Autonomous Parameter Balance in Population-Based Approaches: A Self-Adaptive Learning-Based Strategy
Abstract
:1. Introduction
- Robust self-adaptive hybrid approach capable of tackling hard optimization problems;
- Online-tuning/Control of a key issue in population-based approaches: Adapting population size on run-time;
- The hybrid approach successfully solved multiple hard optimization problems: In the experimentation phase, great results were achieved solving the MCDP, SCP, and MKP by employing an unique set of configuration values;
- Scalability in the first component designed: This work proved great adaptability given to the employed population-based algorithm. This allows the incorporation of several movement operators from different population-based algorithms in order to be instantiated by the approach to perform (parallel approach);
- Scalability in the third designed component: This work demonstrated significant benefits derived from the dynamic data generated through the search. The proposed design allows for the incorporation of different techniques, such as multiple supervised and deep learning methods.
2. Related Work
3. Background
3.1. Metaheuristics
3.1.1. Spotted Hyena Optimizer
3.1.2. Domain Transfer
- Standard: If the condition is satisfied, standard method returns 1, otherwise returns 0.
- Complement: If the condition is satisfied, standard method returns the complement value.
- Static probability: A probability is generated and evaluated with a transfer function.
- Elitist Discretization: Method Elitist Roulette, also known as Monte Carlo, consists of selecting randomly among the best individuals of the population, with a probability proportional to its fitness.
3.2. Optimization Problems
3.2.1. Manufacturing Cell Design Problem
- M—the number of machines;
- P—the number of parts;
- C—the number of cells;
- i—the index of machines (i = 1, …, M);
- j—the index of parts (j = 1, …, P);
- k—the index of cells (k = 1, …, C);
- —the binary machine-part incidence matrix M × P;
- —the maximum number of machines per cell. We selected as the objective function to minimize the number of times that a given part must be processed by a machine that does not belong to the cell that the part has been assigned to. Let:
3.2.2. Set Covering Problem
3.2.3. Multidimensional Knapsack Problem
4. Proposed Hybrid Approach
4.1. General Description
- Step 1:
- Set the initial parameters for the population-based algorithm and the regression analysis.
- Step 2:
- Select the initial population size to perform.
- Step 3:
- Generate initial population.
- Step 4:
- while the termination criteria is not met.
- Step 4.1:
- Carry out intensification and diversification on the population.
- Step 4.2:
- Management of dynamic data generated.
- Step 4.3:
- Check if amount of iteration has been met.
- Step 4.3.1:
- Perform regression analysis.
- Step 4.3.2:
- Management knowledge generated.
- Step 4.4:
- Check if amount of iteration has been met.
- Step 4.4.1:
- Perform the selection mechanism.
- Step 4.4.2:
- Perform the balance of population.
- Step 4.5:
- Update the population-based algorithm’s parameters.
4.2. Methodology
4.3. LBLP Components
4.3.1. Component 1: The Driver
4.3.2. Component 2: Regression Model
4.3.3. Component 3: Roulette Selector
4.4. Proposed Algorithm
Algorithm 1 Proposed LBLP |
|
5. Experimental Results
5.1. First Experimentation Phase
5.1.1. Manufacturing Cell Design Problem
5.1.2. Set Covering Problem
5.1.3. Multidimensional Knapsack Problem
5.1.4. Overall Performance in This Phase
5.2. Second Experimentation Phase
5.2.1. Manufacturing Cell Design Problem
5.2.2. Set Covering Problem
5.2.3. Multidimensional Knapsack Problem
5.2.4. Overall Performance in This Phase
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello, C.A.; Herrera, F. Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput. 2019, 48, 220–250. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E. Population size in particle swarm optimization. Swarm Evol. Comput. 2020, 58, 100718. [Google Scholar] [CrossRef]
- Hansen, N.; Müller, S.D.; Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 2003, 11, 1–18. [Google Scholar] [CrossRef]
- Hansen, N.; Auger, A. CMA-ES: Evolution strategies and covariance matrix adaptation. In Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011; pp. 991–1010. [Google Scholar]
- Sarker, R.; Kamruzzaman, J.; Newton, C. Evolutionary optimization (EvOpt): A brief review and analysis. Int. J. Comput. Intell. Appl. 2003, 3, 311–330. [Google Scholar] [CrossRef]
- Hansen, N.; Ostermeier, A. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 2001, 9, 159–195. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Enhanced harmony search algorithm with non-linear control parameters for global optimization and engineering design problems. Eng. Comput. 2022, 38 (Suppl. 4), 3539–3562. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chen, P.H. Fake news detection using an ensemble learning model based on self-adaptive harmony search algorithms. Expert Syst. Appl. 2020, 159, 113584. [Google Scholar] [CrossRef]
- Kulluk, S.; Ozbakir, L.; Baykasoglu, A. Self-adaptive global best harmony search algorithm for training neural networks. Procedia Comput. Sci. 2011, 3, 282–286. [Google Scholar] [CrossRef]
- Banks, A.; Vincent, J.; Anyakoha, C. A review of particle swarm optimization. Part I: Background and development. Nat. Comput. 2007, 6, 467–484. [Google Scholar] [CrossRef]
- Cheng, S.; Lu, H.; Lei, X.; Shi, Y. A quarter century of particle swarm optimization. Complex Intell. Syst. 2018, 4, 227–239. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Song, H.; Triguero, I.; Özcan, E. A review on the self and dual interactions between machine learning and optimisation. Prog. Artif. Intell. 2019, 8, 143–165. [Google Scholar] [CrossRef]
- Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghan, A.M.; Talbi, E.G. Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. Eur. J. Oper. Res. 2022, 296, 393–422. [Google Scholar] [CrossRef]
- Talbi, E.G. Machine learning into metaheuristics: A survey and taxonomy. Acm Comput. Surv. (CSUR) 2021, 54, 1–32. [Google Scholar] [CrossRef]
- Birattari, M.; Kacprzyk, J. Tuning Metaheuristics: A Machine Learning Perspective (Vol. 197); Springer: Berlin, Germany, 2009. [Google Scholar]
- Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 2016, 240, 171–215. [Google Scholar] [CrossRef]
