Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience
Abstract
:1. Introduction
- The fundamental inspiration of the GOA is to simulate the rules and behavior of players in the game of golf.
- Different phases of the GOA implementation in two phases of exploration and exploitation have been mathematically modeled.
- The efficiency of the GOA in solving optimization problems has been evaluated on fifty-two standard objective functions.
- The quality of the results obtained from GOA has been compared with ten well-known metaheuristic algorithms.
- The ability of the GOA to address real-world applications is tested on four engineering design problems and the optimization of operation of energy carriers’ problems with respect to energy grid resilience.
2. Literature Review
2.1. Metaheuristic Algorithms
2.2. Energy Commitment
3. Golf Optimization Algorithm
3.1. Inspiration of GOA
3.2. Initialization of GOA
3.3. Mathematical Model of GOA
3.3.1. Phase 1: Exploration
3.3.2. Phase 2: Exploitation
3.4. Repetition Process, Pseudocode, and Flowchart of GOA
Algorithm 1. Pseudocode of the GOA. | |||
Start GOA. | |||
1. | Input the optimization problem information. | ||
2. | Set T (number of iterations) and N (number of GOA members). | ||
3. | For t = 1:T | ||
4. | Update best member of GOA as hole. | ||
5. | For i = 1:N | ||
7. | Phase 1: | ||
8. | Calculate new status of ith GOA member based on exploration phase of GOA using Equation (4). | ||
9. | Update ith GOA member using Equation (5). | ||
10. | Phase2: Exploitation | ||
11. | Calculate new status of ith GOA member based on exploitation phase of GOA using Equation (6). | ||
12. | Update ith GOA member using Equation (7). | ||
13. | end | ||
14. | Save best candidate solution so far. | ||
15. | end | ||
16. | Output best obtained solution. | ||
End GOA. |
3.5. Computational Complexity
4. Simulation Studies and Results
4.1. Evaluation of Unimodal Functions
4.2. Evaluation of High-Dimensional Multimodal Functions
4.3. Evaluation of Fixed-Dimensional Multimodal Functions
4.4. Evaluation of the CEC 2017 Test Suite
4.5. GOA for Real-world Applications
- Mathematical model of TCS:ConsiderMinimizeSubject toWith
- Mathematical model of WB:Consider .Minimize .Subject toWith
- Mathematical model of SR:Consider .Minimize .Subject toWith
- Mathematical model of PV:Consider .MinimizeSubject toWith
4.6. Statistical Analysis
4.7. Discussion
5. Energy Commitment Problem and Resilience
5.1. Case Study
5.2. Operation of the Energy Network in Normal Mode
5.3. Operation of the Energy Network in Abnormal Mode Considering Resilience
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kvasov, D.E.; Mukhametzhanov, M.S. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Appl. Math. Comput. 2018, 318, 245–259. [Google Scholar] [CrossRef]
- Tanyildizi, E.; Demir, G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm. Adv. Electr. Comput. Eng. 2017, 17, 71–78. [Google Scholar] [CrossRef]
- Iba, K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994, 9, 685–692. [Google Scholar] [CrossRef]
- Praveena, H.D.; Srilakshmi, V.; Rajini, S.; Kolluri, R.; Manohar, M. Balancing module in evolutionary optimization and Deep Reinforcement Learning for multi-path selection in Software Defined Networks. Phys. Commun. 2023, 56, 101956. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Schmid, F.; Behrendt, F. Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost. Energy 2023, 262, 125421. [Google Scholar] [CrossRef]
- Jasinski, M.; Najafi, A.; Homaee, O.; Kermani, M.; Tsaousoglou, G.; Leonowicz, Z.; Novak, T. Operation and Planning of Energy Hubs Under Uncertainty—A Review of Mathematical Optimization Approaches. IEEE Access 2023, 11, 7208–7228. [Google Scholar] [CrossRef]
