A Multi-Objective Optimization Framework That Incorporates Interpretable CatBoost and Modified Slime Mould Algorithm to Resolve Boiler Combustion Optimization Problem
Abstract
:1. Introduction
1.1. Background
1.2. Motivation
1.3. Contributions
- A kind of novel multi-objective optimization framework is proposed, which combines interpretable CatBoost by TreeSHAP and a modified slime mould algorithm. Particularly, this framework has model interpretability and adaptivity.
- A kind of modified slime mould algorithm is proposed to solve benchmark testing functions and constrained optimization problems.
2. Related Work
2.1. Study Object
2.2. Slime Mould Algorithm (SMA)
3. Modified Slime Mould Algorithm (MSMA)
3.1. Improved Mechanism
3.2. Experiments
3.2.1. Benchmark Testing Functions
3.2.2. Constrained Optimization Problem
3.3. Discussion and Analysis
4. Boiler Combustion Optimization
4.1. The Source and Description of Boiler Data
4.2. Modeled by Interpretable CatBoost
4.3. Data Feature Analysis
4.4. Parameters Optimized by MSMA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, H. Study on Some Key Issues in NOx Control and Combustion Optimization of Large Power Plant Boilers. Doctoral Dissertation, Zhejiang University, Hangzhou, China, 2004. [Google Scholar]
- Zhou, H.; Zhao, J.; Zheng, L.; Wang, C.; Cen, K. Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization. Eng. Appl. Artif. Intell. 2012, 25, 147–158. [Google Scholar] [CrossRef]
- Zhou, H.; Cen, K. Combining Neural Network or Support Vector Machine with Optimization Algorithms to Optimize the Combustion. In Combustion Optimization Based on Computational Intelligence; Advanced Topics in Science and Technology in China; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Yao, Z.; Romero, C.; Baltrusaitis, J. Combustion optimization of a coal-fired power plant boiler using artificial intelligence neural networks. Fuel 2023, 344, 128145. [Google Scholar] [CrossRef]
- Li, G.; Niu, P.; Wang, H.; Liu, Y. Least Square Fast Learning Network for modeling the combustion efficiency of a 300 WM coal-fired boiler. Neural Netw. Off. J. Int. Neural Netw. Soc. 2014, 51, 57–66. [Google Scholar]
- Akopov, A.S.; Beklaryan, L.A.; Saghatelyan, A.K. Agent-based modelling for ecological economics: A case study of the Republic of Armenia. Ecol. Model. 2017, 346, 99–118. [Google Scholar] [CrossRef]
- Cappelletti, F.; Manuguerra, L.; Rossi, M.; Germani, M.; Sartini, M. Design optimization for environmental sustainability: A framework to select the best eco-design strategy. Proc. Des. Soc. 2023, 3, 1297–1306. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, H.; Cen, K.; Wang, C. A comparative study of optimization algorithms for low NOx combustion modification at a coal-fired utility boiler. Expert Syst. Appl. 2009, 36, 2780–2793. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, H.; Ren, T.; Zheng, L.; Cen, K. Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers. Fuel 2009, 88, 1864–1870. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, L.; Cen, K. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler. Energy Convers. Manag. 2010, 51, 580–586. [Google Scholar] [CrossRef]
- Si, F.; Romero, C.E.; Yao, Z.; Xu, Z.; Morey, R.L.; Liebowitz, B.N. A new approach for function approximation in boiler combustion optimization based on modified structural AOSVR. Expert Syst. Appl. 2009, 36, 8691–8704. [Google Scholar] [CrossRef]
