Next Article in Journal
MSAO-EDA: A Modified Snow Ablation Optimizer by Hybridizing with Estimation of Distribution Algorithm
Previous Article in Journal
Gender Differences in Performing an Overhead Drilling Task Using an Exoskeleton—A Cross-Sectional Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization

School of Electrical and Photoelectronic Engineering, West Anhui University, Lu’an 237012, China
*
Author to whom correspondence should be addressed.
Biomimetics 2024, 9(10), 602; https://doi.org/10.3390/biomimetics9100602
Submission received: 10 September 2024 / Revised: 4 October 2024 / Accepted: 5 October 2024 / Published: 7 October 2024

Abstract

:
The whale optimization algorithm (WOA) is constructed on a whale’s bubble-net scavenging pattern and emulates encompassing prey, bubble-net devouring prey, and stochastic capturing for prey to establish the global optimal values. Nevertheless, the WOA has multiple deficiencies, such as restricted precision, sluggish convergence acceleration, insufficient population variety, easy premature convergence, and restricted operational efficiency. The sine cosine algorithm (SCA) constructed on the oscillation attributes of the cosine and sine coefficients in mathematics is a stochastic optimization methodology. The SCA upgrades population variety, amplifies the search region, and accelerates international investigation and regional extraction. Therefore, a hybrid nonlinear WOA with SCA (SCWOA) is emphasized to estimate benchmark functions and engineering designs, and the ultimate intention is to investigate reasonable solutions. Compared with other algorithms, such as BA, CapSA, MFO, MVO, SAO, MDWA, and WOA, SCWOA exemplifies a superior convergence effectiveness and greater computation profitability. The experimental results emphasize that the SCWOA not only integrates investigation and extraction to avoid premature convergence and realize the most appropriate solution but also exhibits superiority and practicability to locate greater computation precision and faster convergence speed.

1. Introduction

Systematic optimization executes distinct logical reasoning strategies to eliminate the high-dimensional sophisticated mathematical difficulties and derive international optimal solutions. The ultimate intention is to attain the most incredible quality, efficiency, risk, and profit. Conventional numerical methodologies exhibit deficiencies in low computational productivity, sluggish convergence acceleration, easy premature convergence, lengthy activation consumption, and substantial combinatorial explosion. Nevertheless, the attributes of the swarm intelligence algorithms comprise high computation precision, great flexibility and adaptability, extensive population variety, excellent self-management, and convenient algorithmic combination, such as the bat algorithm (BA) [1], capuchin search algorithm (CapSA) [2], moth flame optimization (MFO) [3], multi-verse optimization (MVO) [4], smell agent optimization (SAO) [5], and movable damped wave algorithm (MDWA) [6].
Uzer et al. executed a modified hybrid WOA with particle swarm optimization to navigate the mathematical equations, and the methodology received a reliable international exploratory approach to discover the most advantageous optimal solutions [7]. Elmogy et al. introduced an adaptive nonlinear WOA to navigate the mathematical equations, and the methodology featured attractive sustainability and authenticity to promote convergence acceleration and elevate computational effectiveness [8]. Yang et al. integrated WOA and grey wolf optimization to navigate the mathematical equations, and the methodology exhibited extraordinary superiority and durability to maximize convergence velocity and computational productivity [9]. Zhang et al. constructed a modified WOA to navigate the proportion integration differentiation, and the methodology utilized differential filtering to accelerate the whale’s devouring proficiency and estimate desirable optimal solutions [10]. Quan et al. invented a modified WOA to simplify the thermoelectric generator, and the methodology maintained essential superiority and practicability to accomplish more substantial conversion accuracy and computational productivity [11]. Wei et al. introduced a neighborhood search WOA to navigate the mathematical equations, and the methodology exhibited exceptional reliability and stability to locate the most advantageous optimal solutions [12]. Wu et al. constructed a WOA to recognize microgrid faults, and the methodology confirmed substantial identification effectiveness and computation proficiency [13]. Fan et al. devised a WOA with a fuzzy-weighted framework to estimate body fat, and the methodology exhibited outstanding consistency and superiority in both ascertaining the diagnosis and recognizing a suitable calculated remedy [14]. Nadimi-Shahraki et al. summarized the WOA’s mathematical structures, refinements, and hybridizations, and the methodology was executed systematically and comprehensively to identify frontier situations [15]. Mohite et al. established a hybrid WOA with rain optimization to navigate the resource allocation, and the methodology retained remarkable superiority and adaptability to inhibit premature convergence and maximize the intended resource [16]. Routa et al. designed a WOA to navigate the mathematical equations and anticipate the seismic reaction, and the methodology exhibited computational capability and attractive integration precision [17]. Chakraborty et al. implemented a modified WOA based on horizontal crossover and a cooperative scavenging procedure to navigate the feature selection, and the methodology displayed outstanding equilibrium and predictability to yield higher quality measures [18]. Kumar et al. delivered a WOA to navigate the quality service resource distribution, and the methodology depicted fantastic dependability and superiority in diminishing distinctive scheduling costs [19]. Zhang et al. integrated adaptive WOA with differential evolution to navigate mutant motion tracking, and the methodology maintained tremendous tracking competitiveness and acceptable computational quality [20]. Deng et al. explained a multi-strategy WOA to navigate the mathematical equations, and the methodology exhibited exceptional durability and trustworthy in regulating the desirable optimal solutions [21]. Li et al. deployed a hybrid WOA with a symbiotic organisms search algorithm to navigate the mathematical equations, and the methodology featured tremendous dependability and security to elevate computational productivity and upgrade integration precision [22]. Zhang et al. described a complex-valued encoding WOA to navigate the mathematical equations, and the methodology integrated international investigation and regional extraction to deliver more accurate computed solutions [23]. Zhang et al. invented a WOA to alleviate the weapon–target requirement, and the methodology exhibited exceptional battle precision and decision-making productivity [24]. Liu et al. integrated WOA with a reinforced investigation to navigate the mathematical equations, and the methodology conveyed influential investigation validity and completion effectiveness [25]. Lin et al. mentioned a WOA with a niching mechanism to navigate the mathematical equations, and the methodology displayed outstanding reliability and superiority in identifying the greatest optimal solutions [26]. To summarize, research on the WOA mainly focuses on the algorithm enhancement and algorithm application. For algorithm enhancement, the enhanced WOA utilizes a unique detection strategy and an efficient encoding mechanism or hybrid search algorithm to achieve complementary advantages and improve the overall solution efficiency, and is utilized to resolve the function optimization and engineering design. The enhanced WOA not only balances exploration and exploitation to avoid premature convergence but also exhibits strong stability and feasibility to accelerate the convergence speed and improve the calculation accuracy. For algorithm application, the enhanced WOA exhibits strong stability, robustness, feasibility, adaptability, stabilization, scalability, self-regulation, and parallelism to solve various large-scale and complex optimization problems, such as artificial intelligence, systems control, pattern recognition, resource allocation, engineering technology, and network communication, finance, and other fields. The modified GJO method exhibits strong adaptability and robustness to promote calculation accuracy and achieve the optimal solution.
The WOA, constructed on a whale’s bubble-net scavenging pattern, emulates encompassing prey, bubble-net devouring prey, and stochastic capturing for prey to explore international optimal solutions [27]. To remedy the inadequacies of the WOA’s restricted computational precision, sluggish convergence acceleration, easy premature convergence, and restricted operational efficiency, a hybrid nonlinear SCWOA has been implemented to navigate benchmark functions and engineering designs. The SCWOA integrates the SCA’s mathematical oscillation attributes with the WOA’s bubble-net scavenging pattern to elevate population variety and enlarge the investigation region. The experimental results emphasize that the SCWOA not only regulates international investigation and regional extraction to avert premature convergence and upgrade the convergence acceleration but also exhibits superiority and practicability to cultivate the most accurate optimal solutions and maximize computational productivity.
The article is segregated into the subsequent sections. Section 2 exhibits the WOA. Section 3 summarizes the SCWOA. The simulation assessment and outcome interpretation are clarified in Section 4. Conclusions and further investigation are outlined in Section 5.

2. WOA

The WOA exhibits the distinctive bubble-net scavenging pattern to summarize the mathematical framework, which comprises three anticipation strategies: encompassing prey, bubble-net devouring prey, and stochastic capturing for prey. Figure 1 portrays the bubble-net devouring motion.

2.1. Encompassing Prey

The latest fantastic whale is speculated to be the intended prey, and the leader whale integrates echolocation to convey documentation to other individuals, attacking the remaining whales to maneuver and encompass the prey. The structure is manufactured as follows:
D = C X ( t ) X ( t )
X ( t + 1 ) = X ( t ) A D
where t symbolizes the most recent iteration, X symbolizes the most appropriate location vector, X symbolizes the most recent location vector, || symbolizes the absolute quantity, and symbolizes multiplying components. The A and C are manufactured as follows:
A = 2 a r a
C = 2 r
a = 2 2 t / T
where r symbolizes a disordered solution in 0 , 1 , a gradually declines from 2 to 0, and T symbolizes the highest iteration.

2.2. Bubble-Net Devouring Prey

The whale exploits the bubble-net devouring prey, which comprises two categories: swaying contraction encompassing prey and logarithmic spiral swallowing prey. Equations (3) and (5) accomplish the swaying contraction encompassing prey. The logarithmic spiral swallowing prey estimates the approximate separation between the intended prey and the most recent whale, and the whales spew uneven bubbles and traverse in a spiral motion to acquire the prey. The structure is manufactured as follows:
D = X ( t ) X ( t )
X ( t + 1 ) = D e b l cos ( 2 π l ) + X ( t )
where D symbolizes the route between the most recent whale and the most excellent prey, l symbolizes a disordered solution in 1 , 1 , and b symbolizes an integer constant.
There is a 50% likelihood of identifying between swaying contraction encompassing prey and logarithmic spiral swallowing prey. The structure is manufactured as follows:
X ( t + 1 ) = X ( t ) A D                                                                         i f         p < 0.5 D e b l cos ( 2 π l ) + X ( t )                                 i f       p 0.5
where p symbolizes a disordered solution in 0 , 1 .

2.3. Stochastic Capturing for Prey

If A 1 , the whale investigates an extensive search territory beyond the narrowing enclosure, one whale is automatically nominated as a reference individual, and the remaining whales will accumulate around this exact location. The structure is manufactured as follows:
D = C X r a n d ( t ) X ( t )
X ( t + 1 ) = X r a n d ( t ) A D
where X r a n d symbolizes a disordered location vector.
Algorithm 1 comprises the WOA’s pseudocode version.
Algorithm 1 WOA
Step 1. Initialize population X i ( i = 1 , 2 , , n )
Step 2. Investigate each attainable alternative’s fitness
     Diagnose   the   greatest   location   vector   X
Step 3.   while   ( t < T ) do
       for each attainable alternative
       Customize a , A , C , l and p
       if1  ( p < 0.5 )
            if 2   ( A < 1 )
           Customize the attainable alternative’s location via Equation (2)
           else   if 2   ( A 1 )
             Locate   a   disordered   location   vector   X r a n d
           Customize the attainable alternative’s location via Equation (10)
         end if2
       else if1  ( p 0.5 )
           Customize the attainable alternative’s location via Equation (7)
          end if1
       end for
       Validate if any attainable alternative exists outside the search zone and readjust location
       Investigate each attainable alternative’s fitness
        Customize   X if a superior location vector exists
        t = t + 1
end while
Retrieve   X

3. SCWOA

The SCA exhibits multiple attributes of intuitive structure, fantastic robustness, enormous parallelism, convenient implementation, and substantial operational effectiveness. The synergistic benefits of investigation and extraction are accomplished by the productive combination of nonlinear WOA and SCA, which exhibits fantastic durability and adaptability to customize the integration precision.

3.1. Nonlinear WOA

The nonlinear control parameter modulates investigation and extraction to discover the most advantageous optimal solutions [28]. The structure is manufactured as
W = 2 e ( 8 t T ) 2
X ( t + 1 ) = W X ( t ) A D
X ( t + 1 ) = D e b l cos ( 2 π l ) + W X ( t )
X ( t + 1 ) = W X r a n d ( t ) A D

3.2. SCA

The SCA utilizes the mathematical oscillation attributes of the cosine and sine coefficients to deliver more accurate computed solutions [29]. The waveform’s outward expansion symbolizes the international investigation and the fluctuation approaching the desired optimal solutions. The structure is manufactured as follows:
X i t + 1 = X i t + r 1 sin ( r 2 ) r 3 P i t X i t ,             r 4 < 0.5 X i t + r 1 cos ( r 2 ) r 3 P i t X i t ,             r 4 0.5
where X i t symbolizes the most recent location, X i t + 1 symbolizes the altered location, P i t symbolizes the most appropriate location, r 1 , r 2 , r 3 , r 4 symbolizes the disordered solutions, r 2 [ 0 , 2 π ] , r 3 [ - 2 , 2 ] , r 4 [ 0 , 1 ] , and || symbolizes the absolute quantity.
The amplitude conversion coefficient r 1 is manufactured as follows:
r 1 = a t a T
where a symbolizes a constant.