- Premkumar, M.; Sowmya, R.; Jangir, P.; Nisar, K.S.; Aldhaifallah, M. A New Metaheuristic Optimization Algorithms for Brushless Direct Current Wheel Motor Design Problem. CMC-Comput. Mater. Contin. 2021, 67, 2227–2242. [Google Scholar] [CrossRef]
- Ali, E.; Abd Elazim, S.M.; Balobaid, A. Implementation of coyote optimization algorithm for solving unit commitment problem in power systems. Energy 2023, 263, 125697. [Google Scholar] [CrossRef]
- Aguila-Leon, J.; Vargas-Salgado, C.; Chiñas-Palacios, C.; Díaz-Bello, D. Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms. Expert Syst. Appl. 2023, 211, 118700. [Google Scholar] [CrossRef]
- Li, M.-W.; Xu, D.-Y.; Geng, J.; Hong, W.-C. A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA. Appl. Soft Comput. 2022, 114, 108084. [Google Scholar] [CrossRef]
- Rezk, H.; Fathy, A.; Aly, M.; Ibrahim, M.N.F. Energy Management Control Strategy for Renewable Energy System Based on Spotted Hyena Optimizer. Comput. Mater. Contin. 2021, 67, 2271–2281. [Google Scholar] [CrossRef]
- Nutakki, M.; Mandava, S. Review on optimization techniques and role of Artificial Intelligence in home energy management systems. Eng. Appl. Artif. Intell. 2023, 119, 105721. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, C.; Zhou, J.; Hu, D.; Yi, F.; Fan, Z.; Zeng, T. Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition. Energy 2023, 263, 126112. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.; Kumar, V. Football Game Based Optimization: An Application to Solve Energy Commitment Problem. Int. J. Intell. Eng. Syst. 2020, 13, 514–523. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Wang, J.; Baldick, R. Research on Resilience of Power Systems Under Natural Disasters—A Review. IEEE Trans. Power Syst. 2015, 31, 1604–1613. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Malik, O.P. Energy Commitment: A Planning of Energy Carrier Based on Energy Consumption. Electr. Eng. Electromech. 2019, 69–72. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Alatas, B. Sports inspired computational intelligence algorithms for global optimization. Artif. Intell. Rev. 2019, 52, 1579–1627. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Perth, WA, Australia, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Yang, X.-S. Firefly algorithm, Levy flights and global optimization. In Research and Development in Intelligent Systems XXVI; Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–218. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P.; Malik, O.P. Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Hubálovský, Š.; Trojovský, P. Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm. Sensors 2021, 21, 5214. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022, 188, 116026. [Google Scholar] [CrossRef]
- Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022, 243, 108457. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Serval Optimization Algorithm: A New Bio-Inspired Approach for Solving Optimization Problems. Biomimetics 2022, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Fogel, L.J.; Owens, A.J.; Walsh, M.J. Artificial Intelligence through Simulated Evolution; Wiley-IEEE Press: Hoboken, NJ, USA, 1966. [Google Scholar]
- Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 1. [Google Scholar]
- Hofmeyr, S.A.; Forrest, S. Architecture for an Artificial Immune System. Evol. Comput. 2000, 8, 443–473. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dehghani, A.; Seifi, A. Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke’s law. In Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 22 December 2017; IEEE: Tehran, Iran, 2017; pp. 0210–0214. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L. A Spring Search Algorithm Applied to Engineering Optimization Problems. Appl. Sci. 2020, 10, 6173. [Google Scholar] [CrossRef]