- Calvet, L.; de Armas, J.; Masip, D.; Juan, A.A. Learnheuristics: Hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Math. 2017, 15, 261–280. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Software 2017, 114, 48–70. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Zhou, Y.; Liao, L. Using spotted hyena optimizer for training feedforward neural networks. Cogn. Syst. Res. 2021, 65, 1–16. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; Vega, E.; Gómez, A.; Gómez-Pulido, J.A. Solving the Set Covering Problem Using Spotted Hyena Optimizer and Autonomous Search. In Advances and Trends in Artificial Intelligence; Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M., Eds.; From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11606. [Google Scholar]
- Ghafori, S.; Gharehchopogh, F.S. Advances in spotted hyena optimizer: A comprehensive survey. Arch. Comput. Methods Eng. 2022, 29, 1569–1590. [Google Scholar] [CrossRef]
- Dhiman, G.; Kaur, A. Spotted hyena optimizer for solving engineering design problems. In Proceedings of the 2017 International Conference on Machine Learning and Data Science (MLDS), Noida, India, 14–15 December 2017; IEEE: Piscataway, NJ, USA; pp. 114–119. [Google Scholar]
- Dhiman, G.; Kumar, V. Spotted hyena optimizer for solving complex and non-linear constrained engineering problems. In Harmony Search and Nature Inspired Optimization Algorithms: Theory and Applications, ICHSA 2018; Springer: Singapore, 2019; pp. 857–867. [Google Scholar]
- Dhiman, G.; Kaur, A. A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. In Soft Computing for Problem Solving: SocProS 2017; Springer: Singapore, 2019; Volume 1, pp. 599–615. [Google Scholar]
- Mahdavi, I.; Paydar, M.M.; Solimanpur, M.; Heidarzade, A. Genetic algorithm approach for solving a cell formation problem in cellular manufacturing. Expert Syst. Appl. 2009, 36, 6598–6604. [Google Scholar] [CrossRef]
- Beasley, J.E. An algorithm for set covering problem. Eur. J. Oper. Res. 1987, 31, 85–93. [Google Scholar] [CrossRef]
- Fréville, A. The multidimensional 0–1 knapsack problem: An overview. Eur. J. Oper. Res. 2004, 155, 1–21. [Google Scholar] [CrossRef]
- Lopez-Ibanez, M.; Dubois-Lacoste, J.; Caceres, L.P.; Birattari, M.; Stutzle, T. The irace package: Iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [Google Scholar]
- Talbi, E.-G. A taxonomy of hybrid metaheuristics. J. Heuristics 2002, 8, 541–564. [Google Scholar] [CrossRef]
- Zennaki, M.; Ech-Cherif, A. A new machine learning based approach for tuning metaheuristics for the solution of hard combinatorial optimization problems. J. Appl. Sci. 2010, 10, 1991–2000. [Google Scholar] [CrossRef]
- de Lacerda, M.G.P.; de Araujo Pessoa, L.F.; de Lima Neto, F.B.; Ludermir, T.B.; Kuchen, H. A systematic literature review on general parameter control for evolutionary and swarm-based algorithms. Swarm Evol. Comput. 2021, 60, 100777. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; González, F.; Vega, E.; Castro, C.; Paredes, F. Solving the Manufacturing Cell Design Problem Using Human Behavior-Based Algorithm Supported by Autonomous Search. IEEE Access 2019, 7, 132228–132239. [Google Scholar] [CrossRef]
- Handa, H.; Baba, M.; Horiuchi, T.; Katai, O. A novel hybrid framework of coevolutionary GA and machine learning. Int. J. Comput. Intell. Appl. 2002, 2, 33–52. [Google Scholar] [CrossRef]
- Adak, Z.; Demiriz, A. Hybridization of population-based ant colony optimization via data mining. Intell. Data Anal. 2020, 24, 291–307. [Google Scholar] [CrossRef]
- Streichert, F.; Stein, G.; Ulmer, H.; Zell, A. A clustering based niching method for evolutionary algorithms. In Genetic and Evolutionary Computation Conference; Springer: Berlin/Heidelberg, Germany, 2003; pp. 644–645. [Google Scholar]
- Sörensen, K.; Glover, F. Metaheuristics. Encycl. Oper. Res. Manag. Sci. 2013, 62, 960–970. [Google Scholar]
- Gogna, A.; Tayal, A. Metaheuristics: Review and application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [Google Scholar] [CrossRef]
- Crama, Y.; Kolen, A.W.; Pesch, E.J. Local search in combinatorial optimization. Artif. Neural Networks 1995, 931, 157–174. [Google Scholar]
- Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies. J. Stat. Physics 1984, 34, 975–986. [Google Scholar] [CrossRef]
- Eusuff, M.; Lansey, K.; Pasha, F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng. Optim. 2006, 38, 129–154. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Software 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Moscato, P. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurr. Comput. Program C3p Rep. 1989, 826, 1989. [Google Scholar]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA; pp. 4661–4667. [Google Scholar]
- Cuevas, E.; Fausto, F.; González, A. New Advancements in Swarm Algorithms: Operators and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 2013, 9, 1–14. [Google Scholar] [CrossRef]
- Faris, H.; Mafarja, M.M.; Heidari, A.A.; Aljarah, I.; Ala’M, A.Z.; Mirjalili, S.; Fujita, H. An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl.-Based Syst. 2018, 154, 43–67. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl.-Based Syst. 2018, 161, 185–204. [Google Scholar] [CrossRef]
- Mirjalili, S.; Hashim, S.Z.M. BMOA: Binary magnetic optimization algorithm. Int. J. Mach. Learn. Comput. 2012, 2, 204. [Google Scholar] [CrossRef]
- Valenzuela, M.; Pinto, H.; Moraga, P.; Altimiras, F.; Villavicencio, G. A percentile methodology applied to Binarization of swarm intelligence metaheuristics. J. Inf. Syst. Eng. Manag. 2019, 4, em0104. [Google Scholar] [CrossRef] [PubMed]
- Gölcük, İ.; Ozsoydan, F.B.; Durmaz, E.D. Analysis of Different Binarization Techniques within Whale Optimization Algorithm. In Proceedings of the 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), Izmir, Turkey, 31 October–2 November 2019; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Slezkin, A.O.; Hodashinsky, I.A.; Shelupanov, A.A. Binarization of the Swallow swarm optimization for feature selection. Program. Comput. Softw. 2021, 47, 374–388. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; IEEE: Piscataway, NJ, USA; Volume 5, pp. 4104–4108. [Google Scholar]
- Boctor, F.F. A Jinear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 1991, 29, 343–356. [Google Scholar] [CrossRef]
- Smith, B. Impacs—A bus crew scheduling system using integer programming. Math Program 1988, 42, 181–187. [Google Scholar] [CrossRef]
- Toregas, C.; Swain, R.; Revelle, C.; Bergman, L. The location of emergency service facilities. Oper. Res. 1971, 19, 1363–1373. [Google Scholar] [CrossRef]
- Foster, B.; Ryan, D. An integer programming approach to the vehicle scheduling problem. Oper. Res. Q 1976, 27, 367–384. [Google Scholar] [CrossRef]
