Bionic Multi-Legged Robots with Flexible Bodies: Design, Motion, and Control
Abstract
:1. Introduction
2. Ways to Achieve Flexible Bodies
2.1. Artificial Spine
2.1.1. Active Spine
2.1.2. Compliant Spine
2.2. Single-Axis or Multi-Axis Articulation
2.3. Other Ways to Achieve Flexible Bodies
3. Motions Generated by a Flexible Body
3.1. Motion Enhancement Due to the Flexible Body
3.1.1. Motions in the Sagittal Plane: Bounding and Galloping
3.1.2. Motions in the Horizontal Plane: Crawling, Trotting, and Turning
3.1.3. Special Motions
- Climbing
- Animal Behavior
- Unnatural Motions
3.2. Factors That Influence the Robot’s Motion
- DOF of the body
- Stiffness of artificial spine (body-bending angle)
- For a specific robot, there exists an optimal stiffness value that allows the robot to strike a balance between fast motion and energy efficiency.
- Coordinated actuation
4. Control of Flexible-Body Robots
4.1. No Control
4.2. Routine Control Methods
4.2.1. Open-Loop Control
4.2.2. Simple Closed-Loop Control
4.2.3. Distributed Control
4.2.4. Hierarchical Control
4.3. Bionic Control Methods
4.3.1. CPG Oscillation Model Control
4.3.2. Walknet
5. Summary and Future Challenges
- Pursuing more natural patterns in biological morphology and motion
- Bridging the sensory gap: integrating massive sensors into robotic systems
- Exploring simpler and more efficient control algorithms
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Seok, S.; Wang, A.; Chuah, M.Y.; Otten, D.; Lang, J.; Kim, S. Design Principles for Highly Efficient Quadrupeds and Implementation on the MIT Cheetah Robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3307–3312. [Google Scholar]
- Park, S.; Lee, Y.-J. Discontinuous Zigzag Gait Planning of a Quadruped Walking Robot with a Waist-Joint. Adv. Robot. 2007, 21, 143–164. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.S.; Lee, Y.J. Discontinuous Spinning Gait of a Quadruped Walking Robot with Waist-Joint. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2744–2749. [Google Scholar]
- Manoonpong, P.; Parlitz, U.; Wörgötter, F. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines. Front. Neural Circuits 2013, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Qi, P.; Dai, J. Mechanism Design of a Biomimetic Quadruped Robot. Ind. Robot. 2017, 44, 512–520. [Google Scholar] [CrossRef]
- Koyachi, N.; Adachi, H.; Nakamura, T.; Nakano, E. Terrain Following Control of Self-Contained Semi-Fixed Gait Hexapod Walking Robot. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, Ibaraki, Japan, 3–6 July 1990; pp. 309–314. [Google Scholar]
- Bhattacharya, S.; Singla, A.; Abhimanyu; Dholakiya, D.; Bhatnagar, S.; Amrutur, B.; Ghosal, A.; Kolathaya, S. Learning Active Spine Behaviors for Dynamic and Efficient Locomotion in Quadruped Robots. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–6. [Google Scholar]
- Dürr, V.; Arena, P.P.; Cruse, H.; Dallmann, C.J.; Drimus, A.; Hoinville, T.; Krause, T.; Mátéfi-Tempfli, S.; Paskarbeit, J.; Patanè, L.; et al. Integrative Biomimetics of Autonomous Hexapedal Locomotion. Front. Neurorobot. 2019, 13, 88. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, S.; Birnschein, T.; Cordes, F.; Kã, D. SpaceClimber: Development of a Six-Legged Climbing Robot for Space Exploration. In Proceedings of the ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), Munich, Germany, 7–9 June 2010; pp. 1–8. [Google Scholar]
- Zhao, Q.; Nakajima, K.; Sumioka, H.; Yu, X.; Pfeifer, R. Embodiment Enables the Spinal Engine in Quadruped Robot Locomotion. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 2449–2456. [Google Scholar]
- Wei, Z.; Song, G.; Sun, H.; Qi, Q.; Gao, Y.; Qiao, G. Turning Strategies for the Bounding Quadruped Robot with an Active Spine. Ind. Robot. 2018, 45, 657–668. [Google Scholar] [CrossRef]
- Wei, Z.; Song, G.; Qiao, G.; Zhang, Y.; Sun, H. Design and Implementation of a Leg–Wheel Robot: Transleg. J. Mech. Robot. 2017, 9, 051001. [Google Scholar] [CrossRef]
- Pusey, J.L.; Duperret, J.M.; Haynes, G.C.; Knopf, R.; Koditschek, D.E. Free-Standing Leaping Experiments with a Power-Autonomous Elastic-Spined Quadruped. In Proceedings of the Conference on Unmanned Systems Technology XV, Baltimore, MD, USA, 17 May 2013; p. 87410W. [Google Scholar]
- Haynes, G.C.; Pusey, J.; Knopf, R.; Johnson, A.M.; Koditschek, D.E. Laboratory on Legs: An Architecture for Adjustable Morphology with Legged Robots. In Proceedings of the Conference on Unmanned Systems Technology XV, Baltimore, MD, USA, 1 May 2012; p. 83870W. [Google Scholar]
- Duperret, J.; Kramer, B.; Koditschek, D.E. Core Actuation Promotes Self-Manipulability on a Direct-Drive Quadrupedal Robot. In 2016 International Symposium on Experimental Robotics; Kulić, D., Nakamura, Y., Khatib, O., Venture, G., Eds.; Springer: Cham, Switzerland, 2017; Volume 1, pp. 147–159. [Google Scholar]
- Bing, Z.; Rohregger, A.; Walter, F.; Huang, Y.; Lucas, P.; Morin, F.O.; Huang, K.; Knoll, A. Lateral Flexion of a Compliant Spine Improves Motor Performance in a Bioinspired Mouse Robot. Sci. Robot. 2023, 8, eadg7165. [Google Scholar] [CrossRef]
- Li, Y.; Ren, T.; Li, Y.; Liu, Q.; Chen, Y. Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-Charged Pneumatic Soft Actuators with Highly Flexible Trunk. Soft Robot. 2021, 8, 97–108. [Google Scholar] [CrossRef]