- Li, G.; Niu, P.; Duan, X.; Zhang, X. Fast learning network: A kind of novel artificial neural network with a fast learning speed. Neural Comput. Appl. 2014, 24, 1683–1695. [Google Scholar] [CrossRef]
- Niu, P.; Ma, Y.; Li, G. Model NOx emission and thermal efficiency of CFBB based on an ameliorated extreme learning machine. Soft Comput. 2018, 22, 4685–4701. [Google Scholar] [CrossRef]
- Li, X.; Niu, P.; Li, G.; Liu, J. An Adaptive Extreme Learning Machine for Modeling NOx Emission of a 300 MW Circulating Fluidized Bed Boiler. Neural Process. Lett. 2017, 46, 643–662. [Google Scholar] [CrossRef]
- Ma, Y.; Niu, P.; Yan, S.; Li, G. A modified online sequential extreme learning machine for building circulation fluidized bed boiler’s NOx emission model. Appl. Math. Comput. 2018, 334, 214–226. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, C.; Wang, H.; Wang, R.; Liu, S.G.; Gu, X. Model NOx, SO2 Emissions Concentration and Thermal Efficiency of CFBB Based on a Hyper-Parameter Self-Optimized Broad Learning System. Energies 2022, 15, 7700. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, X.; Zhang, C.; Li, C.; Li, X.; Wang, H. Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm. Energy 2024, 294, 130957. [Google Scholar] [CrossRef]
- Xi, H.; Liao, P.; Wu, X. Simultaneous parametric optimization for design and operation of solvent-based post-combustion carbon capture using particle swarm optimization. Appl. Therm. Eng. 2020, 184, 116287. [Google Scholar] [CrossRef]
- Rahat, A.A.; Wang, C.; Everson, R.M.; Fieldsend, J.E. Data-driven multi-objective optimisation of coal-fired boiler combustion systems. Appl. Energy 2018, 229, 446–458. [Google Scholar] [CrossRef]
- Wang, F.; Ma, S.; Wang, H.; Li, Y.H.; Qin, Z.; Zhang, J. A hybrid model integrating improved flower pollination algorithm-based feature selection and improved random forest for NOx emission estimation of coal-fired power plants. Measurement 2018, 125, 303–312. [Google Scholar] [CrossRef]
- Hu, X.; Niu, P.; Wang, J.; Zhang, X. Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. Atmos. Pollut. Res. 2020, 11, 1084–1090. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y.; Song, S.; Chen, B.; Qi, X. A novel online combustion optimization method for boiler combining dynamic modeling, multi-objective optimization and improved case-based reasoning. Fuel 2023, 337, 126854. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y.; Song, S. On-line combustion optimization framework for coal-fired boiler combining improved cultural algorithm, deep learning, multi-objective evolutionary algorithm with improved case-based reasoning technology. Fuel 2024, 358, 130225. [Google Scholar] [CrossRef]
- Xu, W.; Poh, K.; Song, S.; Huang, Y. Research on reducing pollutant, improving efficiency and enhancing running safety for 1000 MW coal-fired boiler based on data-driven evolutionary optimization and online retrieval method. Appl. Energy 2025, 377, 123958. [Google Scholar] [CrossRef]
- Li, G.; Niu, P.; Ma, Y.; Wang, H.; Zhang, W. Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency. Knowl. Based Syst. 2014, 67, 278–289. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Song, J.; Chen, L. A modified teaching-learning-based optimization algorithm for solving optimization problem. Knowl. Based Syst. 2020, 212, 106599. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Zhang, X.; Hou, L.; Song, J. Three-objective optimization of boiler combustion process based on multi-objective teaching–learning based optimization algorithm and ameliorated extreme learning machine. Mach. Learn. Appl. 2021, 5, 100082. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2015, 25, 197–227. [Google Scholar] [CrossRef]