- Fisher, M.; Kedia, P. Optimal solution of set covering/partitioning problems using dual heuristics. Manag. Sci. 1990, 36, 674–688. [Google Scholar] [CrossRef]
- Pisinger, D. The quadratic knapsack problem—A survey. Discret. Appl. Math. 2007, 155, 623–648. [Google Scholar] [CrossRef]
- Horowitz, E.; Sahni, S. Computing partitions with applications to the knapsack problem. J. ACM (JACM) 1974, 21, 277–292. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; Toledo, A.; Fuente-Mella, H.; Castro, C.; Paredes, F.; Olivares, R. Solving the Manufacturing Cell Design Problem through Binary Cat Swarm Optimization with Dynamic Mixture Ratios. Comput. Intell. Neurosci. 2019, 2019, 4787856. [Google Scholar] [CrossRef] [PubMed]
- Almonacid, B.; Aspee, F.; Soto, R.; Crawford, B.; Lama, J. Solving the Manufacturing Cell Design Problem using the Modified Binary Firefly Algorithm and the Egyptian Vulture Optimization Algorithm. IET Softw. 2016, 11, 105–115. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Berros, N.; Johnson, F.; Paredes, F.; Castro, C.; Norero, E. A binary cat swarm optimization algorithm for the non-unicost set covering problem. Math Probl. Eng. 2014, 2015, 578541. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Olivares-Suarez, M.; Paredes, F. A binary firefly algorithm for the set covering problem. In 3rd Computer Science On-Line Conference 2014 (CSOC 2014); Advances in intelligent systems and computing; Springer: Cham, Switzerland, 2014; Volume 285, pp. 65–73. [Google Scholar]
- Crawford, B.; Soto, R.; Pena, C.; Palma, W.; Johnson, F.; Paredes, F. Solving the set covering problem with a shuffled frog leaping algorithm. In Proceedings of the 7th Asian Conference, ACIIDS 2015, Bali, Indonesia, 23–25 March 2015; Proceedings, Part II. Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2015; Volume 9012, pp. 41–50. [Google Scholar]
- Cuesta, R.; Crawford, B.; Soto, R.; Paredes, F. An artificial bee colony algorithm for the set covering problem, In 3rd Computer Science On-Line Conference 2014 (CSOC 2014); Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2014; Volume 285, pp. 53–63. [Google Scholar]
- Soto, R.; Crawford, B.; Munoz, A.; Johnson, F.; Paredes, F. Preprocessing, repairing and transfer functions can help binary electromagnetism-like algorithms. In Artificial Intelligence Perspectives and Applications; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2015; Volume 347, pp. 89–97. [Google Scholar]
- Khemakhem, M.; Haddar, B.; Chebil, K.; Hanafi, S. A Filter-and-Fan Metaheuristic for the 0-1 Multidimensional Knapsack Problem. Int. J. Appl. Metaheuristic Comput. (IJAMC) 2012, 3, 43–63. [Google Scholar] [CrossRef]
- Chih, M. Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem. Swarm Evol. Comput. 2018, 39, 279–296. [Google Scholar] [CrossRef]
- Haddar, B.; Khemakhem, M.; Hanafi, S.; Wilbaut, C. A hybrid quantum particle swarm optimization for the multidimensional knapsack problem. Eng. Appl. Artif. Intell. 2016, 55, 1–13. [Google Scholar] [CrossRef]
- Vega, E.; Soto, R.; Contreras, P.; Crawford, B.; Peña, J.; Castro, C. Combining a Population-Based Approach with Multiple Linear Models for Continuous and Discrete Optimization Problems. Mathematics 2022, 10, 2920. [Google Scholar] [CrossRef]
S-Shape | v-Shape |
---|---|
ID | Test Problem | Optimal Solution | n | m |
---|---|---|---|---|
mknapcb1 | 5.100.00 | 24,381 | 100 | 5 |
5.100.01 | 24,274 | 100 | 5 | |
5.100.02 | 23,551 | 100 | 5 | |
5.100.03 | 23,534 | 100 | 5 | |
5.100.04 | 23,991 | 100 | 5 | |
mknapcb2 | 5.250.00 | 59,312 | 250 | 5 |
5.250.01 | 61,472 | 250 | 5 | |
5.250.02 | 62,130 | 250 | 5 | |
5.250.03 | 59,463 | 250 | 5 | |
5.250.04 | 58,951 | 250 | 5 | |
mknapcb3 | 5.500.00 | 120,148 | 500 | 5 |
5.500.01 | 117,879 | 500 | 5 | |
5.500.02 | 121,131 | 500 | 5 | |
5.500.03 | 120,804 | 500 | 5 | |
5.500.04 | 122,319 | 500 | 5 | |
mknapcb4 | 10.100.00 | 23,064 | 100 | 10 |
10.100.01 | 22,801 | 100 | 10 | |
10.100.02 | 22,131 | 100 | 10 | |
10.100.03 | 22,772 | 100 | 10 | |
10.100.04 | 22,751 | 100 | 10 | |
mknapcb5 | 10.250.00 | 59,187 | 250 | 10 |
10.250.01 | 58,781 | 250 | 10 | |
10.250.02 | 58,097 | 250 | 10 | |
10.250.03 | 61,000 | 250 | 10 | |
10.250.04 | 58,092 | 250 | 10 | |
mknapcb6 | 10.500.00 | 117,821 | 500 | 10 |
10.500.01 | 119,249 | 500 | 10 | |
10.500.02 | 119,215 | 500 | 10 | |
10.500.03 | 118,829 | 500 | 10 | |
10.500.04 | 116,530 | 500 | 10 |
MCDP | SCP | MKP | ||||
---|---|---|---|---|---|---|
Algorithms | Parameters | Values | Parameters | Values | Parameters | Values |
Classic SHO | Search Agents | 30 | Search Agents | 30 | Search Agents | 30 |
Control Parameter (h) | [5, 0] | Control Parameter (h) | [5, 0] | Control Parameter (h) | [5, 0] | |
M Constant | [0.5, 1] | M Constant | [0.5, 1] | M Constant | [0.5, 1] | |
Number of Generations | 10,000 | Number of Generations | 10,000 | Number of Generations | 10,000 | |
Classic SHO + IRace | Search Agents | 33 | Search Agents | 41 | Search Agents | 30 |
Control Parameter (h) | [5, 0] | Control Parameter (h) | [5, 0] | Control Parameter (h) | [5, 0] | |
M Constant | [0.5, 1] | M Constant | [0.5, 1] | M Constant | [0.5, 1] | |
Number of Generations | 10,000 | Number of Generations | 10,000 | Number of Generations | 10,000 | |
LBLP | Search Agents | Schemes (20, 30, 40, 50) | Search Agents | Schemes (20, 30, 40, 50) | Search Agents | Schemes (20, 30, 40, 50) |
Control Parameter (h) | [5, 0] | Control Parameter (h) | [5, 0] | Control Parameter (h) | [5, 0] | |
M Constant | [0.5, 1] | M Constant | [0.5, 1] | M Constant | [0.5, 1] | |
Number of Generations | 10,000 | Number of Generations | 10,000 | Number of Generations | 10,000 | |
100 | 100 | 100 | ||||
1000 | 1000 | 1000 |
ID | Sopt | LBLP | BCSO | EVOA | MBFA | HBBO-AS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | ||
CFP01 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0.00 | 0.00 |
CFP02 | 3 | 3 | 3.7 | 0.00 | 3 | 3 | 0.00 | 3 | 3 | 0.00 | 3 | 3 | 0.00 | 3 | 3.00 | 0.00 |
CFP03 | 5 | 5 | 5.3 | 0.00 | 5 | 5 | 0,00 | 5 | 5 | 0.00 | 5 | 5 | 0.00 | 5 | 5.00 | 0.00 |
CFP04 | 2 | 2 | 2.2 | 0.00 | 2 | 2 | 0.00 | 2 | 2 | 0.00 | 2 | 2 | 0.00 | 2 | 2.00 | 0.00 |
CFP05 | 8 | 8 | 8.8 | 0.00 | 8 | 8 | 0.00 | 8 | 8 | 0.00 | 9 | 9 | 12.50 | 8 | 8.00 | 0.00 |
CFP06 | 4 | 4 | 4.8 | 0.00 | 4 | 4 | 0.00 | 4 | 4 | 0.00 | 4 | 4 | 0.00 | 4 | 4.00 | 0.00 |
CFP07 | 7 | 7 | 7.0 | 0.00 | 7 | 7 | 0.00 | 7 | 7 | 0.00 | 8 | 8 | 14.29 | 7 | 7.00 | 0.00 |
CFP08 | 7 | 7 | 7.1 | 0.00 | 7 | 7 | 0.00 | 7 | 7 | 0.00 | 7 | 7 | 0.00 | 7 | 7.00 | 0.00 |
CFP09 | 25 | 25 | 26.6 | 0.00 | 25 | 25 | 0,00 | 25 | 25 | 0.00 | 27 | 27 | 8.00 | 25 | 25.00 | 0.00 |