- Haruki, C.; Satoshi, N.; Ryuma, N.; Yasuo, K. Dynamic Locomotion of Quadruped with Laterally Parallel Leaf Spring Spine. In Proceedings of the International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Kuala Lumpur, Malaysia, 26–28 August 2019; pp. 91–98. [Google Scholar]
- Weinmeister, K.; Eckert, P.; Witte, H.; Ijspeert, A.-J. Cheetah-Cub-S: Steering of a Quadruped Robot Using Trunk Motion. In Proceedings of the 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), West Lafayette, IN, USA, 18–20 October 2015; pp. 1–6. [Google Scholar]
- Sabelhaus, A.P.; van Vuuren, L.J.; Joshi, A.; Zhu, E.; Garnier, H.J.; Sover, K.A.; Navarro, J.; Agogino, A.K.; Agogino, A.M. Design, Simulation, and Testing of a Flexible Actuated Spine for Quadruped Robots. arXiv 2018, arXiv:1804.06527. [Google Scholar]
- Lei, J.; Yu, H.; Wang, T. Dynamic Bending of Bionic Flexible Body Driven by Pneumatic Artificial Muscles (PAMs) for Spinning Gait of Quadruped Robot. Chin. J. Mech. Eng. 2016, 29, 11–20. [Google Scholar] [CrossRef]
- Tsujita, K.; Miki, K. A Study on Trunk Stiffness and Gait Stability in Quadrupedal Locomotion Using Musculoskeletal Robot. In Proceedings of the 2011 15th International Conference on Advanced Robotics (ICAR), Tallinn, Estonia, 20–23 June 2011; pp. 316–321. [Google Scholar]
- Miki, K.; Tsujita, K. A Study of the Effect of Structural Damping on Gait Stability in Quadrupedal Locomotion Using a Musculoskeletal Robot. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1976–1981. [Google Scholar]
- Eckert, P.; Sprowitz, A.; Witte, H.; Ijspeert, A.J. Comparing the Effect of Different Spine and Leg Designs for a Small Bounding Quadruped Robot. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3128–3133. [Google Scholar]
- Seok, S.; Wang, A.; Chuah, M.Y.; Hyun, D.J.; Lee, J.; Otten, D.M.; Lang, J.H.; Kim, S. Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot. IEEE/ASME Trans. Mechatron. 2015, 20, 1117–1129. [Google Scholar] [CrossRef]
- Park, H.W.; Park, S.; Kim, S. Variable-Speed Quadrupedal Bounding Using Impulse Planning: Untethered High-Speed 3D Running of MIT Cheetah 2. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5163–5170. [Google Scholar]
- Kühn, D.; Bernhard, F.; Grimminger, F.; Simon, S.; Kirchner, F. Development of Passive Spine and Actuated Rear Foot for an Ape-Like Robot. In Proceedings of the Emerging Trends in Mobile Robotics, Nagoya Institute of Technology, Aichi, Japan, 31 August–3 September 2010; pp. 237–244. [Google Scholar]
- Takuma, T.; Ikeda, M.; Masuda, T. Facilitating Multi-Modal Locomotion in a Quadruped Robot Utilizing Passive Oscillation of the Spine Structure. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4940–4945. [Google Scholar]
- Bidgoly, H.J.; Vafaei, A.; Sadeghi, A.; Ahmadabadi, M.N. Learning Approach to Study Effect of Flexible Spine on Running Behavior of a Quadruped Robot. In Proceedings of the Emerging Trends in Mobile Robotics, Nagoya Institute of Technology, Nagoya Institute of Technology, Aichi, Japan, 31 August–3 September 2010; pp. 1195–1201. [Google Scholar]
- Kani, M.H.H.; Derafshian, M.; Bidgoly, H.J.; Ahmadabadi, M.N. Effect of Flexible Spine on Stability of a Passive Quadruped Robot: Experimental Results. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 December 2011; pp. 2793–2798. [Google Scholar]
- Zhao, Q.; Laboratory, A. The Effect of Robot Morphology on Locomotion from the Perspective of Spinal Engine in a Quadruped Robot. In Proceedings of the International Conference on Morphological Computation, Venice, Italy, 12–14 September 2012. [Google Scholar]
- Duperret, J.M.; Pusey, J.L.; Haynes, G.C.; Koditschek, D.E. Canid, Pronking XRL Preliminary Comparison Dataset. Available online: https://kodlab.seas.upenn.edu/uploads/Jeff/canid_13_tr.pdf (accessed on 13 October 2024).
- Lucas, P.; Oota, S.; Conradt, J.; Knoll, A. Development of the Neurorobotic Mouse. In Proceedings of the 2019 IEEE International Conference on Cyborg and Bionic Systems (CBS), Munich, Germany, 18–20 September 2019; pp. 299–304. [Google Scholar]
- Sun, H.; Wei, C.; Yao, Y.; Wu, J. Analysis and Experiment of a Bioinspired Multimode Octopod Robot. Chin. J. Mech. Eng. 2023, 36, 142. [Google Scholar] [CrossRef]
- Li, C.; Shi, Q.; Gao, Z.; Ma, M.; Ishii, H.; Takanishi, A.; Huang, Q.; Fukuda, T. Design and Optimization of a Lightweight and Compact Waist Mechanism for a Robotic Rat. Mech. Mach. Theory 2020, 146, 103723. [Google Scholar] [CrossRef]
- Ijspeert, A.J.; Crespi, A.; Ryczko, D.; Cabelguen, J.-M. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science 2007, 315, 1416–1420. [Google Scholar] [CrossRef]
- Eckert, P.; Schmerbauch, A.E.; Horvat, T.; Söhnel, K.; Fischer, M.S.; Witte, H.; Ijspeert, A.J. Towards Rich Motion Skills with the Lightweight Quadruped Robot Serval. Adapt. Behav. 2020, 28, 129–150. [Google Scholar] [CrossRef]
- Khoramshahi, M.; Sprowitz, A.; Tuleu, A.; Ahmadabadi, M.N.; Ijspeert, A.J. Benefits of an Active Spine Supported Bounding Locomotion with a Small Compliant Quadruped Robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3329–3334. [Google Scholar]
- Narioka, K.; Rosendo, A.; Sproewitz, A.; Hosoda, K. Development of a Minimalistic Pneumatic Quadruped Robot for Fast Locomotion. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 307–311. [Google Scholar]