- Dehghani, M.; Samet, H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020, 2, 1720. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Heidari, A.A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. RIME: A physics-based optimization. Neurocomputing 2023, 532, 183–214. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar]
- Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A physical law-based algorithm for numerical optimization. Knowl.-Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Azeem, S.A.A.; Jameel, M.; Abouhawwash, M. Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion. Knowl.-Based Syst. 2023, 268, 110454. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Futur. Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Matoušová, I.; Trojovský, P.; Dehghani, M.; Trojovská, E.; Kostra, J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. 2023, 13, 10312. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Mardaneh, M.; Malik, O. FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020, 8, 57–64. [Google Scholar]
- Dehghani, M.; Trojovský, P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors 2021, 21, 4567. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Trojovská, E.; Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022, 12, 9924. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M.; Trojovská, E.; Milkova, E. The Language Education Optimization: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems: Language Education Optimization. Comput. Model. Eng. Sci. 2022, 136, 1527–1573. [Google Scholar]
- Dehghani, M.; Trojovská, E.; Zuščák, T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022, 12, 17387. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022, 12, 14861. [Google Scholar] [CrossRef]
- Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022, 34, 409–455. [Google Scholar] [CrossRef]
- Ayyarao, T.L.; Ramakrishna, N.; Elavarasan, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022, 10, 25073–25105. [Google Scholar] [CrossRef]
- Givi, H.; Hubalovska, M. Skill Optimization Algorithm: A New Human-Based Metaheuristic Technique. Comput. Mater. Contin. 2023, 74, 179–202. [Google Scholar] [CrossRef]
- Shi, Y. Brain storm optimization algorithm. In Proceedings of the International Conference in Swarm Intelligence, Chongqing, China, 12–15 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–309. [Google Scholar]
- Moosavi, S.H.S.; Bardsiri, V.K. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 2019, 86, 165–181. [Google Scholar] [CrossRef]
- Moghdani, R.; Salimifard, K. Volleyball Premier League Algorithm. Appl. Soft Comput. 2018, 64, 161–185. [Google Scholar] [CrossRef]
- Zeidabadi, F.A.; Dehghani, M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022, 15, 273–281. [Google Scholar]
- Doumari, S.A.; Givi, H.; Dehghani, M.; Malik, O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021, 14, 545–554. [Google Scholar] [CrossRef]
- Givi, H.; Hubálovská, M. Billiards Optimization Algorithm: A New Game-Based Metaheuristic Approach. Comput. Mater. Contin. 2023, 74, 5283–5300. [Google Scholar] [CrossRef]
- Kashan, A.H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 2014, 16, 171–200. [Google Scholar] [CrossRef]
- Kaveh, A.; Zolghadr, A. A novel meta-heuristic algorithm: Tug of war optimization. Iran Univ. Sci. Technol. 2016, 6, 469–492. [Google Scholar]