CFP10 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.00 | 0 | 1.2 | 0.00 | 3 | 3 | 0.00 | 0 | 0.00 | 0.00 |
CFP11 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.00 | 0 | 0.8 | 0.00 | 0 | 0 | 0.00 | 0 | 0.00 | 0.00 |
CFP12 | 7 | 7 | 7.9 | 0.00 | 7 | 7 | 0.00 | 11 | 13.3 | 57.14 | 9 | 10.1 | 28.57 | 8 | 9.39 | 14.28 |
CFP13 | 8 | 9 | 9.9 | 11.76 | 8 | 8 | 0.00 | 12 | 14.3 | 50.00 | 8 | 8.4 | 0.00 | 9 | 9.60 | 12.50 |
CFP14 | — | 24 | 25.4 | — | 24 | 24 | — | 30 | 32.9 | — | 36 | 39.6 | — | 29 | 31.20 | — |
CFP15 | — | 17 | 17.0 | — | 17 | 17 | — | 31 | 35.7 | — | 18 | 21.1 | — | 17 | 22.79 | — |
CFP16 | — | 30 | 30.3 | — | 29 | 29.05 | — | 42 | 44.6 | — | 39 | 43.8 | — | 36 | 38.00 | — |
CFP17 | — | 26 | 26.8 | — | 26 | 26.53 | — | 32 | 34.2 | — | 32 | 33.2 | — | 33 | 34.20 | — |
CFP18 | — | 42 | 43.4 | — | 41 | 41.18 | — | 46 | 49.9 | — | 52 | 56.2 | — | 48 | 49.00 | — |
CFP19 | — | 40 | 40.7 | — | 38 | 38 | — | 51 | 53.4 | — | 49 | 51.6 | — | 50 | 52.20 | — |
CFP20 | — | 2 | 2.0 | — | 2 | 2 | — | 28 | 36 | — | 7 | 12.3 | — | 28 | 33.40 | — |
CFP21 | — | 37 | 37.8 | — | 35 | 35 | — | 57 | 60.3 | — | 43 | 43.5 | — | 56 | 58.79 | — |
CFP22 | — | 0 | 0.0 | — | 0 | 4.9 | — | 30 | 37.5 | — | 0 | 15.5 | — | 42 | 44.00 | — |
CFP23 | — | 10 | 11.1 | — | 10 | 13.53 | — | 39 | 44.2 | — | 13 | 15 | — | 44 | 48.20 | — |
CFP24 | — | 18 | 19.9 | — | 18 | 20.98 | — | 44 | 49.7 | — | 25 | 27.6 | — | 46 | 49.79 | — |
CFP25 | — | 40 | 41.7 | — | 40 | 42.6 | — | 60 | 61.6 | — | 49 | 56.1 | — | 61 | 63.20 | — |
CFP26 | — | 59 | 61.4 | — | 59 | 62.15 | — | 68 | 70 | — | 64 | 65.6 | — | 71 | 71.80 | — |
CFP27 | — | 64 | 64.6 | — | 61 | 64.05 | — | 69 | 70.6 | — | 67 | 68.8 | — | 71 | 71.40 | — |
CFP28 | — | 54 | 55.2 | — | 54 | 54 | — | 84 | 94.1 | — | 76 | 92.1 | — | 99 | 106.19 | — |
CFP29 | — | 91 | 93.5 | — | 91 | 96.1 | — | 102 | 112.8 | — | 106 | 109.1 | — | 118 | 122.00 | — |
CFP30 | — | 37 | 37.4 | — | 37 | 42.6 | — | 57 | 59.7 | — | 43 | 58.3 | — | 64 | 65.00 | — |
CFP31 | — | 52 | 53.4 | — | 52 | 57.9 | — | 70 | 75.3 | — | 54 | 60.4 | — | 79 | 84.19 | — |
CFP32 | — | 68 | 68.8 | — | 66 | 72.15 | — | 86 | 87.6 | — | 76 | 77.6 | — | 90 | 93.80 | — |
CFP33 | — | 93 | 93.6 | — | 93 | 94.93 | — | 136 | 144.8 | — | 116 | 122.6 | — | 155 | 159.00 | — |
CFP34 | — | 259 | 261.2 | — | 256 | 256 | — | 352 | 369.2 | — | 325 | 329.5 | — | 386 | 408.20 | — |
CFP35 | — | 90 | 91.6 | — | 83 | 110.58 | — | 181 | 195.6 | — | 114 | 119.2 | — | 225 | 231.39 | — |
X | 35.14 | 36.00 | 0.90 | 34.51 | 36.61 | 0.00 | 50.83 | 54.58 | 8.24 | 42.54 | 45.86 | 4.87 | 55.03 | 57.65 | 2.06 |
ID | Sopt | LBLP | BCSO | BFO | BSFLA | BABC | BELA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | ||
4.1 | 429 | 429 | 432 | 0.00 | 459 | 480 | 7.00 | 429 | 430 | 0.00 | 430 | 430 | 0.23 | 430 | 430 | 0.23 | 447 | 448 | 4.20 |
4.2 | 512 | 512 | 517 | 0.00 | 570 | 594 | 11.30 | 517 | 517 | 0.97 | 516 | 518 | 0.78 | 513 | 513 | 0.20 | 559 | 559 | 9.18 |
4.3 | 516 | 516 | 521 | 0.00 | 590 | 607 | 14.30 | 519 | 522 | 0.58 | 520 | 520 | 0.78 | 519 | 521 | 0.58 | 537 | 539 | 4.07 |
4.4 | 494 | 494 | 503 | 0.00 | 547 | 578 | 10.70 | 495 | 497 | 0.20 | 501 | 504 | 1.42 | 495 | 496 | 0.20 | 527 | 530 | 6.68 |
4.5 | 512 | 514 | 517 | 0.39 | 545 | 554 | 6.40 | 514 | 515 | 0.39 | 514 | 514 | 0.39 | 514 | 517 | 0.39 | 527 | 529 | 2.93 |
4.6 | 560 | 560 | 560 | 0.00 | 637 | 650 | 13.80 | 563 | 565 | 0.53 | 563 | 563 | 0.54 | 561 | 565 | 0.18 | 607 | 608 | 8.39 |
4.7 | 430 | 430 | 432 | 0.00 | 462 | 467 | 7.40 | 430 | 430 | 0.00 | 431 | 432 | 0.23 | 431 | 434 | 0.23 | 448 | 449 | 4.19 |
4.8 | 492 | 492 | 495 | 0.00 | 546 | 567 | 11.00 | 497 | 499 | 1.01 | 497 | 499 | 1.02 | 493 | 494 | 0.20 | 509 | 512 | 3.46 |
4.9 | 645 | 645 | 648 | 0.00 | 711 | 725 | 10.90 | 655 | 658 | 2.18 | 656 | 656 | 2.34 | 649 | 651 | 0.93 | 682 | 682 | 6.40 |
4.10 | 514 | 517 | 526 | 0.58 | 537 | 552 | 4.50 | 519 | 523 | 0.97 | 518 | 519 | 0.78 | 517 | 519 | 0.58 | 571 | 571 | 11.09 |
5.1 | 253 | 253 | 255 | 0.00 | 279 | 287 | 10.30 | 257 | 260 | 1.58 | 254 | 255 | 0.40 | 254 | 255 | 0.40 | 280 | 281 | 10.67 |
5.2 | 302 | 309 | 309 | 2.29 | 339 | 340 | 12.30 | 309 | 311 | 2.31 | 307 | 307 | 1.66 | 309 | 309 | 2.32 | 318 | 321 | 5.30 |
5.3 | 226 | 226 | 230 | 0.00 | 247 | 251 | 9.30 | 229 | 233 | 1.32 | 228 | 230 | 0.88 | 229 | 233 | 1.33 | 242 | 240 | 7.08 |
5.4 | 242 | 242 | 245 | 0.00 | 251 | 253 | 3.70 | 242 | 242 | 0.00 | 242 | 242 | 0.00 | 242 | 245 | 0.00 | 251 | 252 | 3.72 |
5.5 | 211 | 211 | 213 | 0.00 | 230 | 230 | 9.00 | 211 | 213 | 0.00 | 211 | 213 | 0.00 | 211 | 212 | 0.00 | 225 | 227 | 6.64 |
5.6 | 213 | 213 | 213 | 0.00 | 232 | 243 | 8.90 | 213 | 213 | 0.00 | 213 | 214 | 0.00 | 214 | 214 | 0.47 | 247 | 248 | 15.96 |
5.7 | 293 | 297 | 301 | 1.36 | 332 | 338 | 13.30 | 298 | 301 | 1.70 | 297 | 299 | 1.37 | 298 | 301 | 1.71 | 316 | 317 | 7.85 |
5.8 | 288 | 288 | 291 | 0.00 | 320 | 330 | 11.10 | 291 | 292 | 1.04 | 291 | 293 | 1.04 | 289 | 291 | 0.35 | 315 | 317 | 9.38 |
5.9 | 279 | 280 | 281 | 0.36 | 295 | 297 | 5.70 | 284 | 284 | 1.79 | 281 | 283 | 0.72 | 280 | 281 | 0.36 | 314 | 315 | 12.54 |
5.10 | 265 | 265 | 267 | 0.00 | 285 | 287 | 7.50 | 268 | 270 | 1.13 | 265 | 266 | 0.00 | 267 | 270 | 0.75 | 280 | 282 | 5.66 |
6.1 | 138 | 142 | 144 | 2.86 | 151 | 160 | 9.40 | 138 | 140 | 0.00 | 140 | 141 | 1.45 | 142 | 143 | 2.90 | 152 | 152 | 10.14 |
6.2 | 146 | 146 | 150 | 0.00 | 152 | 157 | 4.10 | 147 | 149 | 0.68 | 147 | 147 | 0.68 | 147 | 150 | 0.68 | 160 | 161 | 9.59 |
6.3 | 145 | 145 | 148 | 0.00 | 160 | 164 | 10.30 | 147 | 150 | 1.37 | 147 | 148 | 1.38 | 148 | 149 | 2.07 | 160 | 163 | 10.34 |
6.4 | 131 | 131 | 133 | 0.00 | 138 | 142 | 5.30 | 131 | 131 | 0.00 | 131 | 133 | 0.00 | 131 | 133 | 0.00 | 140 | 142 | 6.87 |
6.5 | 161 | 161 | 161 | 0.00 | 169 | 173 | 5.00 | 164 | 157 | 1.86 | 166 | 169 | 3.11 | 165 | 167 | 2.48 | 184 | 187 | 14.29 |
A.1 | 253 | 253 | 256 | 0.00 | 286 | 287 | 13.00 | 255 | 256 | 0.79 | 255 | 258 | 0.79 | 254 | 254 | 0.40 | 261 | 264 | 3.16 |
A.2 | 252 | 256 | 257 | 1.57 | 274 | 276 | 8.70 | 259 | 261 | 2.77 | 260 | 260 | 3.17 | 257 | 259 | 1.98 | 279 | 281 | 10.71 |
A.3 | 232 | 233 | 235 | 0.43 | 257 | 263 | 10.80 | 238 | 240 | 2.58 | 237 | 239 | 2.16 | 235 | 238 | 1.29 | 252 | 253 | 8.62 |
A.4 | 234 | 235 | 239 | 0.43 | 248 | 251 | 6.00 | 235 | 237 | 0.42 | 235 | 238 | 0.43 | 236 | 237 | 0.85 | 250 | 252 | 6.84 |
A.5 | 236 | 236 | 237 | 0.00 | 244 | 244 | 3.00 | 236 | 237 | 0.00 | 236 | 239 | 0.00 | 236 | 238 | 0.00 | 241 | 243 | 2.12 |
B.1 | 69 | 69 | 71 | 0.00 | 79 | 79 | 14.50 | 71 | 72 | 2.89 | 70 | 70 | 1.45 | 70 | 70 | 1.45 | 86 | 87 | 24.64 |
B.2 | 76 | 76 | 78 | 0.00 | 86 | 89 | 13.20 | 78 | 78 | 2.63 | 76 | 77 | 0.00 | 78 | 79 | 2.63 | 88 | 88 | 15.79 |