3.3. SCWOA

The SCWOA integrates the SCA’s mathematical oscillation attributes with the WOA’s bubble-net scavenging pattern to elevate convergence acceleration, augment population variety, and enlarge the investigation region. The SCWOA integrates investigation and extraction to maximize devouring proficiency and realize the most advantageous optimal solutions. It also exhibits superiority and practicability to furnish extraordinary battle precision and decision-making productivity. The SCWOA progressively contracts and hovers close to the desired solution by retaining the most recent fantastic leader whale’s location. The structure is manufactured as follows:
X ( t + 1 ) = X ( t ) + r 1 sin ( r 2 ) r 3 X ( t ) X ( t ) ,             r 4 < 0.5 X ( t ) + r 1 cos ( r 2 ) r 3 X ( t ) X ( t ) ,             r 4 0.5
where X symbolizes the most recent location vector, r 2 [ 0 , 2 π ] , r 3 [ - 2 , 2 ] , r 4 [ 0 , 1 ] , and r 1 diminishes continuously from 2 to 0.
Algorithm 2 comprises the SCWOA’s pseudocode version.
Algorithm 2 SCWOA
Step 1. Initialize population X i ( i = 1 , 2 , , n )
Step 2. Investigate each attainable alternative’s fitness
     Diagnose   the   greatest   location   vector   X
Step 3. while   ( t < T ) do
       for each attainable alternative
       Customize a , A , C , l and p
        if1  ( p < 0.5 )
          if 2   ( A < 1 )
         The nonlinear strategy is introduced into the encompassing prey
         Combine SCA with the encompassing prey
         Customize the attainable alternative’s location via Equations (12) and (17)
          else   if 2   ( A 1 )
         The nonlinear strategy is introduced into the stochastic capturing for prey
         Combine SCA with the stochastic capturing for prey (exploration phase)
          Locate   a   disordered   location   vector   X r a n d
         Customize the attainable alternative’s location via Equations (14) and (17)
         end if2
        else if1  ( p 0.5 )
         The nonlinear strategy is introduced into the bubble-net devouring prey
         Combine SCA with the bubble-net devouring prey (exploitation phase)
         Customize the attainable alternative’s location via Equations (13) and (17)
        end if1
       end for
       Validate if any attainable alternative exists outside the search zone and readjust the location
       Investigate each attainable alternative’s fitness
        Customize   X if a superior location vector exists
        t = t + 1
end while
Retrieve   X

3.4. Complexity Analysis

The computational complexity reveals the magnitude of reaction time advances with the input size. The big-O notation is a trustworthy and consistent procedure for substantially assessing the algorithm’s attributes and sophistication. Time complexity is a mathematical equation that yields an exhaustive evaluation of the computational expenditure. The SCWOA exhibits five phases: initialization, swaying and encompassing prey, bubble-net devouring prey, amending the attainable alternative’s location, and suspending adjudication. In SCWOA, the population magnitude is N , the highest iteration is T , and the question dimension is D . For initialization, it symbolizes O ( N D ) . For swaying and encompassing prey, bubble-net devouring prey, and amending the attainable alternative’s location, it symbolizes O ( N D T ) . For suspending adjudication, it symbolizes O ( 1 ) . Consequently, the ultimate time complexity of the SCWOA symbolizes O ( N D T ) . Space complexity quantifies the amount of temporary storage space, and the maximum space complexity of the SCWOA symbolizes O ( N D ) . The SCWOA exhibits practicality and superiority in navigating the various multifaceted challenges.

4. Simulation Assessment and Results Interpretation

4.1. Experimental Configuration

Computational configuration is installed on a Windows 10 with an Intel Core i7-8750H 2.2 GHz CPU, a GTX1060, and 8 GB RAM.

4.2. Benchmark Functions

The three distinct types of benchmark functions are deployed to investigate the SCWOA’s practicality and productivity: f 1 f 6 symbolizes unimodal, f 7 f 10 symbolizes multimodal, and f 11 f 16 symbolizes fixed-dimension multimodal. Table 1 summarizes the benchmark functions.
Table 2 summarizes each methodology’s parameters; these values are extracted from the initially published paper and symbolize representative empirical solutions.
For each methodology, the population magnitude symbolizes 50, the highest iteration symbolizes 1000, and the standalone operation symbolizes 30. Best, Worst, Mean, and Std are the optimal value, worst value, mean value, and standard deviation. The standard deviation ascertains the ranking.
Table 3 summarizes the simulation results of unimodal functions. For f 1 , f 2 , f 3 , and f 4 , the SCWOA establishes the international optimal solutions. The SCWOA’s Best, Worst, Mean, and Standard are consistently zero. The computerized solutions of the SCWOA are substantially more accurate than those of the fundamental WOA. The computational results of the SCWOA are more productive than those of the BA, CapSA, MFO, MVO, SAO, MDWA, and WOA, and the SCWOA exhibits great computational productivity and long-term durability to avert premature convergence and establish international optimal solutions. The SCWOA is ranked the highest and maintains outstanding durability and dependability. For f 5 , the nonlinear strategy enhances the global detection ability and accelerates the convergence efficiency. The SCA constructed on the oscillation attributes of the cosine and sine coefficients in mathematics is a stochastic optimization methodology. The SCA upgrades population variety, amplifies the search region, and accelerates international investigation and regional extraction. The Best of the SCWOA is superior to that of the MVO and WOA but inferior to the BA, CapSA, MFO, SAO, and MDWA. The Worst and Mean of the SCWOA are more productive than those of the BA, MFO, MVO, and MDWA. The SCWOA is ranked fourth and has a lesser Standard than the BA, MFO, MVO, and MDWA. For f 6 , the SCWOA integrates the SCA’s mathematical oscillation attributes with the nonlinear strategy to enhance the global optimization ability. The SCWOA utilizes exploration and exploitation to avoid premature convergence and enhance the optimization efficiency and exhibits exceptional sustainability and superiority to accelerate the leader whale’s location revision and improve the convergence precision. The computerized results of the SCWOA are more trustworthy than those of other competitive methodologies and are marginally more extraordinary than those of the WOA. The SCWOA integrates the WOA’s bubble-net scavenging pattern and SCA’s mathematical oscillation attributes to elevate population variety and maximize the operational area. The SCWOA exhibits fantastic durability and adaptability to strengthen investigation and extraction.
Table 4 summarizes the simulation results of multimodal functions. For f 7 , the SCWOA, WOA, and CapSA establish the international optimal solutions, and their computerized solutions are all consistently zero. The simulation results of the SCWOA are superior to those of BA, MFO, MVO, SAO, and MDWA, and the SCWOA features’ attractive sustainability and authenticity promote convergence acceleration and elevate computational effectiveness. For f 8 , the Best, Worst, and Mean of the SCWOA are all in the precise same order of magnitude; their computerized solutions remain comparable. The SCWOA’s computational results convey a minor enhancement over WOA. With the lowest Standard and highest ranking, the SCWOA highlights superiority and practicality in recognizing the more accurately generated solution. For f 9 , the SCWOA and CapSA accomplish the most advantageous optimal solutions. The computerized solutions of the SCWOA are more accurate than the BA, MFO, MVO, SAO, MDWA, and WOA, and the SCWOA exhibited extraordinary superiority and adaptability to widen the investigation zone and accomplish more substantial conversion precision. For f 10 , the computerized solutions of the SCWOA are inferior to those of the BA, CapSA, MFO, MDWA, and WOA but superior to those of the MVO and SAO. The SCWOA integrates investigation and extraction to inhibit premature convergence and exhibits remarkable superiority and adaptability to attain the desirable optimal solutions.
Table 5 summarizes the simulation results of fixed-dimension multimodal functions. For f 11 , each methodology establishes the international optimal solutions. The computerized results of the SCWOA are more favorable than those of the BA, MFO, SAO, MDWA, and WOA, but they are inferior to those of the CapSA and MVO. The SCWOA is listed third and has solid reliability and dependability. For f 12 , the SCWOA and BA establish the international optimal solutions. The computational results of the SCWOA have steadily improved. The computerized solutions of the SCWOA are the most outstanding. For f 13 , all methodologies except SAO establish the international optimal solutions, and the automated results of the CapSA, MDWA, and SCWOA are identical. The computerized results of the SCWOA are more productive than those of the BA, MFO, MVO, SAO, and WOA. For f 14 , all methodologies except SAO establish the international optimal solutions; the computational results of the SCWOA are more favorable than those of the BA, MFO, MDWA, and WOA. The SCWOA is identified fourth. For f 15 , all methodologies except SAO establish the international optimal solutions, and the computational results of the CapSA, MDWA, and SCWOA are superior to those of BA, MFO, MVO, SAO, and WOA. For f 16 , the SCWOA determines the international optimal solutions; the SCWOA’s Best, Worst, Mean, and Standard are all consistently zero. The computerized solutions of the SCWOA are superior to those of other competitive methodologies. The SCWOA exhibits certain practicability and superiority to recognize the quicker integration velocity and greater estimation precision and integrate global investigation and local extraction to acquire the most appropriate optimal solutions.
The Wilcoxon rank-sum explores the disparity between the SCWOA and competitive methodologies [30]. p < 0.05 symbolizes the extraordinary disparity, p 0.05 symbolizes no noteworthy disparity, and N/A symbolizes “not applicable”. Table 6 summarizes the results of the p-value Wilcoxon rank-sum.
Figure 2 portrays the convergence arcs of competitive methodologies. The convergence arcs illustrate the competitive methodology’s convergence productivity and computation sustainability unambiguously and objectively. The SCWOA exhibits outstanding superiority and practicability, as shown by more straightforward convergence velocity and more excellent computation reliability. For f 1 f 6 , the computerized results of the SCWOA are superior to the BA, CapSA, MFO, MVO, SAO, MDWA, and WOA. The SCWOA’s automated solutions are substantially more accurate than the fundamental WOA ones. The computational results of the SCWOA are more productive than those of other competitive methodologies. The SCWOA receives a comparatively elevated rank, maintaining fantastic sustainability and dependability. For f 7 f 10 , the SCWOA amalgamates international investigation and regional extraction to recognize the more accurate estimated solutions. The SCWOA encounters lower analytical accuracy and greater convergence productivity. For f 11 f 16 , the SCWOA establishes the international optimal solutions, and the SCWOA delivers certain practicability and superiority to convey the most accurate estimated solutions. The analytical productivity of the SCWOA is superior to that of the BA, CapSA, MFO, MVO, SAO, MDWA, and WOA. The SCWOA exhibits outstanding consistency and robustness to avert premature convergence and cultivate the most accurate optimal solutions.
Figure 3 portrays the ANOVA of competitive methodologies. The standard deviation shows the competitive methodology’s reliability and long-term stability objectively and straightforwardly. The less extensive standard deviation demonstrates remarkable dependability and trustworthiness. For f 1 f 6 , the computational results of the SCWOA have been extensively facilitated, and the standard deviation and ranking of the SCWOA are more favorable than those of other competitive technologies. The SCWOA demonstrates fantastic durability and adaptability to measure the potential values. For f 7 f 10 , the SCWOA exemplifies superior convergence effectiveness and greater computation profitability. The SCWOA exhibits integrate investigation and extraction to avert anticipation stalemate and identify the highest-quality alternative solution. For f 11 f 16 , the SCWOA delivers the international optimal solutions. The SCWOA’s computerized solutions have been substantially upgraded compared to those of the WOA. The standard deviation of the SCWOA is greater than that of other competitive methodologies, and the SCWOA gains considerable superiority and adaptability to maintain feasibility and stability. The SCWOA utilizes sine and cosine fluctuation characteristics to prevent preterm convergence and discover the most advantageous optimal solutions.

4.3. SCWOA for Addressing Engineering Design

The SCWOA is designed to recognize the engineering design to validate the comprehensiveness and practicality: three-bar truss design [31], tubular column design [32], speed reducer design [33], piston lever design [34], tension/compression spring design [35], welded beam design [36], gear train design [37], and car side impact design [38].

4.3.1. Three-Bar Truss Design

The predominant intention is to lessen the aggregate weight, as portrayed in Figure 4. There are two decision elements: the cross-sectional areas with A 1 and A 2 .
Consider
x = [ x 1       x 2 ] = [ A 1       A 2 ]
Minimize
f ( x ) = ( 2 2 x 1 + x 2 ) l
Subject to
g 1 ( x ) = 2 x 1 + x 2 2 x 1 2 + 2 x 1 x 2 P σ 0
g 2 ( x ) = x 2 2 x 2 + 2 x 1 x 2 P σ 0
g 3 ( x ) = 1 2 x 2 + x 1 P σ 0
l = 100 c m ,             P = 2 k N / c m 2 ,             σ = 2 k N / c m 2
Variable range
0 x 1 , x 2 1
Table 7 summarizes the comparison results of the three-bar truss design. The SCWOA maintains tremendous reliability and remarkable computational productivity to yield optimum established solutions. The optimal solution is manufactured via the SCWOA at design elements of 0.788674 and 0.408234, with the least productive cost of 263.895843.

4.3.2. Tubular Column Design

The predominant intention is to lessen the aggregate cost of installation and equipment, as portrayed in Figure 5. There are two decision elements: column width ( d ) and tube layer ( t ).
Consider
x = [ x 1       x 2 ] = [ d       t ]
Minimize
f ( x ) = 9.82 x 1 x 2 + 2 x 1
Subject to
g 1 ( x ) = P π x 1 x 2 σ y 1 0
g 2 ( x ) = 8 P L 2 π 3 E x 1 x 2 ( x 1 2 + x 2 2 ) 1 0
g 3 ( x ) = 2.0 x 1 1 0
g 4 ( x ) = x 1 14 1 0
g 5 ( x ) = 0.2 x 2 1 0
g 6 ( x ) = x 2 0.8 1 0
σ y = 500 k g f / c m 2 ,             E = 0.85 × 10 6 k g f / c m 2 ,             P = 2500 k g f ,             L = 250 c m
Variable range
2 x 1 14 ,             0.2 x 2 0.8
Table 8 summarizes the comparison results of the tubular column design. The SCWOA accomplishes international investigation and regional extraction to expand population variety and provide appropriate solutions. The optimal solution is manufactured via the SCWOA at design elements of 5.5537 and 0.2502, with the least productive cost of 25.5346.