- Ma, B.; Hu, Y.; Lu, P.; Liu, Y. Running city game optimizer: A game-based metaheuristic optimization algorithm for global optimization. J. Comput. Des. Eng. 2023, 10, 65–107. [Google Scholar] [CrossRef]
- Osaba, E.; Yang, X.-S. Soccer-Inspired Metaheuristics: Systematic Review of Recent Research and Applications. Appl. Optim. Swarm Intell. 2021, 81–102. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Ashrafi, S.; Dariane, A. A novel and effective algorithm for numerical optimization: Melody Search (MS). In Proceedings of the 11th International Conference on Hybrid Intelligent Systems, Melacca, Malaysia, 5–8 December 2011; pp. 109–114. [Google Scholar] [CrossRef]
- Mora-Gutiérrez, R.A.; Ramírez-Rodríguez, J.; Rincón-García, E.A. An optimization algorithm inspired by musical composition. Artif. Intell. Rev. 2014, 41, 301–315. [Google Scholar] [CrossRef]
- Lam, A.Y.; Li, V.O. Chemical-Reaction-Inspired Metaheuristic for Optimization. IEEE Trans. Evol. Comput. 2009, 14, 381–399. [Google Scholar] [CrossRef]
- Alatas, B. ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization. Expert Syst. Appl. 2011, 38, 13170–13180. [Google Scholar] [CrossRef]
- Akyol, S.; Alatas, B. Plant intelligence based metaheuristic optimization algorithms. Artif. Intell. Rev. 2017, 47, 417–462. [Google Scholar] [CrossRef]
- Yang, X.-S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional Computing and Natural Computation, Orléan, France, 3–7 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249. [Google Scholar]
- Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006, 1, 355–366. [Google Scholar] [CrossRef]
- Premaratne, U.; Samarabandu, J.; Sidhu, T. A new biologically inspired optimization algorithm. In Proceedings of the 2009 International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 28–31 December 2009; IEEE: New York, NY, USA, 2009; pp. 279–284. [Google Scholar]
- Qi, X.; Zhu, Y.; Chen, H.; Zhang, D.; Niu, B. An idea based on plant root growth for numerical optimization. In Proceedings of the Intelligent Computing Theories and Technology: 9th International Conference, ICIC 2013, Nanning, China, 28–31 July 2013; Proceedings 9. Springer: Berlin/Heidelberg, Germany, 2013; pp. 571–578. [Google Scholar]
- Labbi, Y.; Ben Attous, D.; Gabbar, H.A.; Mahdad, B.; Zidan, A. A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 2016, 79, 298–311. [Google Scholar] [CrossRef]
- Salem, S.A. In BOA: A novel optimization algorithm. In Proceedings of the 2012 International Conference on Engineering and Technology (ICET), Cairo, Egypt, 10–11 October 2012; IEEE: New York, NY, USA, 2012; pp. 1–5. [Google Scholar]
- Trojovský, P.; Dehghani, M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 149. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems. Sensors 2022, 22, 1795. [Google Scholar] [CrossRef]
- Dehghani, M.; Hubálovský, Š.; Trojovský, P. A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems. PeerJ Comput. Sci. 2022, 8, e910. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Wang, G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2018, 10, 151–164. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Tu, J.; Chen, H.; Wang, M.; Gandomi, A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021, 18, 674–710. [Google Scholar]
- Ahmadianfar, I.; Heidari, A.A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An Efficient Optimization Algorithm based on Weighted Mean of Vectors. Expert Syst. Appl. 2022, 195, 116516. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Malik, O.P.; Guerrero, J.M.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Matas, J.; Abusorrah, A. Energy Commitment for a Power System Supplied by Multiple Energy Carriers System using Following Optimization Algorithm. Appl. Sci. 2020, 10, 5862. [Google Scholar] [CrossRef]