- Couronné, R.; Probst, P.; Boulesteix, A. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 270. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods; Cambridge University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer: New York, NY, USA, 2008. [Google Scholar]
- Huang, G.; Zhu, Q.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990. [Google Scholar]
- Huang, G.; Zhu, Q.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2012, 42, 513–529. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. arXiv 2017. [Google Scholar] [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Lundberg, S.M.; Erion, G.G.; Lee, S. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar]
- Lundberg, S.M.; Lee, S. A Unified Approach to Interpreting Model Predictions. In Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.; Mirjalili, S.M. Slime mould algorithm: A new method for stochastic optimization. Future Generarion Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- He, D.; He, C.; Jiang, L.; Zhu, H.; Hu, G. Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans. Circuits Syst. I-Regul. Pap. 2001, 48, 900–906. [Google Scholar]
- Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar]
- Seif, Z.; Ahmadi, M.B. An opposition-based algorithm for function optimization. Eng. Appl. Artif. Intell. 2015, 37, 293–306. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A kind of novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Mirjalili, S.M.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A kind of novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
Symbol | Explanation |
---|---|
The positions of the slime mould individuals at the th iterations | |
The best position of the slime mould individual at the th iteration | |
& | The randomly selected slime mould individual at the th iteration |
A random value | |
A changing value | |
The total number of iterations | |
A random value | |
A random value | |
A changing value | |
The output function of the fitness value | |
The position of the th slime mould individual | |
The optimal fitness value in all iterations | |
The population size of the slime mould individuals | |
The weight of the slime mould individual | |
The best fitness value at the current iteration | |
The worst fitness value at the current iteration | |
The output function of sorted fitness values | |
A random value | |
The upper bounds of the search space | |
The lower bounds of the search space | |
The proportion of randomly distributed slime mould individuals | |
The chaotic sequence | |
A random value | |
& | The randomly selected slime mould individual at the th iteration |
The elite reverse solution | |
The reverse interpolation solution |
Function | Expression | Range | |
---|---|---|---|
F1 | 0 | ||
F2 | 0 | ||
F3 | 0 | ||
F4 | 0 | ||
F5 | 0 | ||
F6 | 0 | ||
F7 | 0 | ||
F8 | |||
F9 | 0 | ||
F10 | 0 |
Algorithm | Algorithm Parameters Setting |
---|---|
MSMA | the location update parameter is 0.03, the chaos mapping parameter is 0.7, the proportion of elite individuals is 10% |
SMA | the location update parameter is 0.03 |
BOA | the witching probability is 0.8, the power exponent is 0.1, the sensory modality is 0.1 |
WOA | the probability parameter of strategy execution is 0.5 |