- Ijspeert, A.J.; Cabelguen, J.M. Control of Aquatic and Terrestrial Gaits in Salamander. In Encyclopedia of Computational Neuroscience; Jaeger, D., Jung, R., Eds.; Springer: New York, NY, USA, 2014; pp. 1–9. [Google Scholar]
- Chen, G.; Qiao, L.; Wang, B.; Richter, L.; Ji, A. Bionic Design of Multi-Toe Quadruped Robot for Planetary Surface Exploration. Machines 2022, 10, 827. [Google Scholar] [CrossRef]
- Kuehn, D.; Grimminger, F.; Beinersdorf, F.; Bernhard, F.; Burchardt, A.; Schilling, M.; Simnofske, M.; Stark, T.; Zenzes, M.; Kirchner, F. Additional DOFs and Sensors for Bio-Inspired Locomotion: Towards Active Spine, Ankle Joints, and Feet for a Quadruped Robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 December 2011; pp. 2780–2786. [Google Scholar]
- Ota, Y.; Yoneda, K.; Ito, F.; Hirose, S.; Inagaki, Y. Design and Control of 6-DOF Mechanism for Twin-Frame Mobile Robot. Auton. Robot. 2001, 10, 297–316. [Google Scholar] [CrossRef]
- Stewart, D. A Platform with Six Degrees of Freedom. Aircr. Eng. 1965, 180, 371–386. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, H.; Liu, B.; Gu, X. A Bio-Inspired Quadruped Robot with a Global Compliant Spine. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 1312–1316. [Google Scholar]
- Faudzi, A.A.M.; Razif, M.R.M.; Endo, G.; Nabae, H.; Suzumori, K. Soft-Amphibious Robot Using Thin and Soft McKibben Actuator. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 981–986. [Google Scholar]
- Wu, Y.; Yim, J.; Liang, J.; Shao, Z.; Qi, M.; Zhong, J.; Luo, Z.; Yan, X.; Zhang, M.; Wang, X.; et al. Insect-Scale Fast Moving and Ultrarobust Soft Robot. Sci. Robot. 2019, 4, eaax1594. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, K.; Spyrakos-Papastavridis, E.; Dai, J.S. Origaker: A Novel Multi-Mimicry Quadruped Robot Based on a Metamorphic Mechanism. J. Mech. Robot. 2022, 14, 060907. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Wang, S.; Dai, J.S. Jumping with Expandable Trunk of a Metamorphic Quadruped Robot—The Origaker II. Appl. Sci. 2019, 9, 1778. [Google Scholar] [CrossRef]
- Dai, J.S.; Rees Jones, J. Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds. J. Mech. Des. 1999, 121, 375–382. [Google Scholar] [CrossRef]
- Tang, Z.; Dai, J.S. Metamorphic Mechanism and Reconfiguration of a Biomimetic Quadruped Robot. In Proceedings of the Volume 1A: 38th Computers and Information in Engineering Conference; American Society of Mechanical Engineers, Quebec, QC, Canada, 26–29 August 2018; p. V01AT02A039. [Google Scholar]
- Zhao, Q.; Ellenberger, B.; Sumioka, H.; Sandy, T.; Pfeifer, R. The Effect of Spine Actuation and Stiffness on a Pneumatically-Driven Quadruped Robot for Cheetah-like Locomotion. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 1807–1812. [Google Scholar]
- Dong, H.; Yang, H.; Ding, S.; Li, T.; Yu, H. Bioinspired Amphibious Origami Robot with Body Sensing for Multimodal Locomotion. Soft Robot. 2022, 9, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chi, Y.; Sun, J.; Huang, T.H.; Maghsoudi, O.H.; Spence, A.; Zhao, J.; Su, H.; Yin, J. Leveraging Elastic Instabilities for Amplified Performance: Spine-Inspired High-Speed and High-Force Soft Robots. Sci. Adv. 2020, 6, eaaz6912. [Google Scholar] [CrossRef]
- Wu, J.; Yang, H.; Li, R.; Ruan, Q.; Yan, S.; Yao, Y. Design and Analysis of a Novel Octopod Platform with a Reconfigurable Trunk. Mech. Mach. Theory 2021, 156, 104134. [Google Scholar] [CrossRef]
- Hoffman, K.L.; Wood, R.J. Turning Gaits and Optimal Undulatory Gaits for a Modular Centipede-Inspired Millirobot. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1052–1059. [Google Scholar]
- Bares, J.E.; Wettergreen, D.S. Dante II: Technical Description, Results, and Lessons Learned. Int. J. Robot. Res. 1999, 18, 621–649. [Google Scholar] [CrossRef]
- Fukuda, T.; Adachi, Y.; Hoshino, H.; Matsunaga, I.; Arai, F. An Omni-Directional Six-Legged Walking Robot. Adv. Robot. 1994, 9, 177–191. [Google Scholar] [CrossRef]
- Jung, K.S.; Baek, Y.S. Force Distribution of a Six-Legged Walking Robot with High Constant Speed. KSME Int. J. 2000, 14, 131–140. [Google Scholar] [CrossRef]
- Kuehn, D.; Schilling, M.; Stark, T.; Zenzes, M.; Kirchner, F. System Design and Testing of the Hominid Robot Charlie: System Design and Testing of the Hominid Robot Charlie. J. Field Robot. 2017, 34, 666–703. [Google Scholar] [CrossRef]
- Berns, K.; Ilg, W.; Deck, M.; Albiez, J.; Dillmann, R. Mechanical Construction and Computer Architecture of the Four-Legged Walking Machine BISAM. IEEE/ASME Trans. Mechatron. 1999, 4, 32–38. [Google Scholar] [CrossRef]
- Yin, X.; Wang, C.; Xie, G. A Salamander-like Amphibious Robot: System and Control Design. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012; pp. 956–961. [Google Scholar]
- Lewis, M.A.; Bekey, G.A. Gait Adaptation in a Quadruped Robot. Auton. Robot. 2002, 12, 301–312. [Google Scholar] [CrossRef]
- Kuhn, D.; Rommermann, M.; Sauthoff, N.; Grimminger, F.; Kirchner, F. Concept Evaluation of a New Biologically Inspired Robot “LittleApe”. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 589–594. [Google Scholar]
- Fukuhara, A.; Koizumi, Y.; Suzuki, S.; Kano, T.; Ishiguro, A. Decentralized Control Mechanism for Body–Limb Coordination in Quadruped Running. Adapt. Behav. 2020, 28, 151–164. [Google Scholar] [CrossRef]