B.3 | 80 | 80 | 80 | 0.00 | 85 | 85 | 6.30 | 80 | 80 | 0.00 | 80 | 80 | 0.00 | 80 | 80 | 0.00 | 85 | 87 | 6.25 |
B.4 | 79 | 79 | 80 | 0.00 | 89 | 89 | 12.70 | 80 | 81 | 1.26 | 79 | 80 | 0.00 | 80 | 81 | 1.27 | 84 | 88 | 6.33 |
B.5 | 72 | 72 | 74 | 0.00 | 73 | 73 | 1.40 | 72 | 73 | 0.00 | 72 | 73 | 0.00 | 72 | 74 | 0.00 | 78 | 81 | 8.33 |
C.1 | 227 | 229 | 232 | 0.88 | 242 | 242 | 6.60 | 230 | 232 | 1.32 | 229 | 231 | 0.88 | 231 | 233 | 1.76 | 237 | 238 | 4.41 |
C.2 | 219 | 221 | 225 | 0.91 | 240 | 241 | 9.60 | 223 | 224 | 1.82 | 223 | 225 | 1.83 | 222 | 223 | 1.37 | 237 | 239 | 8.22 |
C.3 | 243 | 243 | 256 | 0.00 | 277 | 278 | 14.00 | 253 | 254 | 4.11 | 253 | 253 | 4.12 | 254 | 255 | 4.53 | 271 | 271 | 11.52 |
C.4 | 219 | 219 | 222 | 0.00 | 250 | 250 | 12.30 | 225 | 227 | 2.73 | 227 | 228 | 3.65 | 231 | 233 | 5.48 | 246 | 248 | 12.33 |
C.5 | 215 | 215 | 219 | 0.00 | 243 | 244 | 13.00 | 217 | 219 | 0.93 | 217 | 218 | 0.93 | 216 | 217 | 0.47 | 224 | 225 | 4.19 |
D.1 | 60 | 60 | 61 | 0.00 | 65 | 66 | 8.30 | 60 | 61 | 0.00 | 60 | 62 | 0.00 | 60 | 61 | 0.00 | 62 | 62 | 3.33 |
D.2 | 66 | 66 | 66 | 0.00 | 70 | 70 | 6.10 | 68 | 68 | 3.03 | 67 | 68 | 1.52 | 68 | 68 | 3.03 | 73 | 74 | 10.61 |
D.3 | 72 | 73 | 77 | 1.38 | 79 | 81 | 9.70 | 75 | 77 | 4.16 | 75 | 77 | 4.17 | 76 | 77 | 5.56 | 79 | 81 | 9.72 |
D.4 | 62 | 63 | 64 | 1.60 | 64 | 67 | 3.20 | 62 | 62 | 0.00 | 63 | 65 | 1.61 | 63 | 65 | 1.61 | 67 | 69 | 8.06 |
D.5 | 61 | 61 | 62 | 0.00 | 65 | 66 | 6.60 | 63 | 63 | 3.27 | 63 | 66 | 3.28 | 63 | 66 | 3.28 | 66 | 67 | 8.20 |
E.1 | 29 | 29 | 30 | 0.00 | 29 | 30 | 0.00 | 29 | 31 | 0.00 | 29 | 29 | 0.00 | 29 | 33 | 0.00 | 30 | 31 | 3.45 |
E.2 | 30 | 32 | 32 | 6.45 | 34 | 34 | 13.30 | 32 | 32 | 6.66 | 31 | 32 | 3.33 | 32 | 32 | 6.67 | 35 | 35 | 16.67 |
E.3 | 27 | 28 | 29 | 3.64 | 31 | 32 | 14.80 | 29 | 30 | 7.40 | 28 | 28 | 3.70 | 29 | 31 | 7.41 | 34 | 34 | 25.93 |
E.4 | 28 | 29 | 30 | 3.51 | 32 | 33 | 14.30 | 29 | 31 | 3.57 | 29 | 30 | 3.57 | 29 | 30 | 3.57 | 33 | 34 | 17.84 |
E.5 | 28 | 28 | 30 | 0.00 | 30 | 30 | 7.10 | 29 | 29 | 3.57 | 28 | 31 | 0.00 | 29 | 32 | 3.57 | 30 | 31 | 7.14 |
F.1 | 14 | 14 | 15 | 0.00 | 17 | 17 | 21.40 | 15 | 17 | 7.14 | 15 | 15 | 7.14 | 14 | 15 | 0.00 | 17 | 17 | 21.43 |
F.2 | 15 | 15 | 15 | 0.00 | 18 | 18 | 20.00 | 16 | 16 | 6.66 | 15 | 15 | 0.00 | 16 | 16 | 6.67 | 18 | 18 | 20.00 |
F.3 | 14 | 16 | 16 | 13.33 | 17 | 17 | 21.40 | 16 | 17 | 14.28 | 16 | 17 | 14.29 | 16 | 17 | 14.29 | 17 | 18 | 21.49 |
F.4 | 14 | 14 | 16 | 0.00 | 17 | 17 | 21.40 | 15 | 18 | 7.14 | 15 | 16 | 7.14 | 15 | 17 | 7.14 | 17 | 19 | 21.43 |
F.5 | 13 | 14 | 15 | 7.41 | 15 | 16 | 15.40 | 15 | 19 | 15.38 | 15 | 17 | 15.38 | 15 | 16 | 15.38 | 16 | 17 | 23.08 |
G.1 | 176 | 176 | 178 | 0.00 | 190 | 193 | 8.00 | 185 | 191 | 5.11 | 182 | 183 | 3.41 | 183 | 184 | 3.98 | 194 | 196 | 10.23 |
G.2 | 154 | 158 | 163 | 2.56 | 165 | 166 | 7.10 | 161 | 163 | 4.54 | 161 | 161 | 4.55 | 162 | 163 | 5.19 | 176 | 176 | 14.29 |
G.3 | 166 | 169 | 170 | 1.79 | 187 | 188 | 20.60 | 175 | 177 | 5.42 | 173 | 174 | 4.22 | 174 | 175 | 4.82 | 184 | 185 | 10.84 |
G.4 | 168 | 170 | 171 | 1.18 | 179 | 183 | 6.50 | 176 | 176 | 4.76 | 173 | 177 | 2.98 | 175 | 177 | 4.17 | 196 | 197 | 16.67 |
G.5 | 168 | 168 | 170 | 0.00 | 181 | 184 | 7.70 | 177 | 181 | 5.35 | 174 | 174 | 3.57 | 179 | 181 | 6.55 | 198 | 199 | 17.86 |
H.1 | 63 | 66 | 67 | 4.65 | 70 | 71 | 11.10 | 69 | 70 | 9.52 | 68 | 69 | 7.94 | 70 | 71 | 11.11 | 70 | 71 | 11.11 |
H.2 | 63 | 65 | 68 | 3.13 | 67 | 67 | 6.30 | 66 | 66 | 4.76 | 66 | 66 | 4.76 | 69 | 72 | 9.52 | 71 | 71 | 12.70 |
H.3 | 59 | 62 | 65 | 4.96 | 68 | 70 | 15.30 | 65 | 67 | 10.16 | 62 | 63 | 5.08 | 66 | 67 | 11.86 | 68 | 70 | 15.25 |
H.4 | 58 | 59 | 60 | 1.71 | 66 | 67 | 13.80 | 63 | 65 | 6.77 | 63 | 64 | 8.62 | 64 | 64 | 10.34 | 70 | 72 | 20.69 |
H.5 | 55 | 56 | 61 | 1.80 | 61 | 62 | 10.90 | 59 | 60 | 7.27 | 59 | 61 | 7.27 | 60 | 61 | 9.09 | 69 | 69 | 25.45 |
X | 196.40 | 197.31 | 199.75 | 1.09 | 214.98 | 219.42 | 10.12 | 199.51 | 200.92 | 2.95 | 199.15 | 200.37 | 2.43 | 199.32 | 200.85 | 3.04 | 212.42 | 213.69 | 10.82 |
Instance | Test Problem | Sopt | LBLP | QPSO | 3R—PSO | F & F | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | |||
5.100.00 | 24,381 | 24,381 | 24,360 | 0.00 | 24,381 | 24381 | 0.00 | 24,381 | 24,381 | 0.00 | 24,381 | — | 0.00 | |
5.100.01 | 24,274 | 24,274 | 24,274 | 0.00 | 24,274 | 24,274 | 0.00 | 24274 | 24,274 | 0.00 | 24,274 | — | 0.00 | |
5.100.02 | 23,551 | 23,551 | 23,546 | 0.00 | 23,551 | 23,551 | 0.00 | 23,538 | 23,538 | 0.06 | 23,551 | — | 0.00 | |
5.100.03 | 23534 | 23534 | 23473 | 0.00 | 23,534 | 23,534 | 0.00 | 23534 | 23,508 | 0.00 | 23,534 | — | 0.00 | |
mknapcb1 | 5.100.04 | 23,991 | 23,991 | 23,980 | 0.00 | 23,991 | 23,991 | 0.00 | 23,991 | 23,961 | 0.00 | 23,991 | — | 0.00 |
5.250.00 | 59,312 | 59,312 | 58,934 | 0.00 | 59,312 | 59,312 | 0.00 | — | — | — | 59,312 | — | 0.00 | |
5.250.01 | 61,472 | 61,472 | 61,324 | 0.00 | 61,472 | 61,470 | 0.00 | — | — | — | 61,468 | — | 0.01 | |
5.250.02 | 62,130 | 62,130 | 61,997 | 0.00 | 62,130 | 62,130 | 0.00 | — | — | — | 62,130 | — | 0.00 | |
5.250.03 | 59,463 | 59,463 | 56,901 | 0.00 | 59,427 | 59,427 | 0.06 | — | — | — | 59,436 | — | 0.05 | |
mknapcb2 | 5.250.04 | 58,951 | 58,082 | 57,789 | 1.47 | 58,951 | 58,951 | 0.00 | — | — | — | 58,951 | — | 0.00 |
5.500.00 | 120,148 | 120,148 | 120,121 | 0.00 | 120,130 | 120,105 | 0.01 | 120,141 | 102,101 | 0.01 | 120,134 | — | 0.01 | |
5.500.01 | 117,879 | 115,634 | 114,143 | 1.90 | 117,844 | 117,834 | 0.03 | 117,864 | 117,825 | 0.01 | 117,864 | — | 0.01 | |
5.500.02 | 121,131 | 121,131 | 120,499 | 0.00 | 121,112 | 121,092 | 0.02 | 121,129 | 121,103 | 0.00 | 121,131 | — | 0.00 | |
5.500.03 | 120,804 | 119,124 | 117,311 | 1.39 | 120,804 | 120,740 | 0.00 | 120,804 | 120,722 | 0.00 | 120,794 | — | 0.01 | |
mknapcb3 | 5.500.04 | 122,319 | 122,319 | 119,153 | 0.00 | 122,319 | 122,300 | 0.00 | 122,319 | 122,310 | 0.00 | 122,319 | — | 0.00 |
10.100.00 | 23,064 | 23,064 | 22,981 | 0.00 | 23,064 | 23,064 | 0.00 | 23,064 | 23,050 | 0.00 | 23,064 | — | 0.00 | |
10.100.01 | 22,801 | 22,801 | 22,775 | 0.00 | 22,801 | 22,801 | 0.00 | 22,801 | 22,752 | 0.00 | 22,801 | — | 0.00 | |
10.100.02 | 22,131 | 22,131 | 22,131 | 0.00 | 22,131 | 22,131 | 0.00 | 22,131 | 22,119 | 0.00 | 22,131 | — | 0.00 | |
10.100.03 | 22,772 | 22,772 | 22,283 | 0.00 | 22,772 | 22,772 | 0.00 | 22,772 | 22,744 | 0.00 | 22,772 | — | 0.00 | |
mknapcb4 | 10.100.04 | 22,751 | 22,751 | 22,647 | 0.00 | 22,751 | 22,751 | 0.00 | 22,751 | 22,651 | 0.00 | 22,751 | — | 0.00 |