- Adger, W.N. Social and ecological resilience: Are they related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Perrings, C. Resilience and sustainable development. Environ. Dev. Econ. 2006, 11, 417–427. [Google Scholar] [CrossRef]
- Qing, K.; Huang, Q.; Du, Y.; Jiang, L.; Bamisile, O.; Hu, W. Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response. Energy 2023, 262, 125434. [Google Scholar] [CrossRef]
- Padhy, N.P. Unit Commitment—A Bibliographical Survey. IEEE Trans. Power Syst. 2004, 19, 1196–1205. [Google Scholar] [CrossRef]
- Premkumar, M.; Sowmya, R.; Ramakrishnan, C.; Jangir, P.; Houssein, E.H.; Deb, S.; Kumar, N.M. An efficient and reliable scheduling algorithm for unit commitment scheme in microgrid systems using enhanced mixed integer particle swarm optimizer considering uncertainties. Energy Rep. 2023, 9, 1029–1053. [Google Scholar] [CrossRef]
- Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.; Mongibello, L.; Naso, V. Multi-objective design optimization of distributed energy systems through cost and exergy assessments. Appl. Energy 2017, 204, 1299–1316. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, J.; Sun, Y.; Wei, C.; Wang, J.; Liao, S.; Ke, D.; Li, X.; Yang, J.; Peng, X. Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources. Appl. Energy 2018, 211, 237–248. [Google Scholar] [CrossRef]
- Samsatli, S.; Samsatli, N.J. A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies. Appl. Energy 2018, 220, 893–920. [Google Scholar] [CrossRef]
- Fauvel, C.; Claveau, F.; Chevrel, P.; Fiani, P. A flexible design methodology to solve energy management problems. Int. J. Electr. Power Energy Syst. 2018, 97, 220–232. [Google Scholar] [CrossRef]
- Gargari, M.Z.; Ghaffarpour, R. Reliability evaluation of multi-carrier energy system with different level of demands under various weather situation. Energy 2020, 196, 117091. [Google Scholar] [CrossRef]
- Pazouki, S.; Asrari, A. Technical, Financial, and Environmental Effects of Distributed Energy Resources on Multi Carrier Energy Networks. In Proceedings of the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016. [Google Scholar]
- Gandomi, A.H.; Yang, X.-S. Benchmark Problems in Structural Optimization. In Computational Optimization, Methods and Algo-rithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 259–281. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Coello, C.A.C. Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms. In Proceedings of the Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, 25–30 October 2021; Springer: Berlin/Heidelberg, Germany, 2005; pp. 652–662. [Google Scholar] [CrossRef]
- Kannan, B.; Kramer, S.N. An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design. J. Mech. Des. 1994, 116, 405–411. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 196–202. [Google Scholar]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Ramirez-Mendoza, R.A.; Matas, J.; Vasquez, J.C.; Parra-Arroyo, L. A New “Doctor and Patient” Optimization Algorithm: An Application to Energy Commitment Problem. Appl. Sci. 2020, 10, 5791. [Google Scholar] [CrossRef]
Algorithm | Parameter | Value |
---|---|---|
GA | ||
Type | Real coded. | |
Selection | Roulette wheel (Proportionate). | |
Crossover | Whole arithmetic (, ). | |
Mutation | Gaussian (). | |
PSO | ||
Topology | Fully connected. | |
Cognitive and social constant | ||
Inertia weight | Linear reduction from 0.9 to 0.1 | |
Velocity limit | 10% of the dimension range. | |
GSA | ||
, | 20, 100, 2, 1 | |
TLBO | ||
: the teaching factor | . | |