- Nyakatura, J.A.; Melo, K.; Horvat, T.; Karakasiliotis, K.; Allen, V.R.; Andikfar, A.; Andrada, E.; Arnold, P.; Lauströer, J.; Hutchinson, J.R.; et al. Reverse-Engineering the Locomotion of a Stem Amniote. Nature 2019, 565, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Owaki, D.; Morikawa, L.; Ishiguro, A. Listen to Body’s Message: Quadruped Robot That Fully Exploits Physical Interaction between Legs. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1950–1955. [Google Scholar]
- Owaki, D.; Kano, T.; Nagasawa, K.; Tero, A.; Ishiguro, A. Simple Robot Suggests Physical Interlimb Communication Is Essential for Quadruped Walking. J. R. Soc. Interface 2013, 10, 20120669. [Google Scholar] [CrossRef] [PubMed]
- Karakasiliotis, K.; Thandiackal, R.; Melo, K.; Horvat, T.; Mahabadi, N.K.; Tsitkov, S.; Cabelguen, J.M.; Ijspeert, A.J. From Cineradiography to Biorobots: An Approach for Designing Robots to Emulate and Study Animal Locomotion. J. R. Soc. Interface 2016, 13, 20151089. [Google Scholar] [CrossRef] [PubMed]
- Karakasiliotis, K.; Ijspeert, A.J. Analysis of the Terrestrial Locomotion of a Salamander Robot. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 5015–5020. [Google Scholar]
- Haomachai, W.; Shao, D.; Wang, W.; Ji, A.; Dai, Z.; Manoonpong, P. Lateral Undulation of the Bendable Body of a Gecko-Inspired Robot for Energy-Efficient Inclined Surface Climbing. IEEE Robot. Autom. Lett. 2021, 6, 7917–7924. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; Wei, X.; Long, Y.; Wang, S. Bio-Inspired Control Strategy Study for the Quadruped Robot with a Segmented Spine. Ind. Robot. 2017, 44, 85–93. [Google Scholar] [CrossRef]
- Wang, S.; Shi, Q.; Gao, J.; Wang, Y.; Meng, F.; Li, C.; Huang, Q.; Fukuda, T. Design and Control of a Miniature Quadruped Rat-Inspired Robot. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 346–351. [Google Scholar]
- Wang, R.; Xiao, H.; Quan, X.; Gao, J.; Fukuda, T.; Shi, Q. Bioinspired Soft Spine Enables Small-Scale Robotic Rat to Conquer Challenging Environments. Soft Robot. 2024, 11, 70–84. [Google Scholar] [CrossRef]
- Kawasaki, R.; Sato, R.; Kazama, E.; Ming, A.; Shimojo, M. Development of a Flexible Coupled Spine Mechanism for a Small Quadruped Robot. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 71–76. [Google Scholar]
- Suzuki, S.; Kano, T.; Ijspeert, A.J.; Ishiguro, A. Decentralized Control with Cross-Coupled Sensory Feedback between Body and Limbs in Sprawling Locomotion. Bioinspir. Biomim. 2019, 14, 066010. [Google Scholar] [CrossRef]
- Wang, W.; Wu, S.; Zhu, P.; Liu, R. Analysis on the Dynamic Climbing Forces of a Gecko Inspired Climbing Robot Based on GPL Model. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 3314–3319. [Google Scholar]
- Chong, B.; Ozkan Aydin, Y.; Gong, C.; Sartoretti, G.; Wu, Y.; Rieser, J.; Xing, H.; Rankin, J.; Michel, K.; Nicieza, A.; et al. Coordination of Back Bending and Leg Movements for Quadrupedal Locomotion. In Proceedings of the Robotics: Science and Systems XIV, Robotics: Science and Systems Foundation, Pittsburgh, PA, USA, 26 June 2018. [Google Scholar]
- Chong, B.; Aydin, Y.O.; Gong, C.; Sartoretti, G.; Wu, Y.; Rieser, J.M.; Xing, H.; Schiebel, P.E.; Rankin, J.W.; Michel, K.B.; et al. Coordination of Lateral Body Bending and Leg Movements for Sprawled Posture Quadrupedal Locomotion. Int. J. Robot. Res. 2021, 40, 747–763. [Google Scholar] [CrossRef]
- Shi, Q.; Li, C.; Li, K.; Huang, Q.; Ishii, H.; Takanishi, A.; Fukuda, T. A Modified Robotic Rat to Study Rat-Like Pitch and Yaw Movements. IEEE/ASME Trans. Mechatron. 2018, 23, 2448–2458. [Google Scholar] [CrossRef]
- Shi, Q.; Ishii, H.; Sugita, H.; Kinoshita, S.; Lin, Z.; Takanishi, A.; Okabayashi, S.; Iida, N.; Kimura, H. A Rat-like Robot WR-5 for Animal Behavior Research. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 784–789. [Google Scholar]
- Ishii, H.; Komura, A.; Masuda, Y.; Miyagishima, S.; Takanishi, A.; Okabayashi, S.; Iida, N.; Kimura, H. Development of Quadruped Animaroid for Social Interaction Test with Rats and Mice. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 1724–1729. [Google Scholar]
- Ishii, H.; Masuda, Y.; Miyagishima, S.; Fumino, S.; Takanishi, A.; Laschi, C.; Mazzolai, B.; Mattoli, V.; Dario, P. Design and Development of Biomimetic Quadruped Robot for Behavior Studies of Rats and Mice. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 7192–7195. [Google Scholar]
- Shi, Q.; Miyagishima, S.; Konno, S.; Fumino, S.; Ishii, H.; Takanishii, A.; Laschi, C.; Mazzolai, B.; Mattoli, V.; Dario, P. Development of the Hybrid Wheel-Legged Mobile Robot WR-3 Designed to Interact with Rats. In Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 887–892. [Google Scholar]
- Li, W.; Zhou, Z.; Cheng, H. Dynamic Locomotion of a Quadruped Robot with Active Spine via Model Predictive Control. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 1185–1191. [Google Scholar]
- Steingrube, S.; Timme, M.; Wörgötter, F.; Manoonpong, P. Self-Organized Adaptation of a Simple Neural Circuit Enables Complex Robot Behaviour. Nat. Phys 2010, 6, 224–230. [Google Scholar] [CrossRef]
- Sastra, J.; Bernal Heredia, W.G.; Clark, J.; Yim, M. A Biologically-Inspired Dynamic Legged Locomotion with a Modular Reconfigurable Robot. In Proceedings of the ASME 2008 Dynamic Systems and Control Conference, Parts A and B, Ann Arbor, MI, USA, 20–22 October 2008; ASMEDC: Ann Arbor, MI, USA, 2008; pp. 1467–1474. [Google Scholar]