SOA | the ratio of flight path to speed is 0.7 |
SSA | the early warning value is 0.8, the proportion of discoverers is 0.2, the proportion of aware of dangerous sparrows is 0.1 |
Function | Metrics | MSMA | SMA | BOA | WOA | SOA | SSA |
---|---|---|---|---|---|---|---|
F1 | mean | 2.98 × 10−310 | 2.31 × 10−242 | 5.72 × 10−10 | 3.40 × 10−22 | 1.83 × 10−200 | 1.16 × 10−12 |
S.D. | 0.00 | 0.00 | 2.51 × 10−11 | 7.38 × 10−22 | 0.00 | 6.27 × 10−12 | |
running time | 4.01 s | 3.87 s | 2.37 s | 2.48 s | 1.13 s | 3.07 s | |
F2 | mean | 5.12 × 10−165 | 1.94 × 10−157 | 1.11 × 10−6 | 5.13 × 10−15 | 6.85 × 10−122 | 3.00 × 10−5 |
S.D. | 0.00 | 1.041 × 10−156 | 3.92 × 10−7 | 7.16 × 10−15 | 3.07 × 10−121 | 1.25 × 10−4 | |
running time | 4.19 s | 4.05 s | 2.54 s | 2.61 s | 1.22 s | 3.35 s | |
F3 | mean | 4.00 × 10−265 | 6.74 × 10−196 | 5.35 × 10−10 | 7.84 × 10−3 | 3.72 × 104 | 2.53 × 10−10 |
S.D. | 0.00 | 0.00 | 4.13 × 10−11 | 1.98 × 10−2 | 2.90 × 104 | 1.35 × 10−9 | |
running time | 6.53 s | 6.16 s | 8.10 s | 4.52 s | 3.05 s | 8.80 s | |
F4 | mean | 9.69 × 10−167 | 6.06 × 10−155 | 1.55 × 10−7 | 1.45 × 10−5 | 2.23 × 10−26 | 4.29 × 10−8 |
S.D. | 0.00 | 3.26 × 10−154 | 7.42 × 10−9 | 2.53 × 10−5 | 1.20 × 10−25 | 1.51 × 10−7 | |
running time | 4.16 s | 4.01 s | 2.43 s | 2.57 s | 1.17 s | 3.20 s | |
F5 | mean | 2.82 × 101 | 2.84 × 101 | 2.89 × 101 | 2.71 × 101 | 2.74 × 10−1 | 1.59 × 10−5 |
S.D. | 2.33 × 10−1 | 1.24 × 10−1 | 2.73 × 10−2 | 1.02 | 5.56 × 10−1 | 3.31 × 10−5 | |
running time | 4.45 s | 4.29 s | 2.58 s | 2.69 s | 1.27 s | 3.48 s | |
F6 | mean | 8.29 × 10−2 | 9.47 × 10−2 | 5.79 | 1.15 | 3.45 × 10−2 | 9.50 × 10−8 |
S.D. | 3.68 × 10−2 | 4.40 × 10−2 | 5.29 × 10−1 | 5.51 × 10−1 | 3.01 × 10−1 | 1.26 × 10−7 | |
running time | 4.64 s | 4.52 s | 2.62 s | 2.80 s | 1.28 s | 3.55 s | |
F7 | mean | 1.35 × 10−4 | 2.11 × 10−4 | 6.73 × 10−5 | 4.85 × 10−4 | 1.17 × 10−4 | 6.18 × 10−4 |
S.D. | 1.23 × 10−4 | 1.91 × 10−4 | 6.17 × 10−5 | 4.66 × 10−4 | 1.08 × 10−4 | 4.38 × 10−4 | |
running time | 4.30 s | 4.15 s | 2.64 s | 2.70 s | 1.26 s | 3.43 s | |
F8 | mean | −1.00 × 104 | −8.80 × 103 | −2.44 × 103 | −7.22 × 103 | −1.25 × 104 | −7.74 × 103 |
S.D. | 6.17 × 102 | 5.61 × 102 | 4.90 × 102 | 2.89 × 102 | 6.89 × 101 | 2.05 × 103 | |
running time | 4.28 s | 4.15 s | 2.47 s | 2.57 s | 1.12 s | 3.22 s | |
F9 | mean | 0.00 | 0.00 | 1.04 × 102 | 1.51 × 10−14 | 0.00 | 1.24 × 10−10 |
S.D. | 0.00 | 0.00 | 8.03 × 101 | 4.38 × 10−14 | 0.00 | 6.65 × 10−10 | |
running time | 4.15 s | 4.00 s | 2.41 s | 2.58 s | 1.20 s | 3.30 s | |
F10 | mean | 4.44 × 10−16 | 4.44 × 10−16 | 1.85 × 10−7 | 3.46 × 10−12 | 4.44 × 10−16 | 2.99 × 10−6 |
S.D. | 0.00 | 0.00 | 8.74 × 10−9 | 9.37 × 10−12 | 0.00 | 9.42 × 10−6 | |
running time | 4.31 s | 4.13 s | 2.91 s | 2.69 s | 1.30 s | 3.62 s |
Function | Metrics | MSMA | SMA | BOA | WOA | SOA | SSA |
---|---|---|---|---|---|---|---|
F1 | mean | 1.32 × 10−277 | 2.46 × 10−222 | 6.09 × 10−10 | 2.05 × 10−17 | 4.06 × 10−204 | 3.27 × 10−11 |
S.D. | 0.00 | 0.00 | 2.87 × 10−11 | 4.84 × 10−17 | 0.00 | 1.72 × 10−10 | |
running time | 6.68 s | 6.50 s | 3.64 s | 4.18 s | 1.75 s | 5.01 s | |
F2 | mean | 2.89 × 10−147 | 2.07 × 10−139 | 1.23 × 1020 | 1.91 × 10−12 | 1.75 × 10−121 | 1.05 × 10−6 |
S.D. | 1.53 × 10−146 | 1.11 × 10−138 | 6.67 × 1020 | 2.22 × 10−12 | 9.02 × 10−121 | 4.18 × 10−6 | |
running time | 6.60 s | 6.43 s | 3.77 s | 4.16 s | 1.77 s | 5.07 s | |
