−2 | 0.00 × 1000 | 1.31 × 1001 | 6.33 × 1000 | 5.97 × 1000 | 4.09 × 1000 | |
PSO−3 | 0.00 × 1000 | 1.04 × 1001 | 3.99 × 1000 | 3.46 × 1000 | 3.53 × 1000 | |
RPSO | 1.71 × 10−07 | 7.32 × 10−02 | 5.91 × 10−04 | 9.12 × 10−03 | 1.80 × 10−02 | |
F3(x) | PSO−1 | 0.00 × 1000 | 2.31 × 10−02 | 1.26 × 10−04 | 2.80 × 10−03 | 6.28 × 10−03 |
PSO−2 | 1.06E−10 | 7.47 × 10−02 | 6.67 × 10−04 | 9.25 × 10−03 | 1.89 × 10−02 | |
PSO−3 | 0.00 × 1000 | 1.91 × 10−02 | 9.10 × 10−05 | 3.05 × 10−03 | 5.55 × 10−03 | |
RPSO | 0.00 × 1000 | 8.79 × 10−05 | 1.42 × 10−06 | 7.62 × 10−06 | 1.90 × 10−05 | |
F4(X) | PSO−1 | 2.98 × 1000 | 2.09 × 1001 | 6.96 × 1000 | 8.76 × 1000 | 4.74 × 1000 |
PSO−2 | 9.95 × 10−01 | 1.49 × 1001 | 5.97 × 1000 | 7.23 × 1000 | 3.74 × 1000 | |
PSO−3 | 9.95 × 10−01 | 1.69 × 1001 | 7.46 × 1000 | 8.13 × 1000 | 4.27 × 1000 | |
RPSO | 2.98 × 1000 | 9.95 × 1000 | 8.46 × 1000 | 7.63 × 1000 | 2.08 × 1000 | |
F5(X) | PSO−1 | 0.00 × 1000 | 4.54 × 10−01 | 0.00 × 1000 | 2.11 × 10−02 | 8.49 × 10−02 |
PSO−2 | 0.00 × 1000 | 8.95 × 10−02 | 0.00 × 1000 | 2.98 × 10−03 | 1.63 × 10−02 | |
PSO−3 | 0.00 × 1000 | 1.79 × 10−01 | 0.00 × 1000 | 2.09 × 10−02 | 4.51 × 10−02 | |
RPSO | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
F6(X) | PSO−1 | 2.95 × 1000 | 1.72 × 10−03 | 4.73 × 1001 | 2.26 × 1002 | 4.03 × 1002 |
PSO−2 | 1.28 × 1000 | 2.55 × 10−03 | 3.93 × 1001 | 2.10 × 1002 | 4.89 × 1002 | |
PSO−3 | 1.52 × 1000 | 1.45 × 10−03 | 4.53 × 1001 | 1.90 × 1002 | 3.35 × 1002 | |
RPSO | 2.70 × 1000 | 1.96 × 1002 | 6.32 × 1001 | 7.83 × 1001 | 6.02 × 1001 | |
F7(X) | PSO−1 | 2.69 × 10−08 | 2.55 × 1001 | 1.28 × 1001 | 1.20 × 1001 | 9.76 × 1000 |
PSO−2 | 6.61 × 10−05 | 2.30 × 1001 | 5.23 × 1000 | 1.05 × 1001 | 9.26 × 1000 | |
PSO−3 | 8.44E−09 | 2.56 × 1001 | 1.28 × 1001 | 1.19 × 1001 | 1.02 × 1001 | |
RPSO | 1.96 × 10−01 | 2.26 × 1001 | 5.20 × 1000 | 9.88 × 1000 | 9.20 × 1000 | |
F8(X) | PSO−1 | 1.76 × 10−01 | 2.47 × 1001 | 2.06 × 1001 | 1.43 × 1001 | 9.86 × 1000 |
PSO−2 | 8.83 × 10−01 | 2.29 × 1001 | 2.02 × 1001 | 1.29 × 1001 | 9.29 × 1000 | |
PSO−3 | 2.84 × 10−01 | 2.42 × 1001 | 2.10 × 1001 | 1.36 × 1001 | 9.57 × 1000 | |
RPSO | 2.21 × 10−01 | 2.10 × 1001 | 4.36 × 1000 | 6.25 × 1000 | 6.40 × 1000 | |
F9(X) | PSO−1 | 2.30 × 1002 | 3.76 × 1002 | 2.32 × 1002 | 2.36 × 1002 | 2.64 × 1001 |
PSO−2 | 2.30 × 1002 | 2.32 × 1002 | 2.31 × 1002 | 2.31 × 1002 | 5.53 × 10−01 | |
PSO−3 | 2.30 × 1002 | 2.32 × 1002 | 2.31 × 1002 | 2.31 × 1002 | 4.77 × 10−01 | |
RPSO | 2.29 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 2.29 × 1002 | 0.00 × 1000 | |
F10(X) | PSO−1 | 1.00 × 1002 | 1.22 × 1002 | 1.00 × 1002 | 1.04 × 1002 | 6.10 × 1000 |
PSO−2 | 1.00 × 1002 | 2.20 × 1002 | 1.00 × 1002 | 1.49 × 1002 | 5.70 × 1001 | |
PSO−3 | 1.00 × 1002 | 2.20 × 1002 | 1.00 × 1002 | 1.45 × 1002 | 5.55 × 1001 | |
RPSO | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 1.00 × 1002 | 5.59 × 10−02 | |