4.3.3. Speed Reducer Design

The predominant intention is to lessen the aggregate weight, as portrayed in Figure 6. There are seven decision elements: face breadth ( b ), dental module ( m ), dental size ( z ), primary shaft distance ( l 1 ), second shaft distance ( l 2 ), primary shaft width ( d 1 ), and second shaft width ( d 2 ).
Consider
x = [ x 1       x 2       x 3       x 4         x 5         x 6         x 7 ] = [ b       m       z         l 1       l 2       d 1       d 2 ]
Minimize
f ( x ) = 0.7854 x 1 x 2 2 ( 3.3333 x 3 2 + 14.9334 x 3 43.0934 )                     1.508 x 1 ( x 6 2 + x 7 2 ) + 7.4777 ( x 6 3 + x 7 3 ) + 0.7854 ( x 4 x 6 2 + x 5 x 7 2 )
Subject to
g 1 ( x ) = 27 x 1 x 2 2 x 3 2 1 0
g 2 ( x ) = 397.5 x 1 x 2 2 x 3 1 0
g 3 ( x ) = 1.93 x 4 3 x 2 x 6 4 x 3 1 0
g 4 ( x ) = 1.93 x 5 3 x 2 x 7 5 x 3 1 0
g 5 ( x ) = [ ( 745 x 4 / x 2 x 3 ) 2 + 16.9 × 10 6 ] 1 / 2 110 x 6 3 1 0
g 6 ( x ) = [ ( 745 x 5 / x 2 x 3 ) 2 + 157.5 × 10 6 ] 1 / 2 85 x 7 3 1 0
g 7 ( x ) = x 2 x 3 40 1 0
g 8 ( x ) = 5 x 2 x 1 1 0
g 9 ( x ) = x 1 12 x 2 1 0
g 10 ( x ) = 1.5 x 6 + 1.9 x 4 1 0
g 11 ( x ) = 1.1 x 7 + 1.7 x 5 1 0
Variable range
2.6 x 1 3.6 ,       0.7 x 2 0.8 ,       17 x 3 28 ,       7.3 x 4 , x 5 8.3 ,       2.9 x 6 3.9 ,       5.0 x 7 5.5
Table 9 summarizes the comparison results of the speed reducer design. The SCWOA utilizes the SCA’s mathematical oscillation attributes and the WOA’s bubble-net scavenging pattern to enhance the convergence accuracy. The SCWOA manufactures the optimal solution at design elements of 3.50228, 0.7, 17, 7.88793, 7.82363, 3.36347, and 5.29537 with the least productive cost of 3017.596.

4.3.4. Piston Lever Design

The predominant intention is to restrict the gasoline volume and maneuver the piston aspects if the piston lever is elevated from 0° to 45°, as portrayed in Figure 7. There are four decision elements: H , B , X , and D .
Consider
x = [ x 1       x 2       x 3       x 4 ] = [ H       B       D       X ]
Minimize
f ( x ) = 1 4 π x 3 2 ( L 2 L 1 )
Subject to
g 1 ( x ) = Q L os θ R F 0
g 2 ( x ) = Q ( L x 4 ) M max 0
g 3 ( x ) = 6 5 ( L 2 L 1 ) L 1 0
g 4 ( x ) = x 3 2 x 2 0
R = x 4 ( x 4 sin θ + x 1 ) + x 1 ( x 2 x 4 cos θ ) ( x 4 x 2 ) 2 + x 1 2
F = π P x 3 2 4
L 1 = ( x 4 x 2 ) 2 + x 1 2
L 2 = ( x 4 sin θ + x 1 ) 2 + ( x 2 x 4 cos θ ) 2
θ = 45 ° ,       Q = 10,000 l b s ,       L = 240 i n ,       M max = 1.8 × 10 6 l b s     i n ,       P = 1500 p s i
Variable range
0.05 x 1 , x 2 , x 4 500 ,             0.05 x 3 120
Table 10 summarizes the comparison results of the piston lever design. The SCWOA delivers convincing practicability and superiority to strengthen solution quality and computational effectiveness. The optimal solution is manufactured via the SCWOA at design elements of 0.05, 0.138542, 120, and 4.116025, with the least productive cost of 4.6827.

4.3.5. Tension/Compression Spring Design

The predominant intention is to lessen the aggregate weight, as portrayed in Figure 8. There are three decision elements: line diameter ( d ), spring diameter ( D ), and activated coil size ( N ).
Consider
x = [ x 1       x 2       x 3   ] = [ d       D       N ]      
Minimize
f ( x ) = ( x 3 + 2 ) x 2 x 1 2
Subject to
g 1 ( x ) = 1 x 2 3 x 3 71,785 x 1 4 0
g 2 ( x ) = 4 x 2 2 x 1 x 2 12,566 ( x 2 x 1 3 x 1 4 ) + 1 5108 x 1 2 0
g 3 ( x ) = 1 140.45 x 1 x 2 2 x 3 0
g 4 ( x ) = x 1 + x 2 1.5 1 0
Variable range
0.05 x 1 2 ,             0.25 x 2 1.3 ,             2 x 3 15
Table 11 summarizes the comparison results of the tension/compression spring design. The SCWOA depicts outstanding adaptability and fantastic computational accuracy to disrupt preterm convergence and establish the most advantageous optimal solutions. The optimal solution is manufactured via the SCWOA at design elements of 0.054627, 0.325243, and 11.654662, with the least productive cost of 0.0126653.

4.3.6. Welded Beam Design

The predominant intention is to lessen the aggregate cost, as portrayed in Figure 9. There are four decision elements: weld height ( h ), clamped bar depth ( l ), bar width ( t ), and bar height ( b ).
Consider
x = [ x 1       x 2       x 3       x 4 ] = [ h       l       t       b ]
Minimize
f ( x ) = 1.10471 x 1 2 x 2 + 0.04811 x 3 x 4 ( 14.0 + x 2 )
Subject to
g 1 ( x ) = τ ( x ) τ max 0
g 2 ( x ) = σ ( x ) σ max 0
g 3 ( x ) = δ ( x ) δ max 0
g 4 ( x ) = x 1 x 4 0
g 5 ( x ) = P P c ( x ) 0
g 6 ( x ) = 0.125 x 1 0
g 7 ( x ) = 1.10471 x 1 2 + 0.04811 x 3 x 4 ( 14.0 + x 2 ) 5.0 0
τ ( x ) = ( τ ) 2 + 2 τ τ x 2 2 R + ( τ ) 2
τ = P 2 x 1 x 2 ,             τ = M P J ,             M = P ( L + x 2 2 )
R = x 2 2 4 + ( x 1 + x 3 2 ) 2
J = 2 2 x 1 x 2 x 2 2 4 + ( x 1 + x 3 2 ) 2
σ ( x ) = 6 P L x 4 x 3 2 ,             δ ( x ) = 6 P L 3 E x 3 2 x 4
P c ( x ) = 4.103 E x 3 2 x 4 6 36 L 2 1 x 3 2 L E 4 G
P = 6000 l b ,             L = 14 i n ,             δ max = 0.25 i n
E = 30 × 10 6 p s i ,             G = 12 × 10 6 p s i
τ max = 13,600 p s i ,             σ = 30,000 p s i
Variable range
0.1 x 1 , x 4 2 ,             0.1 x 2 , x 3 10
Table 12 summarizes the comparison results of the welded beam design. The SCWOA exhibits unparalleled sustainability and parallelism to facilitate the investigation zone and recognize accurate optimal solutions. The SCWOA manufactures the optimal solution at design elements of 0.205657, 3.251177, 9.039105, and 0.205468 with the least productive cost of 1.69682.

4.3.7. Gear Train Design

The predominant intention is to lessen the gear ratio’s cost and ascertain the greatest tooth size, as portrayed in Figure 10. There are four decision elements: gear teeth’s quantity n A , n B , n C , and n D .
Consider
x = [ x 1       x 2       x 3       x 4 ] = [ n A       n B       n C       n D ]
Minimize
f ( x ) = 1 6.931 x 3 x 2 x 1 x 4 2
Variable range
12 x i 60 ,       i = 1 , 2 , , 4
Table 13 summarizes the comparison results of the gear train design. The SCWOA exhibits trustworthy international investigation and localized extraction to acquire greater computation precision and quicker processing velocity. The optimal solution is manufactured via the SCWOA at design elements of 51, 33, 17, and 53, with the least productive cost of 2.6574 × 10−18.

4.3.8. Car Side Impact Design

The predominant intention is to lessen the aggregate car’s weight, as portrayed in Figure 11. There are eleven decision elements: inner B-pillar height ( x 1 ), B-pillar fortification ( x 2 ), interior floor edge ( x 3 ), cross segments ( x 4 ), door pillar ( x 5 ), consolidated door beltline ( x 6 ), roof panel ( x 7 ), inner B-pillar substrates ( x 8 ), interior floor edge ( x 9 ), barrier width ( x 10 ), and batting location ( x 11 ).
Consider
x = [ x 1       x 2       x 3       x 4       x 5       x 6       x 7       x 8       x 9       x 10       x 11 ]
Minimize
f ( x ) = 1.98 + 4.90 x 1 + 6.67 x 2 + 6.98 x 3 + 4.01 x 4 + 1.78 x 5 + 2.73 x 7
Subject to
g 1 ( x ) = 1.16 0.3717 x 2 x 4 0.00931 x 2 x 10 0.484 x 3 x 9                         + 0.01343 x 6 x 10 1
g 2 ( x ) = 0.261 0.0159 x 1 x 2 0.188 x 1 x 8 0.019 x 2 x 7                         + 0.0144 x 3 x 5 + 0.0008757 x 5 x 10 + 0.080405 x 6 x 9                         + 0.00139 x 8 x 11 + 0.00001575 x 10 x 11 0.32
g 3 ( x ) = 0.214 + 0.00817 x 5 0.131 x 1 x 8 0.0704 x 1 x 9                         + 0.03099 x 2 x 6 0.018 x 2 x 7 + 0.0208 x 3 x 8 + 0.121 x 3 x 9                         0.00364 x 5 x 6 + 0.0007715 x 5 x 10 0.000535 x 6 x 10                         + 0.00121 x 8 x 11 0.32
g 4 ( x ) = 0.074 0.061 x 2 0.163 x 3 x 8 + 0.001232 x 3 x 10                         0.166 x 7 x 9 + 0.227 x 2 2 0.32
g 5 ( x ) = 28.98 + 3.818 x 3 4.2 x 1 x 2 + 0.0207 x 5 x 10 + 6.63 x 6 x 9                         7.7 x 7 x 8 + 0.32 x 9 x 10 32
g 6 ( x ) = 33.86 + 2.95 x 3 + 0.1792 x 10 5.057 x 1 x 2 11.0 x 2 x 8                         0.0215 x 5 x 10 9.98 x 7 x 8 + 22.0 x 8 x 9 32
g 7 ( x ) = 46.36 9.9 x 2 12.9 x 1 x 8 + 0.1107 x 3 x 10 32
g 8 ( x ) = 4.72 0.5 x 4 0.19 x 2 x 3 0.0122 x 4 x 10                         + 0.009325 x 6 x 10 + 0.000191 x 11 2 4
g 9 ( x ) = 10.58 0.674 x 1 x 2 1.95 x 2 x 8 + 0.02054 x 3 x 10                         0.0198 x 4 x 10 + 0.028 x 6 x 10 9.9
g 10 ( x ) = 16.45 0.489 x 3 x 7 0.843 x 5 x 6 + 0.0432 x 9 x 10                         0.0556 x 9 x 11 0.000786 x 11 2 15.7
Variable range
0.5 x 1 x 7 1.5 ,             x 8 , x 9 ( 0.192 , 0.345 ) ,             30 x 10 , x 11 30
Table 14 summarizes the comparison results of the three-bar truss design. The SCWOA utilizes SCA’s mathematical oscillation attributes to elevate population variety, enlarge investigation region, and identify the theoretically appropriate values. The SCWOA manufactures the optimal solution at design elements of 0.5, 1.11643, 0.5, 1.30178, 0.5, 1.5, 0.5, 0.345, 0.192, −19.48754, and −0.00453 with the least productive cost of 22.84278.

5. Conclusions and Future Investigation

This paper presents the SCWOA to recognize the benchmark functions and engineering designs, and the ultimate intention is to estimate the function’s international optimal value and the design’s appropriate cost. The SCA executes the mathematical oscillation fluctuation to undergo expansive investigations and ascertain the most relevant computational solution, which appropriately eliminates the WOA’s majority limitations of restricted precision, sluggish convergence acceleration, insufficient population variety, easy premature convergence, and restricted operational efficiency. The SCWOA exhibits exceptional sustainability and superiority to accelerate the leader whale’s location revision and strengthen calculational productiveness. The computerized solutions and appropriate cost of the SCWOA are substantially superior to those of the BA, CapSA, MFO, MVO, SAO, MDWA, and WOA, and the SCWOA illustrates fantastic adaptability and favorable computational accuracy to enlarge the identification scope and ascertain the most accurate optimal solution. The experimental results emphasize that the SCWOA not only utilizes universal investigation and regional extraction to avert premature convergence and strengthen optimization achievements but also maintains courageous practicability and superiority to pursue faster convergence velocity, greater computation precision, robust adaptability, and robustness.
In future research, we will rely on the Anhui Provincial Understory Crop Intelligent Equipment Engineering Research Center platform. The SCGJO will study specialty crops in the Dabie Mountains (dendrobium, tea-oil tree, and Chinese herbal medicine), such as intelligent detection of agricultural and forestry crop objects, research and development of special agricultural equipment, and the agricultural Internet of Things.