F3 | mean | 7.00 × 10−210 | 3.50 × 10−148 | 5.54 × 10−10 | 1.33 | 1.45 × 105 | 2.34 × 10−10 |
S.D. | 0.00 | 1.88 × 10−147 | 3.87 × 10−11 | 3.63 | 6.87 × 104 | 1.26 × 10−9 | |
running time | 9.79 s | 9.26 s | 11.98 s | 6.86 s | 4.51 s | 13.29 s | |
F4 | mean | 1.25 × 10−158 | 6.62 × 10−139 | 1.63 × 10−7 | 1.97 × 10−4 | 1.99 × 10−30 | 2.04 × 10−7 |
S.D. | 6.33 × 10−158 | 3.56 × 10−138 | 8.79 × 10−9 | 2.32 × 10−4 | 1.06 × 10−29 | 8.90 × 10−7 | |
running time | 6.71 s | 6.50 s | 3.59 s | 4.20 s | 1.74 s | 5.01 s | |
F5 | mean | 4.86 × 101 | 4.85 × 101 | 4.89 × 101 | 4.78 × 101 | 9.32 × 10−1 | 2.08 × 10−5 |
S.D. | 1.27 × 10−1 | 1.49 × 10−1 | 3.49 × 102 | 7.57 × 10−1 | 2.49 | 3.03 × 10−5 | |
running time | 6.94 s | 6.70 s | 3.65 s | 4.23 s | 1.80 s | 5.18 s | |
F6 | mean | 1.05 | 1.25 | 1.07 × 101 | 3.19 | 8.93 × 10−2 | 1.91 × 10−7 |
S.D. | 2.98 × 10−1 | 3.30 × 10−1 | 6.71 × 10−1 | 7.21 × 10−1 | 6.86 × 10−2 | 3.65 × 10−7 | |
running time | 6.77 s | 6.55 s | 3.51 s | 4.15 s | 1.74 s | 5.02 s | |
F7 | mean | 1.54 × 10−4 | 3.29 × 10−4 | 6.24 × 10−5 | 9.77 × 10−4 | 1.42 × 10−4 | 5.69 × 10−4 |
S.D. | 1.30 × 10−4 | 3.57 × 10−4 | 7.12 × 10−5 | 1.03 × 10−3 | 1.10 × 10−4 | 3.80 × 10−4 | |
running time | 6.93 s | 6.69 s | 3.87 s | 4.37 s | 1.87 s | 5.32 s | |
F8 | mean | −1.59 × 104 | −1.36 × 104 | −3.22 × 103 | −1.19 × 104 | −2.09 × 104 | −1.64 × 104 |
S.D. | 6.45 × 102 | 8.04 × 102 | 6.77 × 102 | 4.55 × 102 | 4.23 × 101 | 4.80 × 103 | |
running time | 6.89 s | 6.70 s | 3.71 s | 4.21 s | 1.68 s | 5.08 s | |
F9 | mean | 0.00 | 0.00 | 1.59 × 102 | 8.33 × 10−14 | 0.00 | 8.46 × 10−8 |
S.D. | 0.00 | 0.00 | 1.59 × 102 | 7.58 × 10−14 | 0.00 | 4.43 × 10−7 | |
running time | 6.83 s | 6.55 s | 3.62 s | 4.25 s | 1.80 s | 5.16 s | |
F10 | mean | 4.44 × 10−16 | 4.44 × 10−16 | 1.88 × 10−7 | 4.82 × 10−10 | 4.44 × 10−16 | 9.30 × 10−8 |
S.D. | 0.00 | 0.00 | 6.70 × 10−9 | 4.60 × 10−10 | 0.00 | 3.18 × 10−7 | |
running time | 7.60 s | 7.33 s | 4.60 s | 4.77 s | 2.10 s | 6.07 s |
Function | Metrics | MSMA | SMA | BOA | WOA | SOA | SSA |
---|---|---|---|---|---|---|---|
F1 | mean | 1.25 × 10−249 | 2.78 × 10−193 | 6.31 × 10−10 | 1.51 × 10−13 | 4.51 × 10−208 | 6.83 × 10−12 |
S.D. | 0.00 | 0.00 | 2.42 × 10−11 | 3.30 × 10−13 | 0.00 | 3.64 × 10−11 | |
running time | 12.82 s | 12.49 s | 6.47 s | 8.15 s | 3.18 s | 9.46 s | |
F2 | mean | 8.63 × 10−126 | 7.83 × 10−111 | 4.82 × 1050 | 6.93 × 10−10 | 1.86 × 10−120 | 1.29 × 10−6 |
S.D. | 4.65 × 10−125 | 4.21 × 10−110 | 2.44 × 1051 | 8.53 × 10−10 | 1.00 × 10−119 | 6.32 × 10−6 | |
running tim × 10 | 14.0253 | 13.5653 | 7.4208 | 8.8165 | 3.45 s | 10.3113 | |
F3 | mean | 4.71 × 10−164 | 8.45 × 10−92 | 6.00 × 10−10 | 1.79 × 102 | 7.00 × 105 | 1.26 × 10−6 |
S.D. | 0.00 | 4.55 × 10−91 | 3.30 × 10−11 | 2.23 × 102 | 3.60 × 105 | 6.82 × 10−6 | |
running time | 21.50 s | 20.25 s | 25.96 s | 15.12 s | 9.72 s | 29.13 s | |
F4 | mean | 4.64 × 10−153 | 1.87 × 10−142 | 1.68 × 10−7 | 2.43 × 10−3 | 3.92 × 10−32 | 6.58 × 10−9 |
S.D. | 2.14 × 10−152 | 1.01 × 10−141 | 6.52 × 10−9 | 2.21 × 10−3 | 2.04 × 10−31 | 2.27 × 10−8 | |
running time | 13.03 s | 12.64 s | 6.54 s | 8.22 s | 3.20 s | 9.58 s | |
F5 | mean | 9.87 × 101 | 9.87 × 101 | 9.89 × 101 | 9.78 × 101 | 4.85 × 10−1 | 2.31 × 10−5 |
S.D. | 1.16 × 10−1 | 1.14 × 10−1 | 2.46 × 10−2 | 6.45 × 10−1 | 6.17 × 10−1 | 5.55 × 10−5 | |
running time | 13.26 s | 12.84 s | 6.55 s | 8.20 s | 3.23 s | 9.67 s | |
F6 | mean | 9.82 | 1.06 × 101 | 2.30 × 101 | 1.03 × 101 | 1.76 × 10−1 | 1.60 × 10−7 |