F11(X) | PSO−1 | 0.00 × 1000 | 3.00 × 1002 | 0.00 × 1000 | 4.01 × 1001 | 8.76 × 1001 |
PSO−2 | 0.00 × 1000 | 4.00 × 1002 | 0.00 × 1000 | 8.22 × 1001 | 1.20 × 1002 | |
PSO−3 | 0.00 × 1000 | 4.00 × 1002 | 0.00 × 1000 | 4.34 × 1001 | 9.08 × 1001 | |
RPSO | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | 0.00 × 1000 | |
F12(X) | PSO−1 | 1.65 × 1002 | 1.67 × 1002 | 1.66 × 1002 | 1.66 × 1002 | 6.60 × 10−01 |
PSO−2 | 1.64 × 1002 | 1.67 × 1002 | 1.65 × 1002 | 1.66 × 1002 | 7.50 × 10−01 | |
PSO−3 | 1.65 × 1002 | 1.68 × 1002 | 1.65 × 1002 | 1.66 × 1002 | 8.05 × 10−01 | |
RPSO | 1.65 × 1002 | 1.68 × 1002 | 1.66 × 1002 | 1.66 × 1002 | 8.15 × 10−01 |
Method | Dataset | Accuracy | Precision | Recall | F1 Score | Best | Mean | Worst |
---|---|---|---|---|---|---|---|---|
PSO | XY | 98.21% | 98.82% | 97.67% | 98.25% | 98.21% | 97.86% | 97.02% |
CT | 87.05% | 91.30% | 80.00% | 85.28% | 87.05% | 84.38% | 83.04% | |
GWO | XY | 99.40% | 100.00% | 98.84% | 99.42% | 99.40% | 98.10% | 96.43% |
CT | 86.16% | 84.91% | 85.71% | 85.31% | 86.16% | 84.91% | 83.93% | |
WOA | XY | 98.81% | 98.84% | 98.84% | 98.84% | 98.81% | 97.62% | 95.83% |
CT | 86.61% | 84.40% | 87.62% | 85.98% | 86.61% | 84.91% | 83.48% | |
DEPSO | XY | 98.81% | 98.84% | 98.84% | 98.84% | 98.81% | 98.45% | 97.62% |
CT | 83.93% | 84.85% | 80.00% | 82.35% | 83.93% | 82.59% | 79.91% | |
ASSOA | XY | 98.81% | 100.00% | 97.67% | 98.82% | 98.81% | 97.86% | 96.43% |
CT | 85.71% | 85.44% | 83.81% | 84.62% | 85.71% | 84.73% | 83.93% | |
RPSO | XY | 100% | 100% | 100% | 100% | 100% | 98.69% | 97.02% |
CT | 87.05% | 88.00% | 83.81% | 85.85% | 87.05% | 85.71% | 84.82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zeng, Y.; Li, R.; Zhu, X.; Zhang, Y.; Li, W.; Li, T.; Zhu, D.; Hu, G. A Random Particle Swarm Optimization Based on Cosine Similarity for Global Optimization and Classification Problems. Biomimetics 2024, 9, 204. https://doi.org/10.3390/biomimetics9040204
Liu Y, Zeng Y, Li R, Zhu X, Zhang Y, Li W, Li T, Zhu D, Hu G. A Random Particle Swarm Optimization Based on Cosine Similarity for Global Optimization and Classification Problems. Biomimetics. 2024; 9(4):204. https://doi.org/10.3390/biomimetics9040204
Chicago/Turabian StyleLiu, Yujia, Yuan Zeng, Rui Li, Xingyun Zhu, Yuemai Zhang, Weijie Li, Taiyong Li, Donglin Zhu, and Gangqiang Hu. 2024. "A Random Particle Swarm Optimization Based on Cosine Similarity for Global Optimization and Classification Problems" Biomimetics 9, no. 4: 204. https://doi.org/10.3390/biomimetics9040204
APA StyleLiu, Y., Zeng, Y., Li, R., Zhu, X., Zhang, Y., Li, W., Li, T., Zhu, D., & Hu, G. (2024). A Random Particle Swarm Optimization Based on Cosine Similarity for Global Optimization and Classification Problems. Biomimetics, 9(4), 204. https://doi.org/10.3390/biomimetics9040204