Author Contributions

Conceptualization, J.Z. and Y.X.; methodology, J.Z.; software, J.Z.; validation, J.Z. and Y.X.; formal analysis, Y.X.; investigation, J.Z.; resources, Y.X.; data curation, Y.X.; writing—original draft preparation, Y.X.; writing—review and editing, J.Z.; visualization, Y.X.; supervision, J.Z.; project administration, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Acknowledgments

The authors would like to thank everyone involved for their contributions to this article. They would also like to thank the editors and anonymous reviewers for their helpful comments and suggestions.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Yang, X.S.; Hossein Gandomi, A. Bat Algorithm: A Novel Approach for Global Engineering Optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
  2. Braik, M.; Sheta, A.; Al-Hiary, H. A Novel Meta-Heuristic Search Algorithm for Solving Optimization Problems: Capuchin Search Algorithm. Neural Comput. Appl. 2021, 33, 2515–2547. [Google Scholar] [CrossRef]
  3. Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
  4. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A Nature-Inspired Algorithm for Global Optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
  5. Salawudeen, A.T.; Mu’azu, M.B.; Yusuf, A.; Adedokun, A.E. A Novel Smell Agent Optimization (SAO): An Extensive CEC Study and Engineering Application. Knowl.-Based Syst. 2021, 232, 107486. [Google Scholar] [CrossRef]
  6. Rizk-Allah, R.M.; Hassanien, A.E. A Movable Damped Wave Algorithm for Solving Global Optimization Problems. Evol. Intell. 2019, 12, 49–72. [Google Scholar] [CrossRef]
  7. Uzer, M.S.; Inan, O. Application of Improved Hybrid Whale Optimization Algorithm to Optimization Problems. Neural Comput. Appl. 2023, 35, 12433–12451. [Google Scholar] [CrossRef]
  8. Elmogy, A.; Miqrish, H.; Elawady, W.; El-Ghaish, H. ANWOA: An Adaptive Nonlinear Whale Optimization Algorithm for High-Dimensional Optimization Problems. Neural Comput. Appl. 2023, 35, 22671–22686. [Google Scholar] [CrossRef]
  9. Yang, Q.; Liu, J.; Wu, Z.; He, S. A Fusion Algorithm Based on Whale and Grey Wolf Optimization Algorithm for Solving Real-World Optimization Problems. Appl. Soft Comput. 2023, 146, 110701. [Google Scholar] [CrossRef]
  10. Zhang, J.; Zhang, T.; Zhang, G.; Kong, M. Parameter Optimization of PID Controller Based on an Enhanced Whale Optimization Algorithm for AVR System. Oper. Res. 2023, 23, 44. [Google Scholar] [CrossRef]
  11. Quan, R.; Guo, H.; Liu, D.; Chang, Y.; Wan, H. Performance Optimization of a Thermoelectric Generator for Automotive Application Using an Improved Whale Optimization Algorithm. Sustain. Energy Fuels 2023, 7, 5528–5545. [Google Scholar] [CrossRef]
  12. Wei, F.; Li, J.; Zhang, Y. Improved Neighborhood Search Whale Optimization Algorithm and Its Engineering Application. Soft Comput. 2023, 27, 17687–17709. [Google Scholar] [CrossRef]
  13. Wu, Z.; Lu, X. Microgrid Fault Diagnosis Based on Whale Algorithm Optimizing Extreme Learning Machine. J. Electr. Eng. Technol. 2024, 19, 1827–1836. [Google Scholar] [CrossRef]
  14. Fan, Z.; Gou, J. Predicting Body Fat Using a Novel Fuzzy-Weighted Approach Optimized by the Whale Optimization Algorithm. Expert Syst. Appl. 2023, 217, 119558. [Google Scholar] [CrossRef]
  15. Nadimi-Shahraki, M.H.; Zamani, H.; Asghari Varzaneh, Z.; Mirjalili, S. A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations. Arch. Comput. Methods Eng. 2023, 30, 4113–4159. [Google Scholar] [CrossRef]
  16. Mohite, S.S.; Kolekar, U.D. Resource Allocation in Macrocell–Femtocells via Combined Rain and Whale Optimization Algorithm. Cybern. Syst. 2023, 1–23. [Google Scholar] [CrossRef]
  17. Routa, A.K.; Mohanty, P.R. Seismic Response Prediction and Velocity Model Building Inversion by the Whale Optimization Algorithm. Pure Appl. Geophys. 2023, 180, 2087–2109. [Google Scholar] [CrossRef]
  18. Chakraborty, S.; Saha, A.K.; Ezugwu, A.E.; Chakraborty, R.; Saha, A. Horizontal Crossover and Co-Operative Hunting-Based Whale Optimization Algorithm for Feature Selection. Knowl. Based Syst. 2023, 282, 111108. [Google Scholar] [CrossRef]
  19. Kumar, M.; Samriya, J.K.; Dubey, K.; Gill, S.S. QoS-Aware Resource Scheduling Using Whale Optimization Algorithm for Microservice Applications. Softw. Pract. Exp. 2024, 54, 546–565. [Google Scholar] [CrossRef]
  20. Zhang, H.; Gao, Z.; Pan, Y.; Yang, G.; Zhang, W.C.; Wang, J. A Synergy of the Adaptive Whale Optimization Algorithm and Differential Evolution for Abrupt Motion Tracking. Appl. Soft Comput. 2023, 144, 110554. [Google Scholar] [CrossRef]
  21. Deng, H.; Liu, L.; Fang, J.; Qu, B.; Huang, Q. A Novel Improved Whale Optimization Algorithm for Optimization Problems with Multi-Strategy and Hybrid Algorithm. Math. Comput. Simul. 2023, 205, 794–817. [Google Scholar] [CrossRef]
  22. Li, M.; Xu, G.; Zeng, L.; Lai, Q. Hybrid Whale Optimization Algorithm Based on Symbiosis Strategy for Global Optimization. Appl. Intell. 2023, 53, 16663–16705. [Google Scholar] [CrossRef]
  23. Zhang, J.; Zhang, G.; Kong, M.; Zhang, T.; Wang, D.; Chen, R. CWOA: A Novel Complex-Valued Encoding Whale Optimization Algorithm. Math. Comput. Simul. 2023, 207, 151–188. [Google Scholar] [CrossRef]
  24. Zhang, J.; Kong, M.; Zhang, G.; Huang, Y. Weapon–Target Assignment Using a Whale Optimization Algorithm. Int. J. Comput. Intell. Syst. 2023, 16, 62. [Google Scholar] [CrossRef]
  25. Liu, J.; Shi, J.; Hao, F.; Dai, M. A Reinforced Exploration Mechanism Whale Optimization Algorithm for Continuous Optimization Problems. Math. Comput. Simul. 2022, 201, 23–48. [Google Scholar] [CrossRef]
  26. Lin, X.; Yu, X.; Li, W. A Heuristic Whale Optimization Algorithm with Niching Strategy for Global Multi-Dimensional Engineering Optimization. Comput. Ind. Eng. 2022, 171, 108361. [Google Scholar] [CrossRef]
  27. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
  28. Dehkordi, A.A.; Sadiq, A.S.; Mirjalili, S.; Ghafoor, K.Z. Nonlinear-Based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles Application. Appl. Soft Comput. 2021, 109, 107574. [Google Scholar] [CrossRef]
  29. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
  30. Malela-Majika, J.-C. New Distribution-Free Memory-Type Control Charts Based on the Wilcoxon Rank-Sum Statistic. Qual. Technol. Quant. Manag. 2021, 18, 135–155. [Google Scholar] [CrossRef]
  31. Abdel-Basset, M.; Mohamed, R.; Azeem, S.A.A.; Jameel, M.; Abouhawwash, M. Kepler Optimization Algorithm: A New Metaheuristic Algorithm Inspired by Kepler’s Laws of Planetary Motion. Knowl.-Based Syst. 2023, 268, 110454. [Google Scholar] [CrossRef]
  32. Zhang, M.; Wang, D.; Yang, J. Hybrid-Flash Butterfly Optimization Algorithm with Logistic Mapping for Solving the Engineering Constrained Optimization Problems. Entropy 2022, 24, 525. [Google Scholar] [CrossRef]
  33. Meng, K.; Chen, C.; Xin, B. MSSSA: A Multi-Strategy Enhanced Sparrow Search Algorithm for Global Optimization. Front. Inf. Technol. Electron. Eng. 2022, 23, 1828–1847. [Google Scholar] [CrossRef]
  34. Seyyedabbasi, A.; Kiani, F. Sand Cat Swarm Optimization: A Nature-Inspired Algorithm to Solve Global Optimization Problems. Eng. Comput. 2023, 39, 2627–2651. [Google Scholar] [CrossRef]
  35. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling Murmuration Optimizer: A Novel Bio-Inspired Algorithm for Global and Engineering Optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [Google Scholar] [CrossRef]
  36. Zhang, Y.; Mo, Y. Chaotic Adaptive Sailfish Optimizer with Genetic Characteristics for Global Optimization. J. Supercomput. 2022, 78, 10950–10996. [Google Scholar] [CrossRef]
  37. Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An Improved Whale Optimization Algorithm Based on Multi-Population Evolution for Global Optimization and Engineering Design Problems. Expert Syst. Appl. 2023, 215, 119269. [Google Scholar] [CrossRef]
  38. Ong, K.M.; Ong, P.; Sia, C.K. A Carnivorous Plant Algorithm for Solving Global Optimization Problems. Appl. Soft Comput. 2021, 98, 106833. [Google Scholar] [CrossRef]
  39. Kaveh, A.; Eslamlou, A.D. Water Strider Algorithm: A New Metaheuristic and Applications. Structures 2020, 25, 520–541. [Google Scholar] [CrossRef]
  40. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
  41. Ray, T.; Saini, P. Engineering Design Optimization Using a Swarm with an Intelligent Information Sharing among Individuals. Eng. Optim. 2001, 33, 735–748. [Google Scholar] [CrossRef]
  42. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
  43. Raj, K.H.; Sharma, R.S.; Mishra, G.; Dua, A.; Patvardhan, C. An Evolutionary Computational Technique for Constrained Optimisation in Engineering Design. J. Inst. Eng. Part MC Mech. Eng. Div. 2005, 86, 121–128. [Google Scholar]
  44. Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems; Jadavpur University: Kolkata, India; Nanyang Technological University: Singapore, 2010; pp. 341–359. [Google Scholar]
  45. Mohammadi-Balani, A.; Nayeri, M.D.; Azar, A.; Taghizadeh-Yazdi, M. Golden Eagle Optimizer: A Nature-Inspired Metaheuristic Algorithm. Comput. Ind. Eng. 2021, 152, 107050. [Google Scholar] [CrossRef]
  46. Po\lap, D.; Woźniak, M. Red Fox Optimization Algorithm. Expert Syst. Appl. 2021, 166, 114107. [Google Scholar] [CrossRef]
  47. Chen, Z.; Francis, A.; Li, S.; Liao, B.; Xiao, D.; Ha, T.T.; Li, J.; Ding, L.; Cao, X. Egret Swarm Optimization Algorithm: An Evolutionary Computation Approach for Model Free Optimization. Biomimetics 2022, 7, 144. [Google Scholar] [CrossRef]
  48. Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A Physical Law-Based Algorithm for Numerical Optimization. Knowl.-Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
  49. Naruei, I.; Keynia, F.; Sabbagh Molahosseini, A. Hunter–Prey Optimization: Algorithm and Applications. Soft Comput. 2022, 26, 1279–1314. [Google Scholar] [CrossRef]
  50. Desuky, A.S.; Cifci, M.A.; Kausar, S.; Hussain, S.; El Bakrawy, L.M. Mud Ring Algorithm: A New Meta-Heuristic Optimization Algorithm for Solving Mathematical and Engineering Challenges. IEEE Access 2022, 10, 50448–50466. [Google Scholar] [CrossRef]
  51. Akyol, S. A New Hybrid Method Based on Aquila Optimizer and Tangent Search Algorithm for Global Optimization. J. Ambient Intell. Humaniz. Comput. 2023, 14, 8045–8065. [Google Scholar] [CrossRef]
  52. Emami, H. Stock Exchange Trading Optimization Algorithm: A Human-Inspired Method for Global Optimization. J. Supercomput. 2022, 78, 2125–2174. [Google Scholar] [CrossRef]