S.D. | 1.28 | 1.20 | 8.00 × 10−1 | 1.23 | 1.77 × 10−1 | 2.08 × 10−7 | |
running time | 14.65 s | 14.17 s | 7.16 s | 9.14 s | 3.57 s | 10.61 s | |
F7 | mean | 2.41 × 10−4 | 3.69 × 10−4 | 4.88 × 10−5 | 1.10 × 10−3 | 1.58 × 10−4 | 4.35 × 10−4 |
S.D. | 2.08 × 10−4 | 4.09 × 10−4 | 3.56 × 10−5 | 1.50 × 10−3 | 1.35 × 10−4 | 3.43 × 10−4 | |
running time | 13.58 s | 13.17 s | 6.98 s | 8.61 s | 3.40 s | 10.08 s | |
F8 | mean | −2.92 × 104 | −2.47 × 104 | −4.47 × 103 | −2.40 × 104 | −4.18 × 104 | −3.40 × 104 |
S.D. | 1.24 × 103 | 1.31 × 103 | 9.75 × 102 | 8.97 × 102 | 1.85 × 102 | 9.05 × 103 | |
running time | 14.00 s | 13.64 s | 7.04 s | 8.72 s | 3.15 s | 10.05 s | |
F9 | mean | 0.00 | 0.00 | 1.22 × 102 | 2.48 × 10−8 | 0.00 | 2.94 × 10−9 |
S.D. | 0.00 | 0.00 | 2.74 × 102 | 1.33 × 10−7 | 0.00 | 1.58 × 10−8 | |
running time | 13.04 s | 12.63 s | 6.45 s | 8.27 s | 3.21 s | 9.58 s | |
F10 | mean | 4.44 × 10−16 | 4.44 × 10−16 | 1.93 × 10−7 | 7.94 × 10−8 | 4.44 × 10−16 | 2.94 × 10−7 |
S.D. | 0.00 | 0.00 | 6.85 × 10−9 | 1.70 × 10−7 | 0.00 | 1.51 × 10−6 | |
running time | 13.99 s | 13.54 s | 7.52 s | 8.78 s | 3.52 s | 10.57 s |
Metrics | MSMA | SMA | BOA | WOA | SOA | SSA |
---|---|---|---|---|---|---|
Mean | 2.63 × 102 | 2.63 × 102 | 2.64 × 102 | 2.68 × 102 | 2.67 × 102 | 2.63 × 102 |
Std | 2.45 × 10−3 | 3.68 × 10−3 | 5.38 × 10−1 | 4.70 | 3.95 | 3.75 × 10−2 |
Min | 2.63 × 102 | 2.63 × 102 | 2.64 × 102 | 2.64 × 102 | 2.63 × 102 | 2.63 × 102 |
Max | 2.63 × 102 | 2.63 × 102 | 2.66 × 102 | 2.80 × 102 | 2.76 × 102 | 2.64 × 102 |
Time | 0.69 s | 0.64 s | 0.74 s | 0.33 s | 0.40 s | 0.70 s |
Metrics | MSMA | SMA | BOA | WOA | SOA | SSA |
---|---|---|---|---|---|---|
Mean | 1.35 × 10−2 | 1.40 × 10−2 | 8.66 × 1032 | 1.31 × 10−2 | 6.66 × 1031 | 2.33 × 1032 |
Std | 8.79 × 10−4 | 2.95 × 10−3 | 3.39 × 1032 | 4.99 × 10−4 | 2.49 × 1032 | 4.22 × 1032 |
Min | 1.26 × 10−2 | 1.26 × 10−2 | 1.31 × 10−2 | 1.26 × 10−2 | 1.29 × 10−2 | 1.27 × 10−2 |
Max | 1.62 × 10−2 | 2.93 × 10−2 | 1.00 × 1033 | 1.48 × 10−2 | 1.00 × 1033 | 1.00 × 1033 |
Time | 0.77 s | 0.72 s | 0.68 s | 0.35 s | 0.37 s | 0.61 s |
Symbol | Description |
---|---|
17ANO037 | Boiler load |
AFCOALQ | Coal feeder feed rate 1 |
BFCOALQ | Coal feeder feed rate 2 |
CFCOALQ | Coal feeder feed rate 3 |
DFCOALQ | Coal feeder feed rate 4 |
18ANO073 | Average bed temperature in the upper part of the dense phase zone of the left side furnace |
18ANO074 | Average bed temperature in the upper part of the dense phase zone of the furnace chamber |
18ANO075 | Average bed temperature in the upper part of the dense phase zone of the right side furnace |
05F051 | Primary air flow rate at the inlet of the left duct burner |
05F061 | Right side duct burner inlet primary air flow rate |
06F051 | Total secondary air flow rate on the left side |
06F052 | Left inner secondary air distribution flow rate |
06F061 | Total secondary air flow rate on the right side |
06F062 | Secondary air distribution flow rate in the right side |
05T457 | Left duct burner inlet primary air temperature |
05T467 | Right side duct burner inlet primary air temperature |
17I011 | Limestone powder conveying motor current 1 |
17I021 | Limestone powder conveying motor current 2 |
6CEMSO2 | Flue gas O2 concentration |
6CEMSTEMP | Flue gas temperature |
08A051 | Carbon content of fly ash at the inlet of the left side dust collector |
08A061 | Carbon content of fly ash at the inlet of the right side dust collector |
05T402 | Primary fan inlet temperature 1 |