- Doroftei, I.; Preumont, A. Development of an Autonomous Micro Walking Robot with Articulated Body. In Proceedings of the 2nd International Conference on Climbing and Walking Robots, Westminster, UK, 13 September 1999; pp. 497–507. [Google Scholar]
- Rasakatla, S.; Krishna, K.M.; Indurkhya, B. Design, Construction and a Compliant Gait of “ModPod”: A Modular Hexpod Robot. In Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, Tianjin, China, 14–18 December 2010; pp. 1341–1345. [Google Scholar]
- Dirk, S.; Frank, K. The Bio-Inspired SCORPION Robot: Design, Control & Lessons Learned. In Climbing and Walking Robots: Towards New Applications; Zhang, H., Ed.; I-Tech Education and Publishing: Rijeka, Croatia, 2007; pp. 197–221. [Google Scholar]
- Aoi, S.; Egi, Y.; Tsuchiya, K. Instability-Based Mechanism for Body Undulations in Centipede Locomotion. Phys. Rev. E 2013, 87, 012717. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.L.; Wood, R.J. Passive Undulatory Gaits Enhance Walking in a Myriapod Millirobot. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1479–1486. [Google Scholar]
- Dooyeol, K.; Jaemin, Y.; Soohyun, K. Centipede Robot for Uneven Terrain Exploration: Design and Experiment of the Flexible Biomimetic Robot Mechanism. In Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 877–881. [Google Scholar]
- Kano, T.; Ikeshita, Y.; Fukuhara, A.; Ishiguro, A. Body-Limb Coordination Mechanism Underlying Speed-Dependent Gait Transitions in Sea Roaches. Sci. Rep. 2019, 9, 2848. [Google Scholar] [CrossRef] [PubMed]
- Daltorio, K.A.; Witushynsky, T.C.; Wile, G.D.; Palmer, L.R.; Ab Malek, A.; Ahmad, M.R.; Southard, L.; Gorb, S.N.; Ritzmann, R.E.; Quinn, R.D. A Body Joint Improves Vertical to Horizontal Transitions of a Wall-Climbing Robot. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 3046–3051. [Google Scholar]
- Allen, T.J.; Quinn, R.D.; Bachmann, R.J.; Ritzmann, R.E. Abstracted Biological Principles Applied with Reduced Actuation Improve Mobility of Legged Vehicles. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; pp. 1370–1375. [Google Scholar]
- Boxerbaum, A.S.; Werk, P.; Quinn, R.D.; Vaidyanathan, R. Design of an Autonomous Amphibious Robot for Surf Zone Operation: Part I Mechanical Design for Multi-Mode Mobility. In Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, USA, 24–28 July 2005; pp. 1459–1464. [Google Scholar]
- Duperret, J.; Koditschek, D.E. Empirical Validation of a Spined Sagittal-Plane Quadrupedal Model. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1058–1064. [Google Scholar]
- Chen, D.; Li, N.; Wang, H.; Chen, L. Effect of Flexible Spine Motion on Energy Efficiency in Quadruped Running. J. Bionic Eng. 2017, 14, 716–725. [Google Scholar] [CrossRef]
- Zhao, Q.; Sumioka, H.; Nakajima, K.; Yu, X.; Pfeifer, R. Spine as an Engine: Effect of Spine Morphology on Spine-Driven Quadruped Locomotion. Adv. Robot. 2014, 28, 367–378. [Google Scholar] [CrossRef]
- Zhao, Q.; Sumioka, H.; Yu, X.; Nakajima, K.; Wang, Z.; Pfeifer, R. The Function of the Spine and Its Morphological Effect in Quadruped Robot Locomotion. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 66–71. [Google Scholar]
- Kani, M.H.H.; Nili Ahmadabadi, M. Comparing Effects of Rigid, Flexible, and Actuated Series-Elastic Spines on Bounding Gait of Quadruped Robots. In Proceedings of the 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 13–15 February 2013; pp. 282–287. [Google Scholar]
- Deng, Q.; Wang, S.; Xu, W.; Mo, J.; Liang, Q. Quasi Passive Bounding of a Quadruped Model with Articulated Spine. Mech. Mach. Theory 2012, 52, 232–242. [Google Scholar] [CrossRef]
- Cao, Q.; Poulakakis, I. Quadrupedal Bounding with a Segmented Flexible Torso: Passive Stability and Feedback Control. Bioinspir. Biomim. 2013, 8, 046007. [Google Scholar] [CrossRef]
- Cao, Q.; Poulakakis, I. Passive Quadrupedal Bounding with a Segmented Flexible Torso. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 2484–2489. [Google Scholar]
- Koutsoukis, K.; Papadopoulos, E. On Passive Quadrupedal Bounding with Translational Spinal Joint. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 3406–3411. [Google Scholar]
- Culha, U.; Saranli, U. Quadrupedal Bounding with an Actuated Spinal Joint. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1392–1397. [Google Scholar]
- Liu, Q.; Bao, Y.; Yu, W.; Zhang, J.; Li, C.; Xie, X. Mechanism of Spine Motion About Contact Time in Quadruped Running. Chin. J. Mech. Eng. 2019, 32, 18. [Google Scholar] [CrossRef]
- Fisher, C.; Shield, S.; Patel, A. The Effect of Spine Morphology on Rapid Acceleration in Quadruped Robots. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 2121–2127. [Google Scholar]
- Yesilevskiy, Y.; Yang, W.; Remy, C.D. Spine Morphology and Energetics: How Principles from Nature Apply to Robotics. Bioinspir. Biomim. 2018, 13, 036002. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; Wei, X.; Long, Y.; Wang, S. Dynamic Characteristics and Stability Criterion of Rotary Galloping Gait with an Articulated Passive Spine Joint. Adv. Robot. 2017, 31, 168–183. [Google Scholar] [CrossRef]
- Gracovetsky, S. An Hypothesis for the Role of the Spine in Human Locomotion: A Challenge to Current Thinking. J. Biomed. Eng. 1985, 7, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Hsieh, S.T.; Dudek, D.M.; Chen, J.; Chitaphan, C.; Full, R.J. Dynamics of Geckos Running Vertically. J. Exp. Biol. 2006, 209, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Kano, T.; Ijspeert, A.J.; Ishiguro, A. Sprawling Quadruped Robot Driven by Decentralized Control With Cross-Coupled Sensory Feedback Between Legs and Trunk. Front. Neurorobot. 2021, 14, 607455. [Google Scholar] [CrossRef] [PubMed]