  53. Wu, H.; Zhang, X.; Song, L.; Zhang, Y.; Gu, L.; Zhao, X. Wild Geese Migration Optimization Algorithm: A New Meta-Heuristic Algorithm for Solving Inverse Kinematics of Robot. Comput. Intell. Neurosci. 2022, 2022, 5191758. [Google Scholar] [CrossRef]
  54. Rechenberg, I. Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie: Workshop, Hannover; Springer: Berlin/Heidelberg, Germany, 1978; Volume 29, pp. 83–114. [Google Scholar]
  55. Gandomi, A.H.; Roke, D.A. Engineering Optimization Using Interior Search Algorithm. In Proceedings of the 2014 IEEE symposium on swarm intelligence, Orlando, FL, USA, 9–12 December 2014; pp. 1–7. [Google Scholar] [CrossRef]
  56. Bayzidi, H.; Talatahari, S.; Saraee, M.; Lamarche, C.P. Social Network Search for Solving Engineering Optimization Problems. Comput. Intell. Neurosci. 2021, 2021, 8548639. [Google Scholar] [CrossRef]
  57. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
  58. Feng, Z.; Niu, W.; Liu, S. Cooperation Search Algorithm: A Novel Metaheuristic Evolutionary Intelligence Algorithm for Numerical Optimization and Engineering Optimization Problems. Appl. Soft Comput. 2021, 98, 106734. [Google Scholar] [CrossRef]
  59. Meng, O.K.; Pauline, O.; Kiong, S.C.; Wahab, H.A.; Jafferi, N. Application of Modified Flower Pollination Algorithm on Mechanical Engineering Design Problem. IOP Conf. Ser. Mater. Sci. Eng. 2017, 165, 012032. [Google Scholar] [CrossRef]
  60. Garg, H. A Hybrid GSA-GA Algorithm for Constrained Optimization Problems. Inf. Sci. 2019, 478, 499–523. [Google Scholar] [CrossRef]
  61. Kumar, N.; Mahato, S.K.; Bhunia, A.K. A New QPSO Based Hybrid Algorithm for Constrained Optimization Problems via Tournamenting Process. Soft Comput. 2020, 24, 11365–11379. [Google Scholar] [CrossRef]
  62. Nigdeli, S.M.; Bekdaş, G.; Yang, X.S. Application of the Flower Pollination Algorithm in Structural Engineering. In Metaheuristics and Optimization in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 25–42. [Google Scholar] [CrossRef]
  63. Gandomi, A.H.; Alavi, A.H. An Introduction of Krill Herd Algorithm for Engineering Optimization. J. Civ. Eng. Manag. 2016, 22, 302–310. [Google Scholar] [CrossRef]
  64. Rocha, A.M.A.; Fernandes, E.M. Hybridizing the Electromagnetism-like Algorithm with Descent Search for Solving Engineering Design Problems. Int. J. Comput. Math. 2009, 86, 1932–1946. [Google Scholar] [CrossRef]
  65. Ezugwu, A.E.; Agushaka, J.O.; Abualigah, L.; Mirjalili, S.; Gandomi, A.H. Prairie Dog Optimization Algorithm. Neural Comput. Appl. 2022, 34, 20017–20065. [Google Scholar] [CrossRef]
  66. Guedria, N.B. Improved Accelerated PSO Algorithm for Mechanical Engineering Optimization Problems. Appl. Soft Comput. 2016, 40, 455–467. [Google Scholar] [CrossRef]
  67. Saruhan, H.; Uygur, İ. Design Optimization of Mechanical Systems Using Genetic Algorithms. Sak. Univ. J. Sci. 2003, 7, 77–84. [Google Scholar]
  68. Mezura-Montes, E.; Coello, C.C.; Landa-Becerra, R. Engineering Optimization Using Simple Evolutionary Algorithm. In Proceedings of the 15th IEEE international conference on tools with artificial intelligence, Sacramento, CA, USA, 5 November 2003; pp. 149–156. [Google Scholar] [CrossRef]
  69. Stephen, S.; Christu, D.; Dalvi, A. Design Optimization of Weight of Speed Reducer Problem through Matlab and Simulation Using Ansys. Int. J. Mech. Eng. Technol. 2018, 9, 339–349. [Google Scholar]
  70. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
  71. Kamboj, V.K.; Nandi, A.; Bhadoria, A.; Sehgal, S. An Intensify Harris Hawks Optimizer for Numerical and Engineering Optimization Problems. Appl. Soft Comput. 2020, 89, 106018. [Google Scholar] [CrossRef]
  72. Lu, S.; Kim, H.M. A Regularized Inexact Penalty Decomposition Algorithm for Multidisciplinary Design Optimization Problems with Complementarity Constraints. J. Mech. Des. 2010, 132, 041005. [Google Scholar] [CrossRef]
  73. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
  74. Mahdavi, M.; Fesanghary, M.; Damangir, E. An Improved Harmony Search Algorithm for Solving Optimization Problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
  75. Braik, M.S. Chameleon Swarm Algorithm: A Bio-Inspired Optimizer for Solving Engineering Design Problems. Expert Syst. Appl. 2021, 174, 114685. [Google Scholar] [CrossRef]
  76. Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New Metaheuristic Algorithm for Solving Optimization Problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
  77. Dehghani, M.; Hubálovskỳ, Š.; Trojovskỳ, P. Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems. IEEE Access 2021, 9, 162059–162080. [Google Scholar] [CrossRef]
  78. Dhiman, G.; Kumar, V. Seagull Optimization Algorithm: Theory and Its Applications for Large-Scale Industrial Engineering Problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
  79. Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovskỳ, P. Coati Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
  80. Chakraborty, S.; Saha, A.K.; Sharma, S.; Chakraborty, R.; Debnath, S. A Hybrid Whale Optimization Algorithm for Global Optimization. J. Ambient Intell. Humaniz. Comput. 2023, 14, 431–467. [Google Scholar] [CrossRef]
  81. Rao, Y.; He, D.; Qu, L. A Probabilistic Simplified Sine Cosine Crow Search Algorithm for Global Optimization Problems. Eng. Comput. 2023, 39, 1823–1841. [Google Scholar] [CrossRef]
  82. Wang, S.; Jia, H.; Liu, Q.; Zheng, R. An Improved Hybrid Aquila Optimizer and Harris Hawks Optimization for Global Optimization. Math. Biosci. Eng. 2021, 18, 7076–7109. [Google Scholar] [CrossRef]
  83. Azizi, M.; Aickelin, U.; Khorshidi, H.A.; Baghalzadeh Shishehgarkhaneh, M. Energy Valley Optimizer: A Novel Metaheuristic Algorithm for Global and Engineering Optimization. Sci. Rep. 2023, 13, 226. [Google Scholar] [CrossRef]
  84. Kim, P.; Lee, J. An Integrated Method of Particle Swarm Optimization and Differential Evolution. J. Mech. Sci. Technol. 2009, 23, 426–434. [Google Scholar] [CrossRef]
  85. Azizi, M.; Talatahari, S.; Giaralis, A. Optimization of Engineering Design Problems Using Atomic Orbital Search Algorithm. IEEE Access 2021, 9, 102497–102519. [Google Scholar] [CrossRef]
  86. Sadeeq, H.T.; Abdulazeez, A.M. Giant Trevally Optimizer (GTO): A Novel Metaheuristic Algorithm for Global Optimization and Challenging Engineering Problems. IEEE Access 2022, 10, 121615–121640. [Google Scholar] [CrossRef]
  87. Sattar, D.; Salim, R. A Smart Metaheuristic Algorithm for Solving Engineering Problems. Eng. Comput. 2021, 37, 2389–2417. [Google Scholar] [CrossRef]
  88. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and Application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
  89. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A Novel Meta-Heuristic Optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
  90. Coello, C.A.C. Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems. Comput. Ind. 2000, 41, 113–127. [Google Scholar] [CrossRef]
  91. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African Vultures Optimization Algorithm: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
  92. Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A New Bio-Inspired Based Metaheuristic Paradigm for Global Optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
  93. Xie, L.; Han, T.; Zhou, H.; Zhang, Z.-R.; Han, B.; Tang, A. Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization. Comput. Intell. Neurosci. 2021, 2021, 9210050. [Google Scholar] [CrossRef]
  94. Abualigah, L.; Elaziz, M.A.; Hussien, A.G.; Alsalibi, B.; Jalali, S.M.J.; Gandomi, A.H. Lightning Search Algorithm: A Comprehensive Survey. Appl. Intell. 2021, 51, 2353–2376. [Google Scholar] [CrossRef]
  95. Zhao, W.; Wang, L.; Zhang, Z. Artificial Ecosystem-Based Optimization: A Novel Nature-Inspired Meta-Heuristic Algorithm. Neural Comput. Appl. 2020, 32, 9383–9425. [Google Scholar] [CrossRef]
  96. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium Optimizer: A Novel Optimization Algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
  97. Zitouni, F.; Harous, S.; Maamri, R. A Novel Quantum Firefly Algorithm for Global Optimization. Arab. J. Sci. Eng. 2021, 46, 8741–8759. [Google Scholar] [CrossRef]
  98. Shami, T.M.; Mirjalili, S.; Al-Eryani, Y.; Daoudi, K.; Izadi, S.; Abualigah, L. Velocity Pausing Particle Swarm Optimization: A Novel Variant for Global Optimization. Neural Comput. Appl. 2023, 35, 9193–9223. [Google Scholar] [CrossRef]
  99. Kaveh, A.; Khayatazad, M. A New Meta-Heuristic Method: Ray Optimization. Comput. Struct. 2012, 112, 283–294. [Google Scholar] [CrossRef]
  100. Huang, F.; Wang, L.; He, Q. An Effective Co-Evolutionary Differential Evolution for Constrained Optimization. Appl. Math. Comput. 2007, 186, 340–356. [Google Scholar] [CrossRef]
  101. Deb, K. Optimal Design of a Welded Beam via Genetic Algorithms. AIAA J. 1991, 29, 2013–2015. [Google Scholar] [CrossRef]
  102. Ragsdell, K.; Phillips, D. Optimal Design of a Class of Welded Structures Using Geometric Programming. J. Eng. Ind. 1976, 98, 1021–1025. [Google Scholar] [CrossRef]
  103. Lee, K.S.; Geem, Z.W. A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [Google Scholar] [CrossRef]
  104. Mezura-Montes, E.; Coello, C.A.C. An Empirical Study about the Usefulness of Evolution Strategies to Solve Constrained Optimization Problems. Int. J. Gen. Syst. 2008, 37, 443–473. [Google Scholar] [CrossRef]
  105. Coello, C.A.C. Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [Google Scholar] [CrossRef]
  106. Siddall, J.N. Analytical Decision-Making in Engineering Design; Prentice-Hall: Hoboken, NJ, USA, 1972. [Google Scholar]
  107. Li, Y.; Zhao, Y.; Liu, J. Dimension by Dimension Dynamic Sine Cosine Algorithm for Global Optimization Problems. Appl. Soft Comput. 2021, 98, 106933. [Google Scholar] [CrossRef]
  108. Zheng, Y.-J. Water Wave Optimization: A New Nature-Inspired Metaheuristic. Comput. Oper. Res. 2015, 55, 1–11. [Google Scholar] [CrossRef]
  109. Zou, D.; Liu, H.; Gao, L.; Li, S. A Novel Modified Differential Evolution Algorithm for Constrained Optimization Problems. Comput. Math. Appl. 2011, 61, 1608–1623. [Google Scholar] [CrossRef]
  110. Emami, H. Anti-Coronavirus Optimization Algorithm. Soft Comput. 2022, 26, 4991–5023. [Google Scholar] [CrossRef] [PubMed]
  111. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger Games Search: Visions, Conception, Implementation, Deep Analysis, Perspectives, and towards Performance Shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