random number rand | rand is a random number from the interval | |
GWO | ||
Convergence parameter (a) | : Linear reduction from 2 to 0. | |
MVO | ||
wormhole existence probability () | and . | |
Exploitation accuracy over the iterations () | . | |
WOA | ||
Convergence parameter | : Linear reduction from 2 to 0. | |
Parameters and | is a random vector in | |
is a random number in | ||
TSA | ||
and | 1, 4 | |
random numbers lie in the range | ||
MPA | ||
Constant number | , | |
Random vector | R is a vector of uniform random numbers from | |
Fish Aggregating Devices () | , | |
Binary vector | or 1. | |
RSA | ||
Sensitive parameter | ||
Sensitive parameter | ||
Evolutionary Sense () | are randomly decreasing values between 2 and −2. |
GA | PSO | GSA | TLBO | GWO | MVO | WOA | TSA | MPA | RSA | GOA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mean | 34.5437 | 0.011351 | 9.92E-17 | 4.15E-75 | 8.45E-59 | 0.141392 | 6.1E-150 | 1.26E-47 | 1.88E-49 | 6.46E-84 | 0 |
best | 21.8428 | 2.18E-05 | 5.36E-17 | 1.46E-76 | 5.78E-61 | 0.085887 | 1.1E-172 | 1.9E-50 | 2.3E-52 | 9.43E-93 | 0 | |
worst | 48.27454 | 0.097758 | 2.23E-16 | 2.18E-74 | 6.53E-58 | 0.229047 | 1.2E-148 | 9.02E-47 | 1.75E-48 | 1.19E-82 | 0 | |
std | 8.103596 | 0.021904 | 4.27E-17 | 5.75E-75 | 1.47E-58 | 0.035688 | 2.7E-149 | 2.43E-47 | 4.01E-49 | 2.64E-83 | 0 | |
median | 33.39374 | 0.004052 | 8.44E-17 | 1.9E-75 | 4.14E-59 | 0.134685 | 2.2E-160 | 7.09E-49 | 1.92E-50 | 3.69E-88 | 0 | |
rank | 11 | 9 | 8 | 4 | 5 | 10 | 2 | 7 | 6 | 3 | 1 | |
F2 | mean | 2.893674 | 1.469507 | 5.21E-08 | 3.96E-39 | 9.56E-35 | 0.256823 | 4.8E-104 | 1.05E-28 | 5.4E-28 | 6.78E-46 | 0 |
best | 1.771522 | 0.129615 | 3.14E-08 | 8.03E-40 | 1.9E-36 | 0.162297 | 3.4E-117 | 1.05E-30 | 1.58E-29 | 4.79E-49 | 0 | |
worst | 4.187515 | 10.91586 | 7.28E-08 | 1.2E-38 | 2.83E-34 | 0.393994 | 9.4E-103 | 6.38E-28 | 2.66E-27 | 5.43E-45 | 0 | |
std | 0.688131 | 2.427296 | 1.18E-08 | 3.01E-39 | 8.16E-35 | 0.061766 | 2.1E-103 | 1.6E-28 | 7.3E-28 | 1.51E-45 | 0 | |
median | 2.928265 | 0.819186 | 4.9E-08 | 2.99E-39 | 7.25E-35 | 0.25831 | 8.9E-108 | 3.99E-29 | 2.14E-28 | 3.56E-47 | 0 | |
rank | 11 | 10 | 8 | 4 | 5 | 9 | 2 | 6 | 7 | 3 | 1 | |
F3 | mean | 2151.287 | 874.6891 | 474.5464 | 1.19E-24 | 6.36E-15 | 13.69546 | 19397.34 | 1.96E-12 | 2.7E-12 | 4.76E-58 | 0 |
best | 1306.053 | 38.39523 | 191.6011 | 8.36E-29 | 7.31E-19 | 6.427129 | 1155.268 | 2.74E-17 | 1.58E-21 | 1.19E-69 | 0 | |
worst | 3690.226 | 5365.03 | 1028.324 | 1.56E-23 | 5.42E-14 | 23.71885 | 46521.37 | 2.32E-11 | 2.68E-11 | 5.35E-57 | 0 | |
std | 651.9863 | 1532.811 | 210.8921 | 3.52E-24 | 1.38E-14 | 5.422219 | 11275.71 | 5.22E-12 | 7.22E-12 | 1.3E-57 | 0 | |
median | 2013.684 | 279.0787 | 413.2552 | 3.35E-26 | 1.58E-16 | 12.17659 | 22075.51 | 9.99E-14 | 1.21E-13 | 1.49E-61 | 0 | |
rank | 10 | 9 | 8 | 3 | 4 | 7 | 11 | 5 | 6 | 2 | 1 | |
F4 | mean | 3.182379 | 6.409232 | 1.347784 | 4.73E-30 | 1.34E-14 | 0.575497 | 45.73347 | 0.006311 | 3.38E-19 | 1.34E-35 | 0 |
best | 2.460207 | 2.625176 | 1.93E-08 | 8.45E-32 | 7.64E-16 | 0.203873 | 0.047089 | 6.36E-06 | 3.7E-20 | 3.83E-40 | 0 | |
worst | 4.320177 | 9.826729 | 3.852453 | 2.31E-29 | 1.1E-13 | 0.98408 | 88.30133 | 0.074488 | 8.65E-19 | 1.66E-34 | 0 | |
std | 0.440358 | 2.122281 | 1.08719 | 5.62E-30 | 2.5E-14 | 0.180899 | 32.22163 | 0.016314 | 2.17E-19 | 3.82E-35 | 0 | |
median | 3.158793 | 6.156931 | 1.060589 | 2.21E-30 | 4.31E-15 | 0.59779 | 42.59176 | 0.001452 | 2.94E-19 | 2.7E-37 | 0 | |
rank | 9 | 10 | 8 | 3 | 5 | 7 | 11 | 6 | 4 | 2 | 1 | |
F5 | mean | 512.3849 | 4685.587 | 26.4173 | 26.85637 | 26.80292 | 237.6288 | 27.19238 | 28.27683 | 23.63643 | 27.45887 | 0 |