- Ijspeert, A.J. Amphibious and Sprawling Locomotion: From Biology to Robotics and Back. Annu. Rev. Control Robot. Auton. Syst. 2020, 3, 173–193. [Google Scholar] [CrossRef]
- Karakasiliotis, K.; Schilling, N.; Cabelguen, J.-M.; Ijspeert, A.J. Where Are We in Understanding Salamander Locomotion: Biological and Robotic Perspectives on Kinematics. Biol. Cybern. 2013, 107, 529–544. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, J.S. Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot. Mech. Sci. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Zhen, W. Gait Planning of a Novel Metamorphic Quadruped Robot. J. Mech. Eng. 2016, 52, 26. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Dai, J.S.; Qi, P. Stability Margin of a Metamorphic Quadruped Robot with a Twisting Trunk. J. Mech. Robot. 2019, 11, 064501. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Wang, X.; Dai, J.S. Modeling for a Metamorphic Quadruped Robot with a Twisting Trunk: Kinematic and Workspace. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6886–6892. [Google Scholar]
- Goldschmidt, D.; Hesse, F.; Worgotter, F.; Manoonpong, P. Biologically Inspired Reactive Climbing Behavior of Hexapod Robots. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 4632–4637. [Google Scholar]
- Daltorio, K.A.; Wei, T.E.; Horchler, A.D.; Southard, L.; Wile, G.D.; Quinn, R.D.; Gorb, S.N.; Ritzmann, R.E. Mini-Whegs TM Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms. Int. J. Robot. Res. 2009, 28, 285–302. [Google Scholar] [CrossRef]
- Shi, Q.; Ishii, H.; Kinoshita, S.; Konno, S.; Takanishi, A.; Okabayashi, S.; Iida, N.; Kimura, H. A Rat-like Robot for Interacting with Real Rats. Robotica 2013, 31, 1337–1350. [Google Scholar] [CrossRef]
- Shi, Q.; Ishii, H.; Sugahara, Y.; Takanishi, A.; Huang, Q.; Fukuda, T. Design and Control of a Biomimetic Robotic Rat for Interaction with Laboratory Rats. IEEE/ASME Trans. Mechatron. 2015, 20, 1832–1842. [Google Scholar] [CrossRef]
- Shi, Q.; Gao, Z.; Jia, G.; Li, C.; Huang, Q.; Ishii, H.; Takanishi, A.; Fukuda, T. Implementing Rat-Like Motion for a Small-Sized Biomimetic Robot Based on Extraction of Key Movement Joints. IEEE Trans. Robot. 2021, 37, 747–762. [Google Scholar] [CrossRef]
- Shi, Q.; Gao, J.; Wang, S.; Quan, X.; Jia, G.; Huang, Q.; Fukuda, T. Development of a Small-Sized Quadruped Robotic Rat Capable of Multimodal Motions. IEEE Trans. Robot. 2022, 38, 3027–3043. [Google Scholar] [CrossRef]
- Wettergreen, D.; Thorpe, C.; Whittaker, R. Exploring Mount Erebus by Walking Robot. Robot. Auton. Syst. 1993, 11, 171–185. [Google Scholar] [CrossRef]
- Shi, Q.; Ishii, H.; Miyagishima, S.; Konno, S.; Fumino, S.; Takanishi, A.; Okabayashi, S.; Iida, N.; Kimura, H. Development of a Hybrid Wheel-Legged Mobile Robot WR-3 Designed for the Behavior Analysis of Rats. Adv. Robot. 2011, 25, 2255–2272. [Google Scholar] [CrossRef]
- Horvat, T.; Melo, K.; Ijspeert, A.J. Spine Controller for a Sprawling Posture Robot. IEEE Robot. Autom. Lett. 2017, 2, 1195–1202. [Google Scholar] [CrossRef]
- Ozkan-Aydin, Y.; Goldman, D.I. Self-Reconfigurable Multilegged Robot Swarms Collectively Accomplish Challenging Terradynamic Tasks. Sci. Robot. 2021, 6, eabf1628. [Google Scholar] [CrossRef]
- Knüsel, J.; Crespi, A.; Cabelguen, J.M.; Ijspeert, A.J.; Ryczko, D. Reproducing Five Motor Behaviors in a Salamander Robot with Virtual Muscles and a Distributed CPG Controller Regulated by Drive Signals and Proprioceptive Feedback. Front. Neurorobot. 2020, 14, 604426. [Google Scholar] [CrossRef]
- Schilling, M.; Paskarbeit, J.; Hoinville, T.; Hüffmeier, A.; Schneider, A.; Schmitz, J.; Cruse, H. A Hexapod Walker Using a Heterarchical Architecture for Action Selection. Front. Comput. Neurosci. 2013, 7, 126. [Google Scholar] [CrossRef]
- Schilling, M.; Hoinville, T.; Schmitz, J.; Cruse, H. Walknet, a Bio-Inspired Controller for Hexapod Walking. Biol. Cybern. 2013, 107, 397–419. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Qiao, L.; Zhou, Z.; Lei, X.; Zou, M.; Richter, L.; Ji, A. Biomimetic Lizard Robot for Adapting to Martian Surface Terrain. Bioinspir. Biomim. 2024, 19, 036005. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Qiao, L.; Zhou, Z.; Richter, L.; Ji, A. Development of a Lizard-Inspired Robot for Mars Surface Exploration. Biomimetics 2023, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, S. Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration. Künstl. Intell. 2014, 28, 127–131. [Google Scholar] [CrossRef]
- Vitiello, N.; Ijspeert, A.J.; Schaal, S. Bioinspired Motor Control for Articulated Robots [From the Guest Editors]. IEEE Robot. Automat. Mag. 2016, 23, 20–21. [Google Scholar] [CrossRef]
- Aydin, Y.O.; Rieser, J.M.; Hubicki, C.M.; Savoie, W.; Goldman, D.I. Physics Approaches to Natural Locomotion: Every Robot Is an Experiment. In Robotic Systems and Autonomous Platforms; Shawn, M., Walsh, M.S., Strano, Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 109–127. [Google Scholar]
- Labonte, D.; Bishop, P.J.; Dick, T.J.M.; Clemente, C.J. Dynamic Similarity and the Peculiar Allometry of Maximum Running Speed. Nat. Commun. 2024, 15, 2181. [Google Scholar] [CrossRef]
Ways to Achieve Flexible Bodies | Advantages | Disadvantages |
---|---|---|
Active spine | High flexibility: An active spine can dynamically adjust according to the environment and tasks, providing higher flexibility and adaptability. Better motion performance: It can simulate the movements of animals, enhancing the robot motion ability in complex environments. High control precision: Through a precise control system, an active spine can achieve higher motion precision and coordination, aiding in the completion of complex operational tasks. | More complexity: The design and control system of an active spine are relatively complex, requiring more sensors and control algorithms, which increases the complexity of the robot and the risk of failure. High-energy consumption: Due to the need for continuous energy to drive motors and the control system, an active spine typically consumes more energy. High cost: The manufacturing and maintenance costs of an active spine are higher. |
Compliant spine | Simplicity: The design of a compliant spine is relatively simple, reducing the driving element and control systems. Low-energy consumption: Since it does not require driving elements, a compliant spine consumes less energy. | Movement limitations: Due to the lack of active control, a passive spine may perform poorly in certain movement modes, limiting the robot’s motion ability. Poor stability: During rapid movement or on uneven ground, a compliant spine may not provide enough stability, increasing the risk of tipping over. |
Single-axis articulation | Simple structure: It is relatively simple, reducing the number of mechanical components. Easy control: Due to the limited range of motion, the control system is relatively straightforward, making it easier to implement basic tasks. | Limited flexibility: Single-axis articulation restricts the robot’s ability to move in multiple directions, resulting in lower adaptability and difficulty in handling complex environments. Movement is limited to a single plane. |
Multi-axis articulation | High flexibility: The multi-axis design allows for movement in multiple directions, adapting to complex environments and diverse tasks. Wide range of motion: It can perform more complex motions, such as large-angle turning and bending. | Complex structure: The multi-axis articulated design increases the number of mechanical components. Greater control difficulty: Due to the broad range of motion, the control system becomes more complex, requiring advanced algorithms and sensors to achieve precise movement control. |
Robot | Ref | Ways to Achieve Flexible Body | Gained DOF | Layout | Active/ Compliant | Bionic Model |
---|---|---|---|---|---|---|
BISAM | [61] | Single-axis articulation, Rigid connection | Ry | 2 + 2 | Active | Ape |
Bobcat | [38] | Single-axis articulation, Rigid connection | Ry | 2 + 2 | Active | Not Given |
Canid | [14] | Artificial spine | Ry | 2 + 2 | Active | Not Given |
Charlie | [42] | Stewart platform | Omnidirectional | 2 + 2 | Active | Ape |
Cheetah-Cub-S | [19] | Artificial spine | Rz | 2 + 2 | Active | Cheetah |
Cheetah-I | [1] | Artificial spine | Rz | 2 + 2 | Compliant | Cheetah |
Chigon | [62] | Multi-axis articulation, Rigid connection | Rz, Ry | 2 + 2 | Active | Salamander |
ELIRO-I/II | [2,3] | Single-axis articulation, Rigid connection | Rz | 2 + 2 | Active | Lizard |
Fanari | [30] | Artificial spine | Ry | 2 + 2 | Compliant | Tiger |
GEO-II | [63] | Multi-axis articulation, Rigid connection | Rz, Rx | 2 + 2 | Active | Not Given |
Inu | [15] | Artificial spine | Ry | 2 + 2 | Active | Not Given |
Ken | [39] | Single-axis articulation, Rigid connection | Ry | 2 + 2 | Compliant | Not Given |
Kitty | [10] | Artificial spine | Rz, Ry | 2 + 2 | Active | Not Given |
Laika | [20] | Artificial spine | Rz, Ry, Rx | 2 + 2 | Active | Not Given |
LightDog | [45] | Integrated Elastic material | Rz | 2 + 2 | Compliant | Dog |
LittleApe | [64] | Artificial spine | Rz, Ry | 2 + 2 | Compliant | Ape |
Lynx SV1 | [24] | Single-axis articulation, Rigid connection | Ry | 2 + 2 | Active | Not Given |
Lynx SV2 and SV3 | [24] | Artificial spine | Ry | 2 + 2 | Active | Not Given |
NekoBot | [65] | Single-axis articulation, Rigid connection | Ry | 2 + 2 | Active | Not Given |
NeRmo | [33] | Artificial spine | Rz, Ry | 2 + 2 | Active | Rat |
Origaker | [5] | Metamorphic | 2 + 2 | Active | ||
OroBOT | [66] | Multi-axis articulation, Rigid connection | Rz | 2 + 2 | Active | Orobates 1 |
OSCILLEX 2/3 | [67,68] | Single-axis articulation, Spring connection | Ry, Rx | 2 + 2 | Compliant | Not Given |
Pleurobot | [69] | Multi-axis articulation, Rigid connection | Rz | 2 + 2 | Active | Salamander |
QuaDRoPECS | [18] | Artificial spine | Rz, Ry | 2 + 2 | Active | Not Given |
Renny | [52] | Spheric joint | Rz, Ry, Rx | 2 + 2 | Active | Cheetah |
Salamandra Robotica I 2 | [36] | Multi-axis articulation, Rigid connection | Rz | 2 + 0 + 0 + 2 + 0 + 0 + 0 | Active | Salamander |
Salamandra Robotica II 3 | [70] | Multi-axis articulation, Rigid connection | Rz | 0 + 2 + 0 + 0 + 0 + 2 + 0 + 0 + 0 | Active | Salamander |
Serval | [37] | Multi-axis articulation, Spring connection | Rz, Ry | 2 + 2 | Active | Dog |
Slalom | [71] | Multi-axis articulation, Rigid connection | Rz | 2 + 2 | Compliant | Gecko |
SQBot | [72] | Single-axis articulation, Spring connection | Ry | 2 + 2 | Compliant | Cheetah |
SQuRo | [73] | Multi-axis articulation, Rigid connection | Rz | 2 + 2 | Active | Rat |
SQuRo-S | [74] | Artificial spine | Rz, Ry, Rx | 2 + 2 | Active | Rat |
Stoch 2 | [7] | Multi-axis articulation, Rigid connection | Ry | 2 + 2 | Active | Cheetah |
Sugoi-Neco | [75] | Single-axis articulation, Spring connection | Ry | 2 + 2 | Compliant | Cat |
Tiger | [29] | Artificial spine | Ry | 2 + 2 | Compliant | Tiger |
Transleg | [12] | Artificial spine | Rz, Ry | 2 + 2 | Active | Not Given |
Twister | [76] | Single-axis articulation, Rigid connection | Rz | 2 + 2 | Active | Not Given |
Unnamed | [46] | Integrated Elastic material | Rz | 2 + 2 | Active | Lizard |
Unnamed | [53] | Octagon-origami | Rz, X | 2 + 2 | Active | Inchworm |
Unnamed | [47] | Piezoelectric material | Ry | 2 + 2 | Active | Cockroach |
Unnamed | [28] | Artificial spine | Rz | 2 + 2 | Compliant | Not Given |
Unnamed | [54] | Soft structure | Ry | 2 + 2 | Compliant | Cheetah |
Unnamed | [17] | Artificial spine | Rz | 2 + 2 | Active | Dog |
Unnamed | [22] | Artificial spine | Rz, Ry, Rx | 2 + 2 | Active | Cat |
Unnamed | [21] | Artificial spine | Rz, Ry | 2 + 2 | Active | Not Given |
Unnamed | [77] | Single-axis articulation, Rigid connection | Rz | 2 + 2 | Compliant | Gecko |
Unnamed | [78] | Single-axis articulation, Rigid connection | Rz | 2 + 2 | Active | Gecko |
Unnamed | [79] | Single-axis articulation, Rigid connection | Rz | 2 + 2 | Active | Salamander |
Unnamed | [41] | Multi-axis articulation, Spring connection | Rz, Ry, Rx | 2 + 2 | Active | Chameleon |
WR Series Robots (1–5 and 5M) | [80,81,82,83,84] | Multi-axis articulation, Rigid connection | Rz, Ry | 2 + 2 | Active | Rat |
Yat-sen Lion | [85] | Multi-axis articulation, Rigid connection | Rz, Ry | 2 + 2 | Active | Not Given |
Robot | Ref | Ways to Achieve Body Flexible | Gained DOF | Layout | Active/ Compliant | Bionic Model |
---|---|---|---|---|---|---|
AMOS Series Robots (II and WD06) | [4,86] | Single-axis articulation, Rigid connection | Ry | 2 + 4 | Active | Cockroach |
CkBot | [87] | Multi-axis articulation, Rigid connection | Rz, Rx | 2 + 2 + 2 + …… | Active | Centipede |
Dante II | [57] | Reciprocating Mechanism | Rz, X | 3 + 3 | Active | |
Hector | [8] | 2 DOFs Spindle Joint | Rz, Ry, X | 2 + 2 + 2 | Stick insects | |
IOAN | [88] | Multi-axis articulation, Rigid connection | Ry, Rx | 2 + 2 + 2 | Active | Not Given |
MELCRAB-2 | [6] | Reciprocating Mechanism | Rz, X | 3 + 3 | Active | |
ModPod | [89] | Multi-axis articulation, Rigid connection | Rz, Ry | 2 + 2 + 2 | Active | Cockroach |
Octopod Robot | [34] | Single-axis articulation, Rigid connection | Ry | 4 + 4 | Active | |
Octopod Robot | [55] | Bricard linkages | Rz, Ry | 4 + 4 | Active | |
ParaWalker | [43] | Stewart Platform | Omnidirectional | 3 + 3 | Active | |
SCORPION-III/IV | [90] | Soft structure (rubber) | Rz, Ry, Rx | 2 + 4 + 2 | Compliant | Scorpion |
SpaceClimber | [9] | Single-axis articulation, Rigid connection | Ry | 2 + 4 | Active | Not Given |
Unnamed | [58] | Reciprocating Mechanism | Rz, Y, X | 3 + 3 | Active | |
Unnamed | [91] | Single-axis articulation, Rigid connection | Rz | 2 + 2 + 2 + 2 + 2 + 2 | Active | Centipede |
Unnamed | [92] | Sarrus linkages | Rz, X | 2 + 2 + 2 + …… | Compliant | Centipede |
Unnamed | [93] | Spheric joint | Rz, Ry, Rx | 2 + 2 + 2 + …… | Compliant | Centipede |
Unnamed | [94] | Single-axis articulation, Rigid connection | Ry | 2 + 2 + 2 + 2 + 2 + 2 + 2 | Active | Sea roaches |
WhegsTM Series Robots (II, IV, and Climbing Mini-WhegsTM) | [95,96,97] | Single-axis articulation, Rigid connection | Ry | 2 + 4 | Active | Cockroach |
DOF | Motion of Flexible Body | Benefits to the Robot’s Motions |
---|---|---|
Rz | Yaw: Bending in the horizontal plane | Crawling and trotting, larger step length, higher speed, and wider workspace Smaller turning radius Better stability |
Ry | Pitch: Bending in the sagittal plane | Bounding and galloping, larger step length, higher speed, and wider workspace Better obstacle-crossing capability Higher energy efficiency (for robots with artificial spines) |
Rx | Roll: Bending in the frontal plane | Better terrain adaptability and traversability Swing leg |
X | Body extension | Moving forward (for inchworm-inspired robots and double-support-frame robots) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Suo, Z.; Liu, D.; Liu, J.; Tian, W.; Wang, J.; Wang, J. Bionic Multi-Legged Robots with Flexible Bodies: Design, Motion, and Control. Biomimetics 2024, 9, 628. https://doi.org/10.3390/biomimetics9100628
Li X, Suo Z, Liu D, Liu J, Tian W, Wang J, Wang J. Bionic Multi-Legged Robots with Flexible Bodies: Design, Motion, and Control. Biomimetics. 2024; 9(10):628. https://doi.org/10.3390/biomimetics9100628
Chicago/Turabian StyleLi, Xiang, Zhe Suo, Dan Liu, Jianfeng Liu, Wenqing Tian, Jixin Wang, and Jianhua Wang. 2024. "Bionic Multi-Legged Robots with Flexible Bodies: Design, Motion, and Control" Biomimetics 9, no. 10: 628. https://doi.org/10.3390/biomimetics9100628
APA StyleLi, X., Suo, Z., Liu, D., Liu, J., Tian, W., Wang, J., & Wang, J. (2024). Bionic Multi-Legged Robots with Flexible Bodies: Design, Motion, and Control. Biomimetics, 9(10), 628. https://doi.org/10.3390/biomimetics9100628