  112. Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha, S.S., Jr.; Gomes, G.F. Lichtenberg Algorithm: A Novel Hybrid Physics-Based Meta-Heuristic for Global Optimization. Expert Syst. Appl. 2021, 170, 114522. [Google Scholar] [CrossRef]
  113. Li, C.; Liang, K.; Chen, Y.; Pan, M. An Exploitation-Boosted Sine Cosine Algorithm for Global Optimization. Eng. Appl. Artif. Intell. 2023, 117, 105620. [Google Scholar] [CrossRef]
  114. Mohammadi, D.; Abd Elaziz, M.; Moghdani, R.; Demir, E.; Mirjalili, S. Quantum Henry Gas Solubility Optimization Algorithm for Global Optimization. Eng. Comput. 2022, 38, 2329–2348. [Google Scholar] [CrossRef]
  115. Yu, C.; Chen, M.; Cheng, K.; Zhao, X.; Ma, C.; Kuang, F.; Chen, H. SGOA: Annealing-Behaved Grasshopper Optimizer for Global Tasks. Eng. Comput. 2022, 38, 3761–3788. [Google Scholar] [CrossRef]
  116. Akay, B.; Karaboga, D. Artificial Bee Colony Algorithm for Large-Scale Problems and Engineering Design Optimization. J. Intell. Manuf. 2012, 23, 1001–1014. [Google Scholar] [CrossRef]
  117. Han, X.; Yue, L.; Dong, Y.; Xu, Q.; Xie, G.; Xu, X. Efficient Hybrid Algorithm Based on Moth Search and Fireworks Algorithm for Solving Numerical and Constrained Engineering Optimization Problems. J. Supercomput. 2020, 76, 9404–9429. [Google Scholar] [CrossRef]
  118. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine Blast Algorithm: A New Population Based Algorithm for Solving Constrained Engineering Optimization Problems. Appl. Soft Comput. 2013, 13, 2592–2612. [Google Scholar] [CrossRef]
  119. Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
  120. Chegini, S.N.; Bagheri, A.; Najafi, F. PSOSCALF: A New Hybrid PSO Based on Sine Cosine Algorithm and Levy Flight for Solving Optimization Problems. Appl. Soft Comput. 2018, 73, 697–726. [Google Scholar] [CrossRef]
  121. Sandgren, E. Nonlinear Integer and Discrete Programming in Mechanical Design. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Kissimmee, FL, USA, 25–28 September 1998; American Society of Mechanical Engineers: New York, NY, USA, 1988; Volume 26584, pp. 95–105. [Google Scholar]
  122. Kannan, B.; Kramer, S.N. An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Albuquerque, NM, USA, 19–22 September 1993; Volume 97690, pp. 103–112. [Google Scholar]
  123. Deb, K.; Goyal, M. A Combined Genetic Adaptive Search (GeneAS) for Engineering Design. Comput. Sci. Inform. 1996, 26, 30–45. [Google Scholar]
  124. Karami, H.; Anaraki, M.V.; Farzin, S.; Mirjalili, S. Flow Direction Algorithm (FDA): A Novel Optimization Approach for Solving Optimization Problems. Comput. Ind. Eng. 2021, 156, 107224. [Google Scholar] [CrossRef]
  125. Arora, S.; Singh, S. Butterfly Optimization Algorithm: A Novel Approach for Global Optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
  126. Das, A.K.; Pratihar, D.K. Bonobo Optimizer (BO): An Intelligent Heuristic with Self-Adjusting Parameters over Continuous Spaces and Its Applications to Engineering Problems. Appl. Intell. 2022, 52, 2942–2974. [Google Scholar] [CrossRef]
  127. Singh, H.; Singh, B.; Kaur, M. An Improved Elephant Herding Optimization for Global Optimization Problems. Eng. Comput. 2022, 38, 3489–3521. [Google Scholar] [CrossRef]
  128. Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial Rabbits Optimization: A New Bio-Inspired Meta-Heuristic Algorithm for Solving Engineering Optimization Problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
  129. Yadav, D. Blood Coagulation Algorithm: A Novel Bio-Inspired Meta-Heuristic Algorithm for Global Optimization. Mathematics 2021, 9, 3011. [Google Scholar] [CrossRef]
  130. Tarkhaneh, O.; Alipour, N.; Chapnevis, A.; Shen, H. Golden Tortoise Beetle Optimizer: A Novel Nature-Inspired Meta-Heuristic Algorithm for Engineering Problems. arXiv 2021, arXiv:210401521. [Google Scholar]
  131. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Mixed Variable Structural Optimization Using Firefly Algorithm. Comput. Struct. 2011, 89, 2325–2336. [Google Scholar] [CrossRef]
  132. Yildiz, A.R.; Abderazek, H.; Mirjalili, S. A Comparative Study of Recent Non-Traditional Methods for Mechanical Design Optimization. Arch. Comput. Methods Eng. 2020, 27, 1031–1048. [Google Scholar] [CrossRef]
  133. Talatahari, S.; Azizi, M.; Toloo, M. Fuzzy Adaptive Charged System Search for Global Optimization. Appl. Soft Comput. 2021, 109, 107518. [Google Scholar] [CrossRef]
  134. Yildiz, B.S.; Pholdee, N.; Bureerat, S.; Yildiz, A.R.; Sait, S.M. Robust Design of a Robot Gripper Mechanism Using New Hybrid Grasshopper Optimization Algorithm. Expert Syst. 2021, 38, e12666. [Google Scholar] [CrossRef]
  135. Yildiz, B.S.; Pholdee, N.; Bureerat, S.; Yildiz, A.R.; Sait, S.M. Enhanced Grasshopper Optimization Algorithm Using Elite Opposition-Based Learning for Solving Real-World Engineering Problems. Eng. Comput. 2022, 38, 4207–4219. [Google Scholar] [CrossRef]
Figure 1. Bubble-net devouring motion.
Figure 1. Bubble-net devouring motion.
Biomimetics 09 00602 g001
Figure 2. Convergence arcs of competitive methodologies. (a) f 1 . (b) f 2 . (c) f 3 . (d) f 4 . (e) f 5 . (f) f 6 . (g) f 7 . (h) f 8 . (i) f 9 . (j) f 10 . (k) f 11 . (l) f 12 . (m) f 13 . (n) f 14 . (o) f 15 . (p) f 16 .
Figure 2. Convergence arcs of competitive methodologies. (a) f 1 . (b) f 2 . (c) f 3 . (d) f 4 . (e) f 5 . (f) f 6 . (g) f 7 . (h) f 8 . (i) f 9 . (j) f 10 . (k) f 11 . (l) f 12 . (m) f 13 . (n) f 14 . (o) f 15 . (p) f 16 .
Biomimetics 09 00602 g002aBiomimetics 09 00602 g002b
Figure 3. ANOVA tests of competitive methodologies. (a) f 1 . (b) f 2 . (c) f 3 . (d) f 4 . (e) f 5 . (f) f 6 . (g) f 7 . (h) f 8 . (i) f 9 . (j) f 10 . (k) f 11 . (l) f 12 . (m) f 13 . (n) f 14 . (o) f 15 . (p) f 16 .
Figure 3. ANOVA tests of competitive methodologies. (a) f 1 . (b) f 2 . (c) f 3 . (d) f 4 . (e) f 5 . (f) f 6 . (g) f 7 . (h) f 8 . (i) f 9 . (j) f 10 . (k) f 11 . (l) f 12 . (m) f 13 . (n) f 14 . (o) f 15 . (p) f 16 .
Biomimetics 09 00602 g003aBiomimetics 09 00602 g003b
Figure 4. Three-bar truss design.
Figure 4. Three-bar truss design.
Biomimetics 09 00602 g004
Figure 5. Tubular column design.
Figure 5. Tubular column design.
Biomimetics 09 00602 g005
Figure 6. Speed reducer design.
Figure 6. Speed reducer design.
Biomimetics 09 00602 g006
Figure 7. Piston lever design.
Figure 7. Piston lever design.
Biomimetics 09 00602 g007
Figure 8. Tension/compression spring design.
Figure 8. Tension/compression spring design.
Biomimetics 09 00602 g008
Figure 9. Welded beam design.
Figure 9. Welded beam design.
Biomimetics 09 00602 g009
Figure 10. Gear train design.
Figure 10. Gear train design.
Biomimetics 09 00602 g010
Figure 11. Car side impact design.
Figure 11. Car side impact design.
Biomimetics 09 00602 g011
Table 1. Benchmark functions.
Table 1. Benchmark functions.
Benchmark Test FunctionsDimRange f min
f 1 = i = 1 n x i 2 30[−100, 100]0
f 2 ( x ) = i = 1 n | x i | + i = 1 n | x i | 30[−10, 10]0
f 3 ( x ) = i = 1 n ( j = 1 i x j ) 2 30[−100, 100]0
f 4 ( x ) = max i { | x i | , 1 i n } 30[−100, 100]0
f 5 ( x ) = i = 1 n 1 [ 100 ( x i + 1 x i 2 ) 2 + ( x i 1 ) 2 ] 30[−30, 30]0
f 6 ( x ) = i = 1 n i x i 4 + r a n d o m [ 0 , 1 ) 30[−1.28, 1.28]0
f 7 ( x ) = i = 1 n [ x i 2 10 cos ( 2 π x i ) + 10 ] 30[−5.12, 5.12]0
f 8 ( x ) = 20 exp 0.2 1 n i = 1 n x i 2 exp 1 n i = 1 n cos 2 π x i + 20 + e 30[−32, 32]0
f 9 ( x ) = 1 4000 i = 1 n x i 2 i = 1 n cos x i i + 1 30[−600, 600]0
f 10 ( x ) = π n 10 sin 2 ( π y 1 ) + i = 1 n 1 ( y 1 ) 2 [ 1 + 10 sin 2 ( π y 1 ) ] + ( y n 1 ) 2 + i = 1 n u ( x i , 10 , 100 , 4 ) y i = 1 + x i + 1 4 u ( x i , a , k , m ) = k ( x i a ) m , x i > a 0 , a x i a k ( x i z ) m , x i < a 30[−50, 50]0
f 11 ( x ) = ( 1 500 + j = 1 25 1 j + i = 1 2 ( x i a i j ) 6 ) 1 2[−65, 65]0.998
f 12 ( x ) = i = 1 11 [ a i x 1 ( b i 2 + b i x 2 ) b i 2 + b i x 3 + x 4 ] 2 4[−5, 5]0.000308
f 13 ( x ) = 1 + cos ( 12 x 1 2 + x 2 2 ) 0.5 ( x 1 2 + x 2 2 ) + 2 2[−5.12, 5.12]−1
f 14 ( x ) = i = 1 10 [ ( x a i ) ( x a i ) T + c i ] 1 4[0, 10]−10.5364
f 15 ( x ) = 0.5 + sin 2 x 1 2 + x 2 2 0.5 ( 1 + 0.001 ( x 1 2 + x 2 2 ) ) 2 2[−100, 100]−1
f 16 ( x ) = i = 1 n x i sin ( x i ) + 0.1 x i 10[−10, 10]0
Table 2. Initial parameters of each methodology.
Table 2. Initial parameters of each methodology.
MethodologyParameterValue
BAPulse frequency f [0, 2]
Echo loudness A 0.25
Decreasing coefficient γ 0.5
CapSADisordered solution ε [0, 1]
Balance probability P b f 0.7
Gravitational force g 9.81
Disordered solution r [0, 1]
Solution β 0 2
Solution β 1 21
Solution β 2 2
Inertia coefficient ρ 0.7
MFO Constant b 1
Disordered solution t [−1, 1]
Disordered solution r [−2, −1]
MVODisordered solution r 1 [0, 1]
Disordered solution r 2 [0, 1]
Disordered solution r 3 [0, 1]
Disordered solution r 4 [0, 1]
Exploitation accuracy p 6
Minimum probability W E P _ M i n 0.2
Maximum probability W E P _ M a x 1
SAODisordered solution r 0 (0, 1]
Smell constant k 0.6
Temperature of smell molecules T 0.95
Mass of smell molecules m 0.9
Disordered solution r 1 (0, 1]
Disordered solution r 2 (0, 1]
Disordered solution r 3 (0, 1]
Disordered solution r 4 (0, 1]
MDWAConstant a max 1
Constant a min 0
WOA Disordered solution r 1 [0, 1]
Disordered solution r 2 [0, 1]
Convergence factor α [0, 2]
Constant coefficient b 1
Disordered solution l [−1, 1]
SCWOA Disordered solution r 1 [0, 1]
Disordered solution r 2 [0, 1]
Convergence factor α [0, 2]
Constant coefficient b 1
Disordered solution l [−1, 1]
Constant a 2
Disordered solution r 2 [0, 2 π ]
Disordered solution r 3 [−2, 2]
Disordered solution r 4 [0, 1]
Table 3. Simulation results of unimodal functions.
Table 3. Simulation results of unimodal functions.
FunctionResultBACapSAMFOMVOSAOMDWAWOASCWOARank
f 1 Best0.0011595.36 × 10 22 4.42 × 10 6 0.0928685.56 × 10 5 9.20 × 10 17 1.5 × 10 192 01
Worst0.0016228.63 × 10 18 20000.000.3590120.0078192.41 × 10 14 8.8 × 10 170 0
Mean0.0013751.15 × 10 18 2000.0000.1926900.0010674.70 × 10 15 3.3 × 10 171 0
Std0.0001362.14 × 10 18 4842.3420.0655280.0014616.10 × 10 15 00
f 2 Best0.1436277.53 × 10 12 5.34 × 10 5 0.1641700.0406954.05 × 10 9 4.9 × 10 117 01
Worst1.4861021.65 × 10 9 60.000000.5616350.3221526.99 × 10 8 6.8 × 10 106 0
Mean0.3625033.36 × 10 10 32.000040.2972940.1263001.80 × 10 8 4.6 × 10 107 0
Std0.3101194.01 × 10 10 19.190460.0809730.0718091.46 × 10 8 1.5 × 10 106 0