05T403 | Primary fan inlet temperature 2 |
06T401 | Secondary fan inlet temperature 1 |
06T402 | Secondary fan inlet temperature 2 |
NOX | NOX emission concentration |
TE | Boiler thermal efficiency |
No. | 17ANO037 | AFCOALQ | BFCOALQ | CFCOALQ | DFCOALQ | 18ANO073 | 18ANO074 |
---|---|---|---|---|---|---|---|
1 | 73.52 | 37.60 | 39.17 | 39.27 | 37.87 | 865.03 | 863.21 |
2 | 73.40 | 39.17 | 40.41 | 40.40 | 39.01 | 863.65 | 862.11 |
3 | 73.52 | 39.28 | 40.41 | 40.44 | 39.04 | 862.89 | 861.65 |
… | … | … | … | … | … | … | … |
2878 | 66.30 | 31.48 | 47.21 | 32.74 | 35.99 | 855.49 | 858.57 |
2879 | 66.05 | 31.10 | 47.11 | 32.39 | 35.46 | 855.84 | 857.58 |
2880 | 65.07 | 32.17 | 48.29 | 33.71 | 36.94 | 856.58 | 856.53 |
No. | 18ANO075 | 05F051 | 05F061 | 06F051 | 06F052 | 06F061 | 06F062 |
1 | 861.27 | 236.65 | 228.64 | 23.89 | 196.35 | 412.66 | 188.05 |
2 | 860.54 | 237.11 | 238.25 | 107.43 | 148.38 | 384.34 | 216.19 |
3 | 860.44 | 219.26 | 371.45 | 188.84 | 168.03 | 397.97 | 211.99 |
… | … | … | … | … | … | … | … |
2878 | 861.63 | 181.49 | 252.21 | 359.57 | 120.06 | 353.54 | 146.48 |
2879 | 859.29 | 226.35 | 297.07 | 190.77 | 121.21 | 352.30 | 170.98 |
2880 | 856.41 | 202.55 | 304.39 | 233.81 | 125.69 | 347.88 | 153.15 |
No. | 05T457 | 05T467 | 17I011 | 17I021 | 6CEMSO2 | 6CEMSTEMP | 08A051 |
1 | 269.34 | 267.38 | 112.87 | 101.66 | 5.55 | 152.66 | 0.85 |
2 | 269.34 | 267.38 | 109.93 | 101.54 | 5.55 | 152.66 | 0.85 |
3 | 269.34 | 267.38 | 109.32 | 97.96 | 5.55 | 152.66 | 0.85 |
… | … | … | … | … | … | … | … |
2878 | 264.82 | 261.96 | 101.77 | 84.57 | 7.27 | 149.11 | 0.63 |
2879 | 264.82 | 261.96 | 104.02 | 84.80 | 7.27 | 149.11 | 0.63 |
2880 | 264.82 | 261.96 | 100.28 | 84.61 | 7.27 | 149.11 | 0.63 |
No. | 08A061 | 05T402 | 05T403 | 06T401 | 06T402 | 6CEMSNOX | TE |
1 | 0.32 | 25.65 | 24.90 | 23.89 | 25.73 | 131.52 | 90.55 |
2 | 0.27 | 25.65 | 24.90 | 23.89 | 25.73 | 134.35 | 90.59 |
3 | 0.06 | 25.65 | 24.90 | 23.89 | 25.73 | 134.88 | 90.75 |
… | … | … | … | … | … | … | … |
2878 | 0.39 | 24.58 | 23.28 | 23.19 | 23.75 | 174.25 | 89.96 |
2879 | 0.26 | 24.58 | 23.28 | 23.19 | 23.75 | 175.39 | 90.06 |
2880 | 0.13 | 24.71 | 23.21 | 23.22 | 23.84 | 174.63 | 90.13 |
Method | Parameters Setting |
---|---|
CatBoost | iterations = 1000, learning_rate = 0.03, max_depth = 6, l2_leaf_reg = 3. |
RF | n_estimators = 100, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, max_features = Auto. |
SVM | kernel = rbf, gamma = scale, C = 1.0, epsilon = 0.1. |
MLP | hidden_size = 100, activation_function = relu, learning_rate = 0.001, iteration = 1000. |
Objective | Dataset | Metrics | Interpretable CatBoost | RF | SVM | MLP |
---|---|---|---|---|---|---|
TE | Training data | RMSE | 1.85 × 10−3 | 5.75 × 10−3 | 4.66 × 10−2 | 4.96 × 10−2 |
MAE | 1.45 × 10−3 | 3.90 × 10−3 | 3.81 × 10−2 | 3.81 × 10−2 | ||
MAPE | 2.95 × 10−3 | 8.36 × 10−3 | 6.79 × 10−2 | 6.78 × 10−2 | ||
R2 | 99.98% | 99.98% | 86.53% | 85.62% | ||
Testing data | RMSE | 5.27 × 10−3 | 1.53 × 10−2 | 4.72 × 10−2 | 5.08 × 10−2 | |
MAE | 3.51 × 10−3 | 1.05 × 10−2 | 3.84 × 10−2 | 3.91 × 10−2 | ||
MAPE | 7.61 × 10−3 | 2.10 × 10−2 | 6.86 × 10−2 | 6.95 × 10−2 | ||
R2 | 99.85% | 98.68% | 85.78% | 84.47% | ||
NOx | Training data | RMSE | 1.19 × 10−2 | 1.22 × 10−2 | 5.76 × 10−2 | 7.32 × 10−2 |
MAE | 9.27 × 10−3 | 8.20 × 10−3 | 4.79 × 10−2 | 5.64 × 10−2 | ||
MAPE | 2.76 × 10−2 | 1.78 × 10−2 | 8.94 × 10−2 | 1.06 × 10−1 | ||
R2 | 99.48% | 99.45% | 84.62% | 74.51% | ||