10.250.00 | 59,187 | 58,476 | 58,164 | 1.20 | 59,182 | 59173 | 0.01 | — | — | — | 59,164 | — | 0.04 | |
10.250.01 | 58,781 | 57,937 | 57,286 | 1.44 | 58,781 | 58,733 | 0.00 | — | — | — | 58,693 | — | 0.15 | |
10.250.02 | 58,097 | 58,097 | 57,921 | 0.00 | 58,097 | 58,096 | 0.00 | — | — | — | 58,094 | — | 0.01 | |
10.250.03 | 61000 | 61,000 | 60,650 | 0.00 | 61,000 | 60,986 | 0.00 | — | — | — | 60,972 | — | 0.05 | |
mknapcb5 | 10.250.04 | 58,092 | 56,276 | 56,259 | 3.13 | 58,092 | 58,092 | 0.00 | — | — | — | 58,092 | — | 0.00 |
10.500.00 | 117,821 | 117,779 | 117,754 | 0.04 | 117,744 | 117,733 | 0.07 | 117,790 | 117,699 | 0.03 | 117,734 | — | 0.07 | |
10.500.01 | 119,249 | 119,206 | 119,179 | 0.04 | 119,177 | 119,148 | 0.06 | 119,155 | 119,125 | 0.08 | 119,181 | — | 0.06 | |
10.500.02 | 119,215 | 119,215 | 119,162 | 0.00 | 119,215 | 119,146 | 0.00 | 119,211 | 119,094 | 0.00 | 119,194 | — | 0.02 | |
10.500.03 | 118,829 | 118,813 | 118,777 | 0.01 | 118,775 | 118,747 | 0.05 | 118,813 | 118,754 | 0.01 | 118,784 | — | 0.04 | |
mknapcb6 | 10.500.04 | 116,530 | 116,509 | 116,470 | 0.02 | 116,502 | 116,449 | 0.02 | 116,470 | 116,509 | 0.05 | 116,471 | — | 0.05 |
X | 67,455.33 | 67,179.10 | 66,741.46 | 0.41 | 67,443.87 | 67,430.47 | 0.02 | — | — | — | 67,438.93 | — | 0.02 |
ID | Sopt | LBLP | Classic SHO | Classic SHO + IRace | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Best | Worst | Mean | RPD (%) | Best | Worst | Mean | RPD (%) | Best | Worst | Mean | RPD (%) | ||
CFP01 | 0 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 |
CFP02 | 3 | 3 | 5 | 3.7 | 0.00 | 3 | 4 | 3.5 | 0.00 | 3 | 4 | 3.6 | 0.00 |
CFP03 | 5 | 5 | 6 | 5.3 | 0.00 | 5 | 8 | 7.2 | 0.00 | 5 | 6 | 5.4 | 0.00 |
CFP04 | 2 | 2 | 3 | 2.2 | 0.00 | 2 | 3 | 2.6 | 0.00 | 2 | 4 | 2.9 | 0.00 |
CFP05 | 8 | 8 | 10 | 8.8 | 0.00 | 8 | 9 | 8.6 | 0.00 | 8 | 8 | 8.0 | 0.00 |
CFP06 | 4 | 4 | 6 | 4.8 | 0.00 | 4 | 7 | 5.7 | 0.00 | 4 | 6 | 4.7 | 0.00 |
CFP07 | 7 | 7 | 7 | 7.0 | 0.00 | 7 | 10 | 8.6 | 0.00 | 7 | 7 | 7.0 | 0.00 |
CFP08 | 7 | 7 | 8 | 7.1 | 0.00 | 7 | 9 | 8.5 | 0.00 | 7 | 7 | 7.0 | 0.00 |
CFP09 | 25 | 25 | 28 | 26.6 | 0.00 | 25 | 27 | 26.0 | 0.00 | 25 | 27 | 26.2 | 0.00 |
CFP10 | 0 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 |
CFP11 | 0 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 |
CFP12 | 7 | 7 | 9 | 7.9 | 0.00 | 8 | 9 | 8.7 | 13.33 | 7 | 7 | 7.0 | 0.00 |
CFP13 | 8 | 9 | 11 | 9.9 | 11.76 | 10 | 13 | 12.3 | 22.22 | 9 | 9 | 9.0 | 11.76 |
CFP14 | — | 24 | 27 | 25.4 | — | 25 | 28 | 27.4 | — | 24 | 24 | 24.0 | — |
CFP15 | — | 17 | 17 | 17.0 | — | 19 | 20 | 19.7 | — | 18 | 19 | 18.5 | — |
CFP16 | — | 30 | 33 | 30.3 | — | 33 | 35 | 34.4 | — | 31 | 33 | 32.2 | — |
CFP17 | — | 26 | 28 | 26.8 | — | 26 | 27 | 26.8 | — | 26 | 28 | 27.1 | — |
CFP18 | — | 42 | 45 | 43.4 | — | 43 | 46 | 44.8 | — | 42 | 44 | 43.2 | — |
CFP19 | — | 40 | 43 | 40.7 | — | 43 | 45 | 44.3 | — | 41 | 41 | 41.0 | — |
CFP20 | — | 2 | 2 | 2.0 | — | 2 | 4 | 3.5 | — | 2 | 4 | 2.8 | — |
CFP21 | — | 37 | 39 | 37.8 | — | 40 | 41 | 40.8 | — | 38 | 40 | 38.9 | — |
CFP22 | — | 0 | 0 | 0.0 | — | 0 | 2 | 0.4 | — | 0 | 1 | 0.7 | — |
CFP23 | — | 10 | 14 | 11.1 | — | 12 | 14 | 13.6 | — | 11 | 13 | 12.0 | — |
CFP24 | — | 18 | 22 | 19.9 | — | 21 | 22 | 21.8 | — | 19 | 20 | 19.4 | — |
CFP25 | — | 40 | 45 | 41.7 | — | 41 | 43 | 41.8 | — | 40 | 42 | 40.8 | — |
CFP26 | — | 59 | 65 | 61.4 | — | 59 | 59 | 59.0 | — | 59 | 61 | 60.2 | — |
CFP27 | — | 64 | 68 | 64.6 | — | 65 | 66 | 65.4 | — | 64 | 64 | 64.0 | — |
CFP28 | — | 54 | 57 | 55.2 | — | 54 | 57 | 56.1 | — | 54 | 56 | 55.0 | — |
CFP29 | — | 91 | 96 | 93.5 | — | 93 | 94 | 93.7 | — | 92 | 94 | 93.0 | — |
CFP30 | — | 37 | 40 | 37.4 | — | 38 | 40 | 39.1 | — | 37 | 38 | 37.5 | — |
CFP31 | — | 52 | 55 | 53.4 | — | 53 | 54 | 53.5 | — | 52 | 52 | 52.0 | — |
CFP32 | — | 68 | 71 | 68.8 | — | 69 | 72 | 70.6 | — | 68 | 69 | 68.6 | — |
CFP33 | — | 93 | 95 | 93.6 | — | 95 | 95 | 95.0 | — | 94 | 96 | 95.0 | — |
CFP34 | — | 259 | 263 | 261.2 | — | 259 | 260 | 259.6 | — | 259 | 259 | 259.0 | — |
CFP35 | — | 90 | 96 | 91.6 | — | 92 | 94 | 93.6 | — | 91 | 91 | 91.0 | — |
X | 5.85 | 35.14 | 37.54 | 36.00 | 0.90 | 36.09 | 37.57 | 37.04 | 2.74 | 35.43 | 36.37 | 35.90 | 0.90 |
ID | Sopt | LBLP | HBBO + AS | ||||||
---|---|---|---|---|---|---|---|---|---|
Best | Worst | Mean | RPD (%) | Best | Worst | Mean | RPD (%) | ||
CFP01 | 0 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 |
CFP02 | 3 | 3 | 5 | 3.7 | 0.00 | 3 | 3 | 3.0 | 0.00 |
CFP03 | 5 | 5 | 6 | 5.3 | 0.00 | 5 | 5 | 5.0 | 0.00 |
CFP04 | 2 | 2 | 3 | 2.2 | 0.00 | 2 | 2 | 2.0 | 0.00 |
CFP05 | 8 | 8 | 10 | 8.8 | 0.00 | 8 | 8 | 8.0 | 0.00 |
CFP06 | 4 | 4 | 6 | 4.8 | 0.00 | 4 | 4 | 4.0 | 0.00 |
CFP07 | 7 | 7 | 7 | 7.0 | 0.00 | 7 | 7 | 7.0 | 0.00 |
CFP08 | 7 | 7 | 8 | 7.1 | 0.00 | 7 | 7 | 7.0 | 0.00 |
CFP09 | 25 | 25 | 28 | 26.6 | 0.00 | 25 | 25 | 25.0 | 0.00 |
CFP10 | 0 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 |
CFP11 | 0 | 0 | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 0.00 |
CFP12 | 7 | 7 | 9 | 7.9 | 0.00 | 8 | 11 | 9.4 | 14.28 |
CFP13 | 8 | 9 | 11 | 9.9 | 11.76 | 9 | 11 | 9.6 | 12.5 |
CFP14 | — | 24 | 27 | 25.4 | — | 29 | 33 | 31.2 | — |
CFP15 | — | 17 | 17 | 17.0 | — | 17 | 26 | 22.8 | — |
CFP16 | — | 30 | 33 | 30.3 | — | 36 | 42 | 38.0 | — |
CFP17 | — | 26 | 28 | 26.8 | — | 33 | 35 | 34.2 | — |
CFP18 | — | 42 | 45 | 43.4 | — | 48 | 50 | 49.0 | — |
CFP19 | — | 40 | 43 | 40.7 | — | 50 | 54 | 52.2 | — |
CFP20 | — | 2 | 2 | 2.0 | — | 28 | 39 | 33.4 | — |
CFP21 | — | 37 | 39 | 37.8 | — | 56 | 63 | 58.8 | — |
CFP22 | — | 0 | 0 | 0.0 | — | 42 | 47 | 44.0 | — |
CFP23 | — | 10 | 14 | 11.1 | — | 44 | 53 | 48.2 | — |
CFP24 | — | 18 | 22 | 19.9 | — | 46 | 52 | 49.8 | — |
CFP25 | — | 40 | 45 | 41.7 | — | 61 | 67 | 63.2 | — |
CFP26 | — | 59 | 65 | 61.4 | — | 71 | 73 | 71.8 | — |
CFP27 | — | 64 | 68 | 64.6 | — | 71 | 72 | 71.4 | — |
CFP28 | — | 54 | 57 | 55.2 | — | 99 | 112 | 106.2 | — |
CFP29 | — | 91 | 96 | 93.5 | — | 118 | 125 | 122.0 | — |
CFP30 | — | 37 | 40 | 37.4 | — | 64 | 67 | 65.0 | — |
CFP31 | — | 52 | 55 | 53.4 | — | 79 | 89 | 84.2 | — |
CFP32 | — | 68 | 71 | 68.8 | — | 90 | 97 | 93.8 | — |
CFP33 | — | 93 | 95 | 93.6 | — | 155 | 167 | 159.0 | — |
CFP34 | — | 259 | 263 | 261.2 | — | 386 | 417 | 408.2 | — |
CFP35 | — | 90 | 96 | 91.6 | — | 225 | 234 | 231.4 | — |
X | 5.85 | 35.14 | 37.54 | 36.00 | 0.90 | 55.03 | 59.91 | 57.65 | 2.06 |
Approach | LBLP | Classic SHO | Classic SHO + IRace |
---|---|---|---|
LBLP | - | 0.00 | ≥0.05 |
Classic SHO | ≥0.05 | - | ≥0.05 |
Classic SHO + IRace | ≥0.05 | 0.00 | - |
ID | Sopt | LBLP | Classic SHO | Classic SHO + IRace | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Best | Mean | RPD (%) | Best | Mean | RPD (%) | Best | Mean | RPD (%) | ||