f 3 Best0.0028281.73 × 10 19 361.19447.2827890.0196361.24 × 10 7 1157.30801
Worst0.0072813.46 × 10 15 43673.2035.5905668711.496.88 × 10 5 26934.370
Mean0.0051093.75 × 10 16 16485.9416.953008723.7801.03 × 10 5 12424.990
Std0.0012177.74 × 10 16 12964.407.35425515170.221.94 × 10 5 6176.5850
f 4 Best0.0140874.13 × 10 12 26.519550.2811970.0024791.29 × 10 6 0.00114601
Worst0.0274227.12 × 10 10 74.517341.0832970.0218526.39 × 10 5 83.746660
Mean0.0180841.65 × 10 10 52.376420.6137200.0081451.31 × 10 5 26.991150
Std0.0026981.73 × 10 10 12.467030.2221560.0046281.34 × 10 5 25.651310
f 5 Best22.680251.60 × 10 9 24.4174727.276170.00150322.1862125.8967825.586084
Worst29.528139.42 × 10 6 90079.052449.7320.29822888.6229127.0211828.57163
Mean27.395309.80 × 10 7 15426.22408.62920.09165333.1691126.4943227.21915
Std1.5905331.86 × 10 6 33959.41672.63720.07914718.137220.3086410.525503
f 6 Best0.0135350.0474750.0180170.0033990.0012070.0006588.93 × 10 6 1.33 × 10 7 1
Worst0.0701210.95552326.868920.0328070.1188720.0115410.0053965.06 × 10 6
Mean0.0391940.5295631.8486470.0143750.0169510.0040330.0007511.50 × 10 6
Std0.0134200.2933255.0427380.0073230.0216820.0024780.0010261.16 × 10 6
Table 4. Simulation results of multimodal functions.
Table 4. Simulation results of multimodal functions.
FunctionResultBACapSAMFOMVOSAOMDWAWOASCWOARank
f 7 Best18.13550057.7075559.761170.0050550001
Worst42.081150219.1031143.3769208.29661.51 × 10 11 00
Mean29.385500139.8432104.822013.162341.77 × 10 12 00
Std6.161807040.2222124.8551638.811783.03 × 10 12 00
f 8 Best2.1227231.41 × 10 11 7.20 × 10 4 0.1037770.0046036.24 × 10 9 8.88 × 10 16 8.88 × 10 16 1
Worst3.2253037.86 × 10 10 19.962831.8179650.5937761.60 × 10 7 7.99 × 10 15 8.88 × 10 16
Mean2.6833901.70 × 10 10 10.626690.6436660.0379794.64 × 10 8 4.32 × 10 15 8.88 × 10 16
Std0.2957281.82 × 10 10 9.3464670.5859470.1057243.68 × 10 8 2.55 × 10 15 0
f 9 Best5.18 × 10 5 09.94 × 10 6 0.2054259.44 × 10 6 0001
Worst9.63 × 10 5 090.512810.65237412.513400.0074070.0730580
Mean7.37 × 10 5 018.050930.4289251.1123320.0002470.0051210
Std1.14 × 10 5 036.696840.1127032.8829550.0013520.0164580
f 10 Best8.75 × 10 6 1.10 × 10 13 1.87 × 10 5 1.09 × 10 3 1.06 × 10 6 0.0055290.0001970.0273745
Worst1.56 × 10 5 4.60 × 10 11 1.4387334.36112514.418690.0157360.0023110.145999
Mean1.28 × 10 5 8.43 × 10 12 0.3118381.1665431.2457290.0107070.0004830.073446
Std1.98 × 10 6 1.05 × 10 11 0.4224971.1229642.8636110.0026690.0004410.025835
Table 5. Simulation results of fixed-dimension multimodal functions.
Table 5. Simulation results of fixed-dimension multimodal functions.
FunctionResultBACapSAMFOMVOSAOMDWAWOASCWOARank
f 11 Best0.9980040.9980040.9980040.9980040.9980040.9980040.9980040.9980043
Worst12.670510.9980045.9288450.99800411.720546.90334210.763182.982105
Mean10.192020.9980041.3940410.9980043.5798684.5926041.5880571.064298
Std3.7830861.49 × 10 16 1.0246185.84 × 10 12 2.1878212.4530271.8630750.362216
f 12 Best0.0003080.0003070.0004570.0004070.0004100.0003160.0003090.0003081
Worst0.0016600.0012230.0022370.0203630.0142740.0203640.0021760.000330
Mean0.0006490.0004300.0009790.0072780.0026600.0019330.0005970.000315
Std0.0004990.0003170.0004160.0094130.0031650.0050240.0004095.24 × 10−6
f 13 Best−1−1−1−1−0.99988−1−1−11
Worst−0.78575−1−0.93625−1−0.93625−1−0.93625−1
Mean−0.93046−1−0.97662−1−0.97136−1−0.98512−1
Std0.04251700.0312484.58 × 10−70.02980500.0274260
f 14 Best−10.5364−10.5364−10.5364−10.5364−10.5358−10.5364−10.5364−10.53644
Worst−2.87114−10.5364−2.42173−2.42733−5.12804−1.85948−2.80656−5.11863
Mean−5.37063−10.5364−9.28154−9.13569−9.80391−6.55031−8.82645−8.13141
Std1.4797322.56 × 10 15 2.5939892.8983991.8520263.2031552.6653972.521657
f 15 Best−1−1−1−1−0.99028−1−1−11
Worst−0.99028−1−0.99028−0.99028−0.87301−1−0.99028−1
Mean−0.99644−1−0.99126−0.99967−0.97129−1−0.99644−1
Std0.00476200.0029650.0017730.03184300.0047620
f 16 Best0.0016692.03 × 10 14 1.11 × 10 15 0.0057710.0007556.83 × 10 23 3.3 × 10 124 01
Worst0.0037171.01 × 10 10 4.4402110.3459203.6640036.88 × 10 5 3.8924850
Mean0.0023338.64 × 10 12 0.1480070.1124550.1261191.45 × 10 5 0.4896710
Std0.0003881.95 × 10 11 0.8106680.0961920.6682062.04 × 10 5 1.1174030
Table 6. Results of the p-value Wilcoxon rank-sum.
Table 6. Results of the p-value Wilcoxon rank-sum.
FunctionBACapSAMFOMVOSAOMDWAWOA
f 1 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12
f 2 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12
f 3 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12
f 4 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12
f 5 N/A3.02 × 10 11 8.48 × 10 9 1.61 × 10 10 3.02 × 10 11 1.84 × 10 2 6.52 × 10 9
f 6 3.02 × 10 11 3.02 × 10 11 3.02 × 10 11 3.02 × 10 11 3.02 × 10 11 3.02 × 10 11 3.02 × 10 11
f 7 1.21 × 10 12 N/A1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 4.52 × 10 12 N/A
f 8 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.16 × 10 8
f 9 1.21 × 10 12 N/A1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.10 × 10 2 8.15 × 10 4
f 10 3.02 × 10 11 3.02 × 10 11 N/A1.31 × 10 8 1.95 × 10 3 3.02 × 10 11 3.02 × 10 11
f 11 6.12 × 10 10 1.41 × 10 11 2.73 × 10 5 3.02 × 10 11 1.87 × 10 7 7.69 × 10 8 8.29 × 10 6
f 12 8.53 × 10 4 1.09 × 10 6 3.02 × 10 11 3.02 × 10 11 3.02 × 10 11 2.15 × 10 10 5.09 × 10 8
f 13 1.21 × 10 12 N/A3.06 × 10 4 1.21 × 10 12 1.21 × 10 12 N/A5.54 × 10 3
f 14 2.52 × 10 2 1.36 × 10 11 4.98 × 10 6 1.43 × 10 5 6.01 × 10 8 8.77 × 10 1 6.77 × 10 5
f 15 1.21 × 10 12 N/A3.94 × 10 12 1.21 × 10 12 1.21 × 10 12 N/A3.08 × 10 4
f 16 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12 1.21 × 10 12
Table 7. Comparison results of the three-bar truss design.
Table 7. Comparison results of the three-bar truss design.
AlgorithmOptimal Value for ElementsOptimal Cost
A1A2
GWO [39]0.7886480.408325263.8960063
CS [40]0.788670.40902263.9716
MFO [3]0.788244770.4094669263.8959796
Ray and Sain [41]0.7950.395264.3
AOA [42]0.793690.39426263.9154
Raj et al. [43]0.7897644100.405176050263.89671
Das et al. [44]0.788670.40902263.9716
GEO [45]0.793690.39426263.9154
RFO [46]0.753560.55373268.51195
GSA [34]0.7470704950563560.530675746732991264.769804538555
ESOA [47]0.7881920.409618263.896
DE [47]0.7886750.408248263.896
L-Shade [47]0.788675140.40824829263.896
MPEDE [47]0.789248890.40662803263.896
HGSO [48]0.7782540.440528264.1762
HGS [48]0.78845620.40886831263.8959
SC-GWO [49]0.789410.40617263.8963
COA [31]0.7880570.410073263.903379
MRA [50]0.7885740.408536263.8959
AO-TSA [51]0.7905120.403105263.9010
TSA [51]0.7975200.387339264.3067
I-GWO [51]0.7844080.420579263.9220
BO [51]0.7921870.398517263.9159
KH [35]0.7851254994170410.420705357829172264.137561671
BOA [35]0.8233315352981340.313381441824923266.734135381
SELO [52]0.78780.4108263.8964
HBO [52]0.78870.4082263.8959
LFD [52]0.78790.4106263.8963
KABC [53]0.78860.4084263.8959
SCWOA0.7886740.408234263.895843
Table 8. Comparison results of the tubular column design.
Table 8. Comparison results of the tubular column design.
AlgorithmOptimal Value for ElementsOptimal Cost
dt
CS [54]5.451390.2919626.53217
ISA [55]5.451156230.2919654726.5313
SNS [56]5.451156320.2919654726.4994969
Rao [57]5.440.29326.5323
Gandomi [40]5.451390.2919626.5321
CSA [58]5.4511633970.29196550926.531364472
MFPA [59]5.45120.2919726.49995
GSA-GA [60]5.451156230.2919654826.531328
AGQPSO [61]5.4511560.2919626.531328
FPA [62]5.451160.29196526.49948
KH [32]5.4512780.29195726.5314
BOA [32]5.4484260.29246326.512782
HFBOA [32]5.4511570.29196626.499503
Rocha and Fernandes [63]5.451390.2919926.53227
EM [64]5.4523830.2919026.53380
HEM [64]5.4510830.2919926.53227
KOA [31]5.45120.292026.499497
FLA [31]5.48010.290526.563266
COA [31]5.45110.292026.501823
GTO [31]5.45120.292026.499497
RUN [31]5.45120.292026.499497
GWO [31]5.45110.292026.499770
SMA [31]5.45120.292026.499538
DO [31]5.45120.292026.499497
POA [31]5.45120.292026.499497
FA [65]N/AN/A26.5200
AOS [65]N/AN/A26.5313783
SCWOA5.55370.250225.5346
Table 9. Comparison results of the speed reducer design.
Table 9. Comparison results of the speed reducer design.
AlgorithmOptimal Values for ElementsOptimal Cost
b m z l 1 l 2 d 1 d 2
APSO [66]3.501310.7188.127818.042123.352455.287083187.63049
GA [67]3.5102530.7178.357.83.3622015.2877233067.561
SES [68]3.5061630.700831177.4601817.9621433.36295.3089493025.005127
PSO [69]3.50010.7177.51777.78323.35085.28673145.922
GSA [70]3.60.7178.37.83.3696585.2892243051.12
hHHO-SCA [71]3.5061190.7177.37.991413.4525695.2867493029.873076
MDA [72]3.50.7177.37.6703963.5424215.2458143019.583365
SCA [29]3.5087550.7177.37.83.461025.2892133030.563
HS [73]3.5201240.7178.377.83.366975.2887193029.002
HIS [74]3.5201240.7178.377.83.366975.2887193029.002
GSA [75]3.60.7178.37.8024423.3696585.2892243051.1209
EA [68]3.5061630.700831177.460187.9621433.36295.30903025.005
CMA-ES [76]2.60.8177.37.82.958962.48
L-SHADE [76]3.43670.717917.25448.15417.98083.29995.34987361.25
EHO [76]3.48890.778223.21937.8498.10213.56035.245973504.7
GOA [76]3.51260.703317.22467.91317.96273.65675.27843169.32
TEO [76]3.42610.717.62227.74087.97753.41455.27583595.59
TLBO [77]3.5087550.7177.37.83.461025.28921133030.563
BWO [34]3.580.7218.287.737.733.435.283417.1535
DE [78]3.5201240.7178.377.83.366975.2887193029.002
INFO [79]3.5143010.7177.3073017.80783.4664565.297523036.931
CPA [79]3.5256880.7178.3789577.80783.3722585.297023035.367
BOA [80]3.52390.700317.00888.09628.0043.40485.32863061.6
HIWOA [80]3.56050.7177.38.11693.46315.29133059.6
PSCA [81]3.545620.717.00238.38.33.378465.279463038.885
HOA [82]3.560080.7177.349127.83.493255.284153058.577
ES [83]3.5061630.700831177.4601817.9621433.36295.3093025.005
CKGSA [33]3.59260.713417.12217.74648.10303.44645.30133163.2207
SCWOA3.502280.7177.887937.823633.363475.295373017.596
Table 11. Comparison results of the tension/compression spring design.
Table 11. Comparison results of the tension/compression spring design.
AlgorithmOptimal Value for ElementsOptimal Cost
d D N
SFOA [87]0.0518000.35900011.2790000.012700
APSO [66]0.0525880.37834310.1388620.012700
GSA [88]0.0502760.32368013.5254100.0127022
CC [89]0.0500000.31590014.2500000.0128334
GA [90]0.0514800.35166111.6322010.01270478
MVO [4]0.052510.3760210.335130.012790
Arora [91]0.0533960.3991809.1854000.012730
SA [76]0.05700.49536.22250.01321
CMA-ES [76]0.09731.148813.545300.85621
GOA [76]0.05160.336013.5000.01389
HHO [76]0.05700.49916.21800.01281
TLBO [77]0.0507800.33477912.722690.012709667
CSO [34]0.06710.84822.40740.01682958
SCSO [34]0.05000.317514.02000.012717020
SCA [92]0.0507800.33477912.722690.012709667
hHHO-SCA [93]0.0546930.4333787.8914020.0128229