best | 227.6302 | 6.358709 | 25.84867 | 25.97881 | 25.29612 | 26.95008 | 26.45993 | 26.48034 | 22.44977 | 26.21217 | 0 | |
worst | 1904.539 | 90133.63 | 27.6268 | 28.55723 | 27.93213 | 1709.385 | 28.5018 | 28.86228 | 24.27026 | 28.59278 | 0 | |
std | 355.6761 | 20115.89 | 0.455677 | 0.70839 | 0.739022 | 398.9057 | 0.541389 | 0.706209 | 0.4456 | 0.72896 | 0 | |
median | 440.5026 | 81.59334 | 26.32633 | 26.69676 | 27.11089 | 63.20481 | 27.04987 | 28.63414 | 23.65578 | 27.18532 | 0 | |
rank | 10 | 11 | 3 | 5 | 4 | 9 | 6 | 8 | 2 | 7 | 1 | |
F6 | mean | 34.86707 | 0.060897 | 1.25E-16 | 1.078098 | 0.705754 | 0.136757 | 0.077372 | 3.848483 | 1.86E-09 | 1.54416 | 0 |
best | 16.97404 | 9.5E-06 | 4.71E-17 | 0.54459 | 1.77E-05 | 0.067418 | 0.009203 | 2.589849 | 1.03E-09 | 0.862897 | 0 | |
worst | 73.13031 | 0.835192 | 4.43E-16 | 1.595351 | 1.724524 | 0.237401 | 0.713129 | 4.796125 | 4.73E-09 | 2.393213 | 0 | |
std | 17.35489 | 0.184214 | 9.08E-17 | 0.298311 | 0.459725 | 0.03697 | 0.153834 | 0.592668 | 8.37E-10 | 0.399298 | 0 | |
median | 31.4086 | 0.009074 | 8.57E-17 | 1.088354 | 0.739962 | 0.14036 | 0.036663 | 4.050477 | 1.71E-09 | 1.639428 | 0 | |
rank | 11 | 4 | 2 | 8 | 7 | 6 | 5 | 10 | 3 | 9 | 1 | |
F7 | mean | 0.010645 | 0.164599 | 0.061373 | 0.001623 | 0.000817 | 0.009972 | 0.001116 | 0.005855 | 0.000615 | 0.000401 | 3.56E-05 |
best | 0.003995 | 0.095988 | 0.019791 | 0.000455 | 0.00012 | 0.0056 | 7.13E-05 | 0.00218 | 0.000215 | 2.99E-05 | 5.88E-07 | |
worst | 0.017568 | 0.285254 | 0.112113 | 0.003976 | 0.001565 | 0.018206 | 0.003835 | 0.013816 | 0.00151 | 0.000953 | 0.000105 | |
std | 0.004044 | 0.052236 | 0.023729 | 0.001106 | 0.000407 | 0.003234 | 0.001128 | 0.003043 | 0.000314 | 0.000307 | 3.34E-05 | |
median | 0.00971 | 0.153973 | 0.056558 | 0.001292 | 0.000774 | 0.009512 | 0.000817 | 0.004586 | 0.000571 | 0.000317 | 2.71E-05 | |
rank | 9 | 11 | 10 | 6 | 4 | 8 | 5 | 7 | 3 | 2 | 1 | |
sum rank | 71 | 64 | 47 | 33 | 34 | 56 | 42 | 49 | 31 | 28 | 7 | |
mean rank | 10.14286 | 9.142857 | 6.714286 | 4.714286 | 4.857143 | 8 | 6 | 7 | 4.428571 | 4 | 1 | |
total rank | 11 | 10 | 7 | 4 | 5 | 9 | 6 | 8 | 3 | 2 | 1 |
GA | PSO | GSA | TLBO | GWO | MVO | WOA | TSA | MPA | RSA | GOA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F8 | mean | −8348.04 | −7174.66 | −2512.77 | −5400.22 | −6359.7 | −7991.99 | −10779.6 | −5925.69 | −9619.16 | −7548.39 | −12,569.5 |
best | −9571.05 | −8778.83 | −2969.06 | −6984.4 | −7834.43 | −9028.56 | −12,569.5 | −7583.05 | −10,355.8 | −9259.4 | −12,569.5 | |
worst | −6569.32 | −5206.21 | −2015.67 | −4465 | −4357.11 | −7097.08 | −8026.53 | −4728.78 | −9025.09 | −5383.42 | −12,569.5 | |
std | 757.8547 | 895.3058 | 260.3632 | 685.2514 | 877.8481 | 632.0867 | 1645.717 | 716.9043 | 417.5433 | 1154.307 | 1.87E-12 | |
median | −8603.98 | −7160.36 | −2498.05 | −5345.39 | −6523.61 | −7972.62 | −10,889.5 | −5954.46 | −9629.9 | −7805.26 | −12,569.5 | |
rank | 4 | 7 | 11 | 10 | 8 | 5 | 2 | 9 | 3 | 6 | 1 | |
F9 | mean | 58.86846 | 65.44741 | 29.15228 | 0 | 0.980934 | 103.7514 | 0 | 160.3345 | 0 | 0 | 0 |
best | 16.8933 | 27.85958 | 16.9143 | 0 | 0 | 80.65951 | 0 | 115.0893 | 0 | 0 | 0 | |
worst | 95.10693 | 126.4306 | 46.76302 | 0 | 9.129372 | 141.3836 | 0 | 231.9054 | 0 | 0 | 0 | |
std | 19.16566 | 23.37939 | 7.881373 | 0 | 2.70233 | 15.81913 | 0 | 31.28116 | 0 | 0 | 0 | |
median | 58.96616 | 62.19288 | 26.86388 | 0 | 0 | 102.5599 | 0 | 165.7714 | 0 | 0 | 0 | |
rank | 4 | 5 | 3 | 1 | 2 | 6 | 1 | 7 | 1 | 1 | 1 | |
F10 | mean | 3.546679 | 2.925435 | 8.19E−09 | 4.44E−15 | 1.58E−14 | 0.44077 | 3.2E−15 | 1.468278 | 4.09E−15 | 4.54E−13 | 8.88E−16 |
best | 2.698017 | 1.897756 | 6.07E−09 | 4.44E−15 | 1.15E−14 | 0.087453 | 8.88E−16 | 7.99E−15 | 8.88E−16 | 8.88E−16 | 8.88E−16 | |