4.1 | 429 | 429 | 432 | 0.00 | 430 | 432 | 0.23 | 429 | 431 | 0.00 |
4.2 | 512 | 512 | 517 | 0.00 | 528 | 528 | 3.08 | 512 | 513 | 0.00 |
4.3 | 516 | 516 | 521 | 0.00 | 532 | 532 | 3.05 | 518 | 518 | 0.39 |
4.4 | 494 | 494 | 503 | 0.00 | 505 | 506 | 2.20 | 498 | 500 | 0.81 |
4.5 | 512 | 514 | 517 | 0.39 | 514 | 514 | 0.39 | 514 | 516 | 0.39 |
4.6 | 560 | 560 | 560 | 0.00 | 560 | 562 | 0.00 | 560 | 561 | 0.00 |
4.7 | 430 | 430 | 432 | 0.00 | 430 | 430 | 0.00 | 430 | 432 | 0.00 |
4.8 | 492 | 492 | 495 | 0.00 | 503 | 503 | 2.21 | 492 | 493 | 0.00 |
4.9 | 645 | 645 | 648 | 0.00 | 669 | 669 | 3.65 | 655 | 657 | 1.54 |
4.10 | 514 | 517 | 526 | 0.58 | 518 | 518 | 0.78 | 517 | 519 | 0.58 |
5.1 | 253 | 253 | 255 | 0.00 | 257 | 257 | 1.57 | 253 | 255 | 0.00 |
5.2 | 302 | 309 | 309 | 2.29 | 312 | 314 | 3.26 | 310 | 312 | 2.61 |
5.3 | 226 | 226 | 230 | 0.00 | 234 | 234 | 3.48 | 226 | 226 | 0.00 |
5.4 | 242 | 242 | 245 | 0.00 | 242 | 242 | 0.00 | 242 | 244 | 0.00 |
5.5 | 211 | 211 | 213 | 0.00 | 211 | 211 | 0.00 | 211 | 211 | 0.00 |
5.6 | 213 | 213 | 213 | 0.00 | 216 | 217 | 1.40 | 214 | 216 | 0.47 |
5.7 | 293 | 297 | 301 | 1.36 | 296 | 296 | 1.02 | 297 | 299 | 1.36 |
5.8 | 288 | 288 | 291 | 0.00 | 291 | 292 | 1.04 | 289 | 291 | 0.35 |
5.9 | 279 | 280 | 281 | 0.36 | 280 | 281 | 0.36 | 280 | 282 | 0.36 |
5.10 | 265 | 265 | 267 | 0.00 | 271 | 271 | 2.24 | 267 | 268 | 0.75 |
6.1 | 138 | 142 | 144 | 2.86 | 140 | 140 | 1.44 | 141 | 143 | 2.15 |
6.2 | 146 | 146 | 150 | 0.00 | 146 | 146 | 0.00 | 146 | 146 | 0.00 |
6.3 | 145 | 145 | 148 | 0.00 | 148 | 148 | 2.05 | 146 | 147 | 0.69 |
6.4 | 131 | 131 | 133 | 0.00 | 133 | 133 | 1.52 | 132 | 133 | 0.76 |
6.5 | 161 | 161 | 161 | 0.00 | 165 | 166 | 2.45 | 163 | 163 | 1.23 |
A.1 | 253 | 253 | 256 | 0.00 | 256 | 256 | 1.18 | 254 | 256 | 0.39 |
A.2 | 252 | 256 | 257 | 1.57 | 259 | 259 | 2.74 | 257 | 258 | 1.96 |
A.3 | 232 | 233 | 235 | 0.43 | 239 | 239 | 2.97 | 235 | 235 | 1.28 |
A.4 | 234 | 235 | 239 | 0.43 | 235 | 235 | 0.43 | 235 | 236 | 0.43 |
A.5 | 236 | 236 | 237 | 0.00 | 236 | 236 | 0.00 | 236 | 237 | 0.00 |
B.1 | 69 | 69 | 71 | 0.00 | 72 | 72 | 4.26 | 70 | 72 | 1.44 |
B.2 | 76 | 76 | 78 | 0.00 | 81 | 81 | 6.37 | 78 | 78 | 2.60 |
B.3 | 80 | 80 | 80 | 0.00 | 80 | 80 | 0.00 | 80 | 82 | 0.00 |
B.4 | 79 | 79 | 80 | 0.00 | 81 | 82 | 2.50 | 80 | 81 | 1.26 |
B.5 | 72 | 72 | 74 | 0.00 | 72 | 72 | 0.00 | 72 | 73 | 0.00 |
C.1 | 227 | 229 | 232 | 0.88 | 233 | 234 | 2.61 | 231 | 233 | 1.75 |
C.2 | 219 | 221 | 225 | 0.91 | 223 | 223 | 1.81 | 222 | 222 | 1.36 |
C.3 | 243 | 243 | 256 | 0.00 | 251 | 251 | 3.24 | 246 | 246 | 1.23 |
C.4 | 219 | 219 | 222 | 0.00 | 225 | 225 | 2.70 | 221 | 221 | 0.91 |
C.5 | 215 | 215 | 219 | 0.00 | 215 | 215 | 0.00 | 215 | 217 | 0.00 |
D.1 | 60 | 60 | 61 | 0.00 | 60 | 60 | 0.00 | 60 | 60 | 0.00 |
D.2 | 66 | 66 | 66 | 0.00 | 68 | 68 | 2.99 | 67 | 67 | 1.50 |
D.3 | 72 | 73 | 77 | 1.38 | 76 | 76 | 5.41 | 74 | 76 | 2.74 |
D.4 | 62 | 63 | 64 | 1.60 | 62 | 62 | 0.00 | 63 | 64 | 1.60 |
D.5 | 61 | 61 | 62 | 0.00 | 61 | 61 | 0.00 | 61 | 63 | 0.00 |
E.1 | 29 | 29 | 30 | 0.00 | 29 | 29 | 0.00 | 29 | 29 | 0.00 |
E.2 | 30 | 32 | 32 | 6.45 | 31 | 31 | 3.28 | 32 | 33 | 6.45 |
E.3 | 27 | 28 | 29 | 3.64 | 27 | 27 | 0.00 | 28 | 28 | 3.64 |
E.4 | 28 | 29 | 30 | 3.51 | 29 | 29 | 3.51 | 29 | 30 | 3.51 |
E.5 | 28 | 28 | 30 | 0.00 | 28 | 28 | 0.00 | 28 | 30 | 0.00 |
F.1 | 14 | 14 | 15 | 0.00 | 14 | 14 | 0.00 | 14 | 14 | 0.00 |
F.2 | 15 | 15 | 15 | 0.00 | 15 | 15 | 0.00 | 15 | 15 | 0.00 |
F.3 | 14 | 16 | 16 | 13.33 | 17 | 18 | 19.35 | 16 | 18 | 13.33 |
F.4 | 14 | 14 | 16 | 0.00 | 15 | 16 | 6.90 | 14 | 14 | 0.00 |
F.5 | 13 | 14 | 15 | 7.41 | 14 | 16 | 7.41 | 14 | 16 | 7.41 |
G.1 | 176 | 176 | 178 | 0.00 | 178 | 180 | 1.13 | 177 | 178 | 0.57 |
G.2 | 154 | 158 | 163 | 2.56 | 158 | 159 | 2.56 | 158 | 160 | 2.56 |
G.3 | 166 | 169 | 170 | 1.79 | 170 | 172 | 2.38 | 169 | 170 | 1.79 |
G.4 | 168 | 170 | 171 | 1.18 | 168 | 168 | 0.00 | 168 | 168 | 0.00 |
G.5 | 168 | 168 | 170 | 0.00 | 170 | 170 | 1.18 | 168 | 169 | 0.00 |
H.1 | 63 | 66 | 67 | 4.65 | 68 | 70 | 7.63 | 66 | 66 | 4.65 |
H.2 | 63 | 65 | 68 | 3.13 | 65 | 66 | 3.13 | 65 | 67 | 3.13 |
H.3 | 59 | 62 | 65 | 4.96 | 62 | 65 | 4.96 | 62 | 63 | 4.96 |
H.4 | 58 | 59 | 60 | 1.71 | 58 | 58 | 0.00 | 59 | 59 | 1.71 |
H.5 | 55 | 56 | 61 | 1.80 | 58 | 60 | 5.31 | 57 | 58 | 3.57 |
X | 196.40 | 197.31 | 199.75 | 1.09 | 199.85 | 200.31 | 2.24 | 197.95 | 199.05 | 1.42 |
Approach | LBLP | Classic SHO | Classic SHO + IRace |
---|---|---|---|
LBLP | - | 0.00 | ≥0.05 |
Classic SHO | ≥0.05 | - | ≥0.05 |
Classic SHO + IRace | ≥0.05 | 0.00 | - |
ID | Test Problem | Sopt | LBLP | Classic SHO | Classic SHO + IRace | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Best | Worst | Mean | RPD (%) | Best | Worst | Mean | RPD (%) | Best | Worst | Mean | RPD (%) | |||
mknapcb1 | 5.100.00 | 24,381 | 24,381 | 24,301 | 24,360 | 0.00 | 24,381 | 22,431 | 23,796 | 0.00 | 24,381 | 22,674 | 24,279 | 0.00 |
5.100.01 | 24,274 | 24,274 | 24,274 | 24,274 | 0.00 | 24,274 | 24,274 | 24,274 | 0.00 | 24274 | 24,274 | 24,274 | 0.00 | |
5.100.02 | 23,551 | 23,551 | 23,538 | 23,546 | 0.00 | 23,551 | 21,196 | 22,868 | 0.00 | 23,551 | 22,138 | 23,311 | 0.00 | |
5.100.03 | 23,534 | 23,534 | 23,288 | 23,473 | 0.00 | 23,534 | 21,181 | 22,828 | 0.00 | 23,534 | 21,887 | 23,188 | 0.00 | |
5.100.04 | 23,991 | 23,991 | 23,947 | 23,980 | 0.00 | 23,991 | 21,832 | 23,624 | 0.00 | 23,991 | 23,031 | 23,809 | 0.00 | |
mknapcb2 | 5.250.00 | 59,312 | 59,312 | 58,473 | 58,934 | 0.00 | 59,312 | 55,160 | 58,066 | 0.00 | 59,312 | 55,753 | 58,814 | 0.00 |
5.250.01 | 61,472 | 61,472 | 60,692 | 61,324 | 0.00 | 61,472 | 55,325 | 60,857 | 0.00 | 61,472 | 59,628 | 61,361 | 0.00 | |
5.250.02 | 62,130 | 62,130 | 61,702 | 61,997 | 0.00 | 60,266 | 56,650 | 59,398 | 3.00 | 62,130 | 57,781 | 61,695 | 0.00 | |
5.250.03 | 59,463 | 59,463 | 55,164 | 56,901 | 0.00 | 59,463 | 53,517 | 57,739 | 0.00 | 59,463 | 57,084 | 59,082 | 0.00 | |
5.250.04 | 58,951 | 58,082 | 57,550 | 57,789 | 1.47 | 56,003 | 53,203 | 55,611 | 5.00 | 58,361 | 56,611 | 58,204 | 1.00 | |
mknapcb3 | 5.500.00 | 120,148 | 120,148 | 119,978 | 120,121 | 0.00 | 120,148 | 108,133 | 118,826 | 0.00 | 119,908 | 113,912 | 118,769 | 0.20 |
5.500.01 | 117,879 | 115,634 | 112,821 | 114,143 | 1.90 | 117,879 | 109,627 | 116,971 | 0.00 | 117,879 | 111,985 | 116,523 | 0.00 | |
5.500.02 | 121,131 | 121,131 | 119,156 | 120,499 | 0.00 | 120,525 | 114,499 | 118,778 | 0.50 | 121,131 | 112,652 | 120,368 | 0.00 | |
5.500.03 | 120,804 | 119,124 | 115,828 | 117,311 | 1.39 | 120,200 | 114,190 | 119,479 | 0.50 | 120,804 | 114,764 | 119,415 | 0.00 | |