Testing data | RMSE | 2.92 × 10−2 | 3.28 × 10−2 | 6.10 × 10−2 | 7.44 × 10−2 | |
MAE | 2.13 × 10−2 | 2.21 × 10−2 | 4.96 × 10−2 | 5.71 × 10−2 | ||
MAPE | 4.25 × 10−2 | 4.48 × 10−2 | 9.27 × 10−2 | 1.07 × 10−1 | ||
R2 | 96.79% | 95.84% | 82.46% | 73.47% |
Decision Variable | Original Range | Range of Positive Effect on TE | Range of Negative Effect on NOx | Reduced Range |
---|---|---|---|---|
AFCOALQ | [27.67, 68.12] | [27.67, 60.40] | [27.67, 63.86] | [27.67, 56.90] |
BFCOALQ | [25.17, 61.44] | [33.03, 61.44] | [25.17, 56.31] | [33.03, 51.09] |
CFCOALQ | [25.54, 61.93] | [35.00, 61.93] | [39.59, 61.93] | [42.49, 61.93] |
DFCOALQ | [27.23, 67.89] | [33.92, 58.11] | [27.23, 62.84] | [33.92, 58.11] |
05F051 | [123.59, 487.95] | [123.59, 487.95] | [151.97, 456.13] | [151.97, 456.13] |
05F061 | [91.78, 513.12] | [91.78, 458.88] | [91.78, 448.35] | [91.78, 448.35] |
06F051 | [15.05, 762.78] | [15.05, 762.78] | [15.05, 762.78] | [15.05, 762.78] |
06F052 | [120.06, 869.41] | [121.21, 856.65] | [121.21, 869.41] | [121.21, 856.63] |
06F061 | [318.67, 1217.79] | [320.80, 1205.40] | [318.67, 1217.79] | [320.80, 1205.40] |
06F062 | [144.19, 888.01] | [144.19, 728.56] | [144.19, 888.01] | [144.19, 547.852] |
6CEMSO2 | [3.15, 8.13] | [3.15, 5.49] | [3.15, 5.14] | [3.15, 5.14] |
08A051 | [0.61, 1.47] | [0.61, 1.07] | [0.74, 1.47] | [0.74, 1.07] |
08A061 | [−0.01, 0.40] | [−0.01, 0.20] | [0.01, 0.40] | [0.01, 0.20] |
No. | TE (Pre-Opt) | TE (Optimized) | TE (Opt-Ratio) | NOx (Pre-Opt) | NOx (Optimized)) | NOx (Opt-Ratio) | Time |
---|---|---|---|---|---|---|---|
9 | 90.32 | 91.12 | +0.89% | 139.92 | 96.59 | −30.97% | 6.39 s |
10 | 90.40 | 91.13 | +0.81% | 138.69 | 99.60 | −28.19% | 6.17 s |
15 | 90.70 | 91.15 | +0.49% | 134.42 | 89.80 | −33.19% | 6.33 s |
22 | 90.62 | 91.21 | +0.65% | 149.76 | 102.44 | −31.60% | 6.16 s |
23 | 90.72 | 91.21 | +0.54% | 150.44 | 101.99 | −32.21% | 6.50 s |
… | … | … | … | … | … | … | … |
2854 | 90.62 | 91.06 | +0.49% | 173.41 | 102.81 | −40.71% | 6.36 s |
2857 | 90.71 | 91.11 | +0.43% | 173.10 | 102.95 | −40.53% | 6.12 s |
2861 | 90.79 | 91.04 | +0.28% | 168.90 | 99.99 | −40.80% | 6.09 s |
2871 | 90.24 | 91.04 | +0.89% | 168.52 | 94.66 | −43.83% | 6.07 s |
2873 | 90.23 | 91.06 | +0.93% | 170.96 | 97.38 | −43.04% | 6.43 s |
Average | 90.47 | 91.08 | +0.68% | 148.95 | 89.03 | −37.55% | 6.40 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Ma, Y. A Multi-Objective Optimization Framework That Incorporates Interpretable CatBoost and Modified Slime Mould Algorithm to Resolve Boiler Combustion Optimization Problem. Biomimetics 2024, 9, 717. https://doi.org/10.3390/biomimetics9110717
Gao S, Ma Y. A Multi-Objective Optimization Framework That Incorporates Interpretable CatBoost and Modified Slime Mould Algorithm to Resolve Boiler Combustion Optimization Problem. Biomimetics. 2024; 9(11):717. https://doi.org/10.3390/biomimetics9110717
Chicago/Turabian StyleGao, Shan, and Yunpeng Ma. 2024. "A Multi-Objective Optimization Framework That Incorporates Interpretable CatBoost and Modified Slime Mould Algorithm to Resolve Boiler Combustion Optimization Problem" Biomimetics 9, no. 11: 717. https://doi.org/10.3390/biomimetics9110717
APA StyleGao, S., & Ma, Y. (2024). A Multi-Objective Optimization Framework That Incorporates Interpretable CatBoost and Modified Slime Mould Algorithm to Resolve Boiler Combustion Optimization Problem. Biomimetics, 9(11), 717. https://doi.org/10.3390/biomimetics9110717