worst | 4.12547 | 4.878091 | 1.12E−08 | 4.44E−15 | 2.22E−14 | 2.141281 | 7.99E−15 | 3.546227 | 4.44E−15 | 9.03E−12 | 8.88E−16 | |
std | 0.430288 | 0.938045 | 1.35E−09 | 0 | 2.96E−15 | 0.611269 | 2.09E−15 | 1.672925 | 1.09E−15 | 2.02E−12 | 0 | |
median | 3.502708 | 2.817299 | 8.05E−09 | 4.44E−15 | 1.51E−14 | 0.133476 | 4.44E−15 | 2.22E−14 | 4.44E−15 | 8.88E−16 | 8.88E−16 | |
rank | 11 | 10 | 7 | 4 | 5 | 8 | 2 | 9 | 3 | 6 | 1 | |
F11 | mean | 1.582293 | 0.320849 | 8.822246 | 0 | 0.005007 | 0.421495 | 0.009403 | 0.006064 | 0 | 0 | 0 |
best | 1.214307 | 0.006832 | 3.255758 | 0 | 0 | 0.253372 | 0 | 0 | 0 | 0 | 0 | |
worst | 2.154375 | 2.005863 | 18.13903 | 0 | 0.047681 | 0.592456 | 0.081925 | 0.017241 | 0 | 0 | 0 | |
std | 0.243938 | 0.466655 | 4.109461 | 0 | 0.011945 | 0.079737 | 0.023873 | 0.006718 | 0 | 0 | 0 | |
median | 1.535265 | 0.099446 | 9.042558 | 0 | 0 | 0.423356 | 0 | 0.004493 | 0 | 0 | 0 | |
rank | 7 | 5 | 8 | 1 | 2 | 6 | 4 | 3 | 1 | 1 | 1 | |
F12 | mean | 0.157037 | 1.423618 | 0.127676 | 0.072387 | 0.037371 | 0.960236 | 0.011252 | 6.958465 | 2.31E−10 | 0.069238 | 1.62E−32 |
best | 0.035385 | 4.47E−05 | 3.7E−19 | 0.03343 | 0.006546 | 0.000691 | 0.001059 | 0.404251 | 7.31E−11 | 0.012096 | 1.57E−32 | |
worst | 0.359563 | 3.854956 | 0.635088 | 0.178688 | 0.073536 | 3.859424 | 0.083424 | 15.28632 | 5.8E−10 | 0.179779 | 2.54E−32 | |
std | 0.091936 | 1.221873 | 0.213301 | 0.030545 | 0.019632 | 0.990186 | 0.01782 | 4.73628 | 1.16E−10 | 0.039794 | 2.16E−33 | |
median | 0.147131 | 1.2003 | 1.07E−18 | 0.064612 | 0.036212 | 0.641166 | 0.00666 | 7.798794 | 1.93E−10 | 0.061529 | 1.57E−32 | |
rank | 8 | 10 | 7 | 6 | 4 | 9 | 3 | 11 | 2 | 5 | 1 | |
F13 | mean | 2.614757 | 3.869959 | 0.100869 | 0.983304 | 0.633228 | 0.030971 | 0.261863 | 2.988147 | 0.001652 | 1.803955 | 7.65E−32 |
best | 1.149958 | 0.263545 | 4.86E−18 | 0.58094 | 0.113218 | 0.016912 | 0.049589 | 2.280729 | 1.28E−09 | 1.051985 | 1.35E−32 | |
worst | 4.837813 | 17.42028 | 1.222664 | 1.450667 | 1.136582 | 0.066663 | 0.519796 | 5.169063 | 0.010987 | 2.793816 | 6.07E−31 | |
std | 1.063186 | 4.538492 | 0.28389 | 0.239798 | 0.282332 | 0.012548 | 0.141363 | 0.695106 | 0.004024 | 0.41072 | 1.61E−31 | |
median | 2.458018 | 1.703829 | 1.46E−17 | 0.929117 | 0.638573 | 0.028099 | 0.253052 | 2.728009 | 3.35E−09 | 1.694537 | 1.35E−32 | |
rank | 9 | 11 | 4 | 7 | 6 | 3 | 5 | 10 | 2 | 8 | 1 | |
sum rank | 43 | 48 | 40 | 29 | 27 | 37 | 17 | 49 | 12 | 27 | 6 | |
mean rank | 7.166667 | 8 | 6.666667 | 4.833333 | 4.5 | 6.166667 | 2.833333 | 8.166667 | 2 | 4.5 | 1 | |
total rank | 8 | 9 | 7 | 5 | 4 | 6 | 3 | 10 | 2 | 4 | 1 |
GA | PSO | GSA | TLBO | GWO | MVO | WOA | TSA | MPA | RSA | GOA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F14 | mean | 1.012829 | 3.645876 | 4.086478 | 1.196416 | 4.866265 | 0.998004 | 2.816492 | 8.893169 | 0.998004 | 4.823742 | 0.998004 |
best | 0.998004 | 0.998004 | 1.019228 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | 0.998004 | |
worst | 1.194013 | 11.7187 | 9.831309 | 2.982105 | 12.67051 | 0.998004 | 10.76318 | 12.67051 | 0.998004 | 12.67051 | 0.998004 | |
std | 0.045865 | 3.732496 | 2.561839 | 0.610693 | 4.26894 | 3.16E−12 | 2.996068 | 4.787012 | 5.09E−17 | 3.851995 | 0 | |
median | 0.998006 | 1.992031 | 3.970242 | 0.998004 | 2.982105 | 0.998004 | 1.495018 | 12.67051 | 0.998004 | 3.96825 | 0.998004 | |
rank | 3 | 6 | 7 | 4 | 9 | 2 | 5 | 10 | 1 | 8 | 1 | |
F15 | mean | 0.00603 | 0.001432 | 0.002131 | 0.000453 | 0.005459 | 0.004558 | 0.00063 | 0.008535 | 0.000311 | 0.005053 | 0.000307 |
best | 0.000644 | 0.000307 | 0.001143 | 0.00031 | 0.000307 | 0.000308 | 0.000312