5.500.04 | 122,319 | 122,319 | 117,242 | 119,153 | 0.00 | 121,707 | 111,971 | 119,079 | 0.50 | 122,074 | 113,529 | 120024 | 0.20 | |
mknapcb4 | 10.100.00 | 23,064 | 23,064 | 22,905 | 22,981 | 0.00 | 21,911 | 20,815 | 21,659 | 5.00 | 23,064 | 22,372 | 22,974 | 0.00 |
10.100.01 | 22,801 | 22,801 | 22,630 | 22,775 | 0.00 | 22,801 | 21,205 | 22,434 | 0.00 | 22,801 | 21,205 | 22,625 | 0.00 | |
10.100.02 | 22,131 | 22,131 | 22,131 | 22,131 | 0.00 | 22,131 | 21,024 | 21,976 | 0.00 | 22,131 | 20,803 | 22,065 | 0.00 | |
10.100.03 | 22,772 | 22,772 | 22,052 | 22,283 | 0.00 | 22,772 | 21,633 | 22,556 | 0.00 | 22,772 | 21,178 | 22,629 | 0.00 | |
10.100.04 | 22,751 | 22,751 | 22,417 | 22,647 | 0.00 | 22,751 | 21,158 | 22,273 | 0.00 | 22,751 | 21,613 | 22,535 | 0.00 | |
mknapcb5 | 10.250.00 | 59,187 | 58,476 | 57,530 | 58,164 | 1.20 | 56,820 | 51,138 | 55,569 | 4.00 | 58,003 | 56,263 | 57,777 | 2.00 |
10.250.01 | 58,781 | 57,937 | 56,490 | 57,286 | 1.44 | 55,842 | 51,933 | 54,865 | 5.00 | 58,781 | 56,430 | 58,287 | 0.00 | |
10.250.02 | 58,097 | 58,097 | 57,062 | 57,921 | 0.00 | 55,773 | 51,311 | 54,435 | 4.00 | 58,097 | 54,611 | 57,226 | 0.00 | |
10.250.03 | 61,000 | 61,000 | 60,326 | 60,650 | 0.00 | 61,000 | 56,730 | 60,402 | 0.00 | 59,170 | 54,436 | 58,271 | 3.00 | |
10.250.04 | 58,092 | 56,276 | 56,204 | 56,259 | 3.13 | 55,768 | 50,749 | 55,066 | 4.00 | 57,511 | 54,636 | 56,965 | 1.00 | |
mknapcb6 | 10.500.00 | 117,821 | 117,779 | 117,736 | 117,754 | 0.04 | 117,232 | 110,198 | 116,317 | 0.50 | 117,585 | 111,706 | 116,703 | 0.20 |
10.500.01 | 119,249 | 119,206 | 119,164 | 119,179 | 0.04 | 118,534 | 107,865 | 115,867 | 0.60 | 119,249 | 109,709 | 117,627 | 0.00 | |
10.500.02 | 119,215 | 119,215 | 119,129 | 119,162 | 0.00 | 118,619 | 110,316 | 116,294 | 0.50 | 118,857 | 114,103 | 118,620 | 0.30 | |
10.500.03 | 118,829 | 118,813 | 118,761 | 118,777 | 0.01 | 117,878 | 109,627 | 116,558 | 0.80 | 118,710 | 112,775 | 117,345 | 0.10 | |
10.500.04 | 116,530 | 116,509 | 116,445 | 116,470 | 0.02 | 115,365 | 106,136 | 112,781 | 1.00 | 116,297 | 108,156 | 115,157 | 0.20 | |
X | 67,455.33 | 67,179 | 66,298 | 66,741 | 0.35 | 66,730 | 61,834 | 65,708 | 1.16 | 67,268 | 63,590 | 66,664 | 0.27 |
ID | Test Problem | Sopt | LBLP | LMPB | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Best | Worst | Mean | RPD (%) | Best | Worst | Mean | RPD (%) | |||
mknapcb1 | 5.100.00 | 24,381 | 24,381 | 24,301 | 24,360 | 0.00 | 24,381 | 17,595 | 18,193 | 0.00 |
5.100.01 | 24,274 | 24,274 | 24,274 | 24,274 | 0.00 | 24,274 | 17,401 | 17,674 | 0.00 | |
5.100.02 | 23,551 | 23,551 | 23,538 | 23,546 | 0.00 | 23,551 | 17,692 | 17,861 | 0.00 | |
5.100.03 | 23,534 | 23,534 | 23,288 | 23,473 | 0.00 | 23,534 | 19,685 | 19,692 | 0.00 | |
5.100.04 | 23,991 | 23,991 | 23,947 | 23,980 | 0.00 | 23,991 | 17,744 | 17,863 | 0.00 | |
mknapcb2 | 5.250.00 | 59,312 | 59,312 | 58,473 | 58,934 | 0.00 | 59,312 | 46,049 | 46,588 | 0.00 |
5.250.01 | 61,472 | 61,472 | 60,692 | 61,324 | 0.00 | 61,472 | 46,890 | 47,299 | 0.00 | |
5.250.02 | 62,130 | 62,130 | 61,702 | 61,997 | 0.00 | 62,130 | 49,237 | 49,262 | 0.00 | |
5.250.03 | 59,463 | 59,463 | 55,164 | 56,901 | 0.00 | 59,463 | 42,804 | 46,365 | 0.00 | |
5.250.04 | 58,951 | 58,082 | 57,550 | 57,789 | 1.47 | 58,951 | 46,870 | 47,005 | 0.00 | |
mknapcb3 | 5.500.00 | 120,148 | 120,148 | 119,978 | 120,121 | 0.00 | 101,980 | 73,168 | 88,110 | 15.12 |
5.500.01 | 117,879 | 115,634 | 112,821 | 114,143 | 1.90 | 99,901 | 71,265 | 90,507 | 15.25 | |
5.500.02 | 121,131 | 121,131 | 119,156 | 120,499 | 0.00 | 102,559 | 74,678 | 91,014 | 15.33 | |
5.500.03 | 120,804 | 119,124 | 115,828 | 117,311 | 1.39 | 100,864 | 74,715 | 91,769 | 16.5 | |
5.500.04 | 122,319 | 122,319 | 117,242 | 119,153 | 0.00 | 102,520 | 74,537 | 91,772 | 16.18 | |
mknapcb4 | 10.100.00 | 23,064 | 23,064 | 22,905 | 22,981 | 0.00 | 23,064 | 17,298 | 22,276 | 0.00 |
10.100.01 | 22,801 | 22,801 | 22,630 | 22,775 | 0.00 | 22,801 | 17,352 | 21,296 | 0.00 | |
10.100.02 | 22,131 | 22,131 | 22,131 | 22,131 | 0.00 | 22,131 | 15,699 | 20,487 | 0.00 | |
10.100.03 | 22,772 | 22,772 | 22,052 | 22,283 | 0.00 | 22,772 | 18,817 | 19,796 | 0.00 | |
10.100.04 | 22,751 | 22,751 | 22,417 | 22,647 | 0.00 | 22,751 | 17,564 | 22,604 | 0.00 | |
mknapcb5 | 10.250.00 | 59,187 | 58,476 | 57,530 | 58,164 | 1.20 | 59,187 | 48,086 | 55,819 | 0.00 |
10.250.01 | 58,781 | 57,937 | 56,490 | 57,286 | 1.44 | 58,781 | 43,173 | 55,303 | 0.00 | |
10.250.02 | 58,097 | 58,097 | 57062 | 57,921 | 0.00 | 58,097 | 45,538 | 52,908 | 0.00 | |
10.250.03 | 61,000 | 61,000 | 60,326 | 60,650 | 0.00 | 61,000 | 47,587 | 57,342 | 0.00 | |
10.250.04 | 58,092 | 56,276 | 56,204 | 56,259 | 3.13 | 58,092 | 47,703 | 55,037 | 0.00 | |
mknapcb6 | 10.500.00 | 117,821 | 117,779 | 117,736 | 117,754 | 0.04 | 103,226 | 74,746 | 93,309 | 12.38 |
10.500.01 | 119,249 | 119,206 | 119,164 | 119,179 | 0.04 | 105,088 | 76,531 | 96,824 | 11.87 | |
10.500.02 | 119,215 | 119,215 | 119,129 | 119,162 | 0.00 | 104,870 | 74,620 | 96,152 | 12.03 | |
10.500.03 | 118,829 | 118,813 | 118,761 | 118,777 | 0.01 | 104,308 | 74,845 | 95,339 | 12.22 | |
10.500.04 | 116,530 | 116,509 | 116,445 | 116,470 | 0.02 | 101,380 | 74,441 | 92,260 | 13 | |
X | 67,455.33 | 67,179 | 66,298 | 66,741 | 0.35 | 61,881.03333 | 46,144.33333 | 54,591 | 4.66 |
Approach | LBLP | Classic SHO | Classic SHO + IRace |
---|---|---|---|
LBLP | - | 0.00 | ≥0.05 |
Classic SHO | ≥0.05 | - | ≥0.05 |
Classic SHO + IRace | ≥0.05 | 0.00 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega, E.; Lemus-Romani, J.; Soto, R.; Crawford, B.; Löffler, C.; Peña, J.; Talbi, E.-G. Autonomous Parameter Balance in Population-Based Approaches: A Self-Adaptive Learning-Based Strategy. Biomimetics 2024, 9, 82. https://doi.org/10.3390/biomimetics9020082
Vega E, Lemus-Romani J, Soto R, Crawford B, Löffler C, Peña J, Talbi E-G. Autonomous Parameter Balance in Population-Based Approaches: A Self-Adaptive Learning-Based Strategy. Biomimetics. 2024; 9(2):82. https://doi.org/10.3390/biomimetics9020082
Chicago/Turabian StyleVega, Emanuel, José Lemus-Romani, Ricardo Soto, Broderick Crawford, Christoffer Löffler, Javier Peña, and El-Gazhali Talbi. 2024. "Autonomous Parameter Balance in Population-Based Approaches: A Self-Adaptive Learning-Based Strategy" Biomimetics 9, no. 2: 82. https://doi.org/10.3390/biomimetics9020082
APA StyleVega, E., Lemus-Romani, J., Soto, R., Crawford, B., Löffler, C., Peña, J., & Talbi, E. -G. (2024). Autonomous Parameter Balance in Population-Based Approaches: A Self-Adaptive Learning-Based Strategy. Biomimetics, 9(2), 82. https://doi.org/10.3390/biomimetics9020082