RFO [46]0.051890.3614211.584360.01321
LSA [94]0.050275980.323679513.525410.01272045
CA [95]0.050.31739514.0317950.012721
SI [96]0.0504170.32153213.979910.01306
ESOA [47]0.050.31716814.07150.01274345
MPEDE [47]0.059560620.57674044.717172820.01374
HGS [48]0.050.317414.03060.0127
FLA [48]0.04990.31514.30450.0127
COA [31]0.050.3113714.8622610.0131260069
RUN [31]0.0531070.3918079.4936880.0127011107
I-GWO [51]0.0507730.33471312.778240.012803
FA [97]0.0524590.35683911.1302810.012894
CRCC [97]0.050.315914.250.012833
PF [97]0.0533960.399189.18540.01273
PSCA [81]0.050.31740714.11660.012789
CASFO [36]0.14131.362710.98893.6387
SFO [36]0.14061.360810.924813.6477
CLPSO [35]0.05281620.383657349.92345720.01276085
VPPSO [98]0.05250.375610.26590.0127
KABC [53]0.05560.45757.1480.013017
SCWOA0.0546270.32524311.6546620.0126653
Table 10. Comparison results of the piston lever design.
Table 10. Comparison results of the piston lever design.
AlgorithmOptimal Value for ElementsOptimal Cost
H B X D
PSO [84]133.32.44117.144.75122
DE [84]129.42.43119.84.75159
GA [84]2503.9660.035.91161
HPSO [84]135.52.48116.624.75162
CS [54]0.0502.0431204.0858.427
SNS [56]0.0502.0421204.0838.412698349
SCSO [34]0.0502.040119.994.0838.40901438899551
CSO [34]0.0502.39985.684.080413.7094866557362
GWO [34]0.0602.03901204.0838.40908765909047
WAO [34]0.0992.057118.44.1129.05943208079399
SSA [34]0.0502.073116.324.1458.80243253777633
GSA [34]497.4950060.0412.215168.094363238712
BWO [34]12.36412.801172.023.07495.9980864948937
AOS [85]0.052.042112482119.9517274.0840044928.419142742
GTO [86]0.052.052859119.63924.0897138.41270
MFO [86]0.052.0415141204.0833658.412698
WOA [86]0.0518742.045915119.95794.0858498.449975
DMOA [65]0.050.1250735781204.1160421664.695
AOA [65]0.050.1250735781204.1160421667.738
CPSOGSA [65]5005001202.5781470824.6949
BBO [65]129.42.43119.84.754.6956
ISA [65]N/AN/AN/AN/A8.4
CGO [65]N/AN/AN/AN/A8.41281381
MGA [65]N/AN/AN/AN/A8.41340665
SCWOA0.050.138542120 4.1160254.6827
Table 12. Comparison results of the welded beam design.
Table 12. Comparison results of the welded beam design.
AlgorithmOptimal Value for ElementsOptimal Cost
hltb
BBO [39]0.18548604.31290008.43990300.23590201.9180550
PSO [39]0.2192923.4304168.4335590.2362041.852720
GSA [88]0.1821293.85697910.0000.2023761.87995
RO [99]0.2036873.5284679.0042330.2072411.735344
CSCA [100]0.2031373.5429989.0334980.2061791.733461
GA [101]0.24896.17308.17890.25332.4300
DAVID [102]0.24346.25528.29150.24442.3841
SIMPLEX [102]0.27925.62567.75120.27962.5307
APPROX [102]0.24446.21898.29150.24442.3815
HS [103]0.24426.22318.29150.24002.3807
SCA [29]0.2046953.5362919.0042900.2100251.759173
ES [104]0.1997423.6120609.0375000.206821.73730
CS [40]0.20153.5629.04140.20571.73121
Coello [105]0.2088003.4205008.9975000.21001.74831
CMA-ES [76]0.56174.37864.67720.92862.28384
L-SHADE [76]0.48193.21405.47630.57533.43372
EHO [76]1.01494.76164.81300.87223.36770
GOA [76]0.40692.14116.38340.41232.43534
HHO [76]0.19613.74499.00610.20711.75163
TLBO [77]0.2046953.5362919.0042900.2100251.759173
CSO [34]0.20443.31258.99410.21081.7321
Random [102]0.45754.73135.08530.66004.11856
Ragsdell [102]0.24556.19608.27300.24552.38594
Siddall [106]0.24446.21898.29150.24442.38154
DDSCA [107]0.205163.47599.07970.205521.7305
hHHO-SCA [71]0.1900863.6964969.3863430.2041571.779032
WWO [108]0.222143.678128.849650.234891.96842
NMDE [109]0.24500546.2845118.199112.4500542.377135
SaDE [110]0.3063.026.330.4192.48
PSOGSA [110]0.243.098.360.241.99
HGSA [110]0.2113.408.900.2121.75
ACVO [110]0.2053.489.040.2061.73
HPSO [95]0.205733.4704899.0366240.205731.728024
CDE [95]0.2031373.5429989.0334980.2061791.733462
SBM [96]0.24076.48518.23990.24972.4426
BFOA [96]0.20573.47119.03670.20572.3868
EA [96]0.24436.22018.29400.24442.3816
T-Cell [96]0.24446.12868.29150.24442.3811
FSA [96]0.24446.12588.29390.24442.3811
IPSO [96]0.24446.21758.29150.24442.3810
DSS-DE [96]0.24446.12758.29150.24442.3810
HSA-GA [96]0.22311.581512.84680.24452.2500
FLA [48]0.19833.66649.07050.20571.75
HGS [111]0.265.10258.039610.262.302076
LFD [49]0.18573.90709.15520.20511.7700
COA [31]0.1740417.0870148.9971380.2076482.1324620263
LA [112]0.22133.28188.75790.22161.8446
FA [6]0.2017626.8048959.6270420.2052492.2837
MDWA [6]0.2034947.2441959.0589980.2069442.2474
EBSCA [113]0.177584.75179.04060.205731.8435
SFO [36]0.20383.66309.05060.20641.73231
EEGWO [22]0.24440.24448.29280.24442.3813
RCGA [22]N/AN/AN/AN/A2.381133
QHGSO [114]0.21526.88898.8150.2162.2864
MCSS [114]0.24346.25528.29150.24442.3841
BA [115]20.13.17430321.818138
CLPSO [35]0.200436849513.617812171359.126326342450.2053925641.74936011824
SCWOA0.2056573.2511779.0391050.2054681.69682
Table 13. Comparison results of the gear train design.
Table 13. Comparison results of the gear train design.
AlgorithmOptimal Value for ElementsOptimal Cost
n A n B n C n D
GA [39]491916432.70 × 10 12
PSO [39]341320532.31 × 10 11
ICA [39]431619492.70 × 10 12
BBO [39]532615512.31 × 10 11
NNA [39]491619432.70 × 10 12
GWO [39]491916432.70 × 10 12
WSA [39]431619492.70 × 10 12
CS [54]431619492.70 × 10 12
ABC [116]491619432.70 × 10 12
MSFWA [117]491916432.70 × 10 12
MBA [118]431619492.70 × 10 12
ISA [55]431916492.70 × 10 12
APSO [66]431619492.70 × 10 12
IAPSO [66]431619492.70 × 10 12
MVO [4]431619492.70 × 10 12
MFO [3]431916492.70 × 10 12
ALO [119]491916432.70 × 10 12
PSOSCALF [120]491916432.70 × 10 12
SNS [56]431916492.70085714 × 10 12
Sandgren [121]452218605.712 × 10 6
Kannan and Kramer [122]331513412.146 × 10 8
Deb and Goya [123]491619432.701 × 10 12
Gandomi er al. [40]431619492.701 × 10 12
CSA [58]431619492.701 × 10 12
ALM [122]331513412.1469 × 10 8
MFPA [59]602817553.69 × 10 5
FDA [124]491916432.7008571 × 10 12
CAPSO [125]491916432.701 × 10 12
GeneAS [125]331417501.362 × 10 9
BOA [125]431619492.701 × 10 12
Simulated annealing [125]521530602.36 × 10 9
Sequential linearization approach [125]421619502.3 × 10 7
Mixed-variable evolutionary programming [125]521530602.36 × 10 9
Mixed integer discrete continuous programming [125]472914594.5 × 10 6
Mixed integer discrete continuous optimization [125]331513412.146 × 10 8
Nonlinear integer and discrete programming [125]452218605.712 × 10 6
BO [126]431916492.700857 × 10 12
KOA [31]442016502.700857 × 10 12
FLA [31]441620492.700857 × 10 12
COA [31]231412489.92158 × 10 10
RUN [31]441719492.700857 × 10 12
SMA [31]523013532.307816 × 10 11
DO [31]491619442.700857 × 10 12
POA [31]441719492.70085 × 10 12
PDO [65]481722542.70 × 10 12
DMOA [65]491916432.70 × 10 12
AOA [65]491919542.70 × 10 12
CPSOGSA [65]551616432.31 × 10 11
SSA [65]491919492.70 × 10 12
SCA [65]491934492.700857 × 10 12
IEHO [127]191643492.70085 × 10 12
MEWOA [37]491619432.7099 × 10 12
ARO [128]491916432.7009 × 10 12
BCA [129]431619492.7009 × 10 12
BWO [130]501817467.5421 × 10 17
GMO [53]431916492.700857 × 10 12
SCWOA513317532.6574 × 10 18
Table 14. Comparison results of the car side impact design.
Table 14. Comparison results of the car side impact design.
AlgorithmOptimal Value for ElementsOptimal Cost
x 1 x 2 x 3 x 4 x 5 x 6
x 7 x 8 x 9 x 10 x 11
PSO [131]0.51.11670.51.302080.51.5
0.50.3450.192−19.54935−0.00431 22.84474
GA [131]0.51.280170.500011.033020.500010.5
0.50.349940.19210.31190.00167 22.85653
CS [54]0.51.116430.51.302080.51.5
0.50.3450.192−19.54935−0.00431 22.84294
BA [55]0.51.11670.51.302080.51.5
0.50.3450.192−19.54935−0.00431 22.84474
SNS [56]0.51.1159332080.51.3029189910.51.5
0.50.3450.192−19.63886621.49192 × 10−6 22.84297965
DE [38]0.51.11670.51.302080.51.5
0.50.3450.192−19.54935−0.00431 22.84474
FA [38]0.51.360.51.2020.51.12
0.50.3450.1928.87307−18.99808 22.84298
TLBO [38]0.51.11350.51.3070.51.5
0.50.3450.192−20.06550.1139 22.8436
TLCS [38]0.51.11630.51.30230.51.5
0.50.3450.192−19.57210.0157 22.8430
CPA [38]0.51.11575860.51.303211960.51.5
0.50.3450.27247957−19.670097270.00000206 22.84298982
ABC [132]0.51.06242050.51482111.44915030.51.5
0.50.3450.192−29.347550.7410998 23.17588963
MFO [132]0.51.1165390.51.3019080.51.5
0.50.3450.345−19.5304−0.000006 22.84297087
ALO [132]0.51.115960.51.302860.51.5
0.50.3450.192−19.63300.023649 22.84298071
ER-WCA [132]0.51.1186880.51.2984070.51.5
0.50.3450.192−19.1461−0.01527 22.84326462
GWO [132]0.51.1114840.51.3122030.5012141.5
0.50.3450.192−20.6057−25531 22.85279276
WCA [132]0.51.11559320.51.30349190.50001461.5
0.50.3450.192−19.69967−0.023854 22.84303648
MBA [132]0.51.11727010.51.300084380.51.499987
0.50.3450.345−19.40045−0.379205 22.84359640
SSA [132]0.51.10931950.51.31480.51.499999
0.50.3450.192−20.8217930.4412962 22.84651410
WOA [132]0.51.1080010.5344771.305770.51.473844
0.50.3450.192−19.699243.4816923 23.04216220
CSS [132]0.51.1843890.51.2300360.51.5
0.50.2807920.342425−7.3947330.042206 23.00733588
FACSS [133]0.51.1272880.51.2855460.51.499999
0.50.3449910.202079−17.6077498.297 × 10−5 22.84907401
GOA [134]0.51.11670.51.302080.51.5
0.50.3450.192−19.54935−0.00431 22.84474
HGOANM [134]0.51.116430.51.302080.51.5
0.50.3450.192−19.54935−0.00431 22.84294
EOBL-GOA [135]0.51.116430.51.302080.51.5
0.50.3450.192−19.54935−0.00431 22.84294
CLPSO [35]0.50611.173790.50131.247060.50371.4956
0.50.3450.345−9.59853.3627 23.06244
ACO [35]0.51.120040.51.296270.51.5
0.50.3450.192−18.905−0.0008 22.84371
KH [35]0.51.147470.51.261180.51.5
0.50.3450.345−13.998−0.8984 22.88596
HHO [35]0.51.156270.51.271330.51.4777
0.50.3450.192−14.592−2.4898 22.98537
BOA [35]0.82461.032240.540071.356390.63771.26889
0.58540.1920.345−5.73330.4352 25.06573
HGSO [35]0.51.223750.51.271110.51.31085
0.50.3450.345−4.32352.93676 23.43457
LIACO [35]0.51.115930.51.302930.51.5
0.50.1920.345−19.64−0.000003 22.84299
SMO [35]0.51.116340.51.302240.51.5
0.50.3450.345−19.5660.000001 22.84298
SCWOA0.51.116430.51.301780.51.5
0.50.3450.192−19.48754−0.00453 22.84278
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Xu, Y.; Zhang, J. A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization. Biomimetics 2024, 9, 602. https://doi.org/10.3390/biomimetics9100602

AMA Style

Xu Y, Zhang J. A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization. Biomimetics. 2024; 9(10):602. https://doi.org/10.3390/biomimetics9100602

Chicago/Turabian Style

Xu, Yubao, and Jinzhong Zhang. 2024. "A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization" Biomimetics 9, no. 10: 602. https://doi.org/10.3390/biomimetics9100602

APA Style

Xu, Y., & Zhang, J. (2024). A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization. Biomimetics, 9(10), 602. https://doi.org/10.3390/biomimetics9100602

Article Metrics

Back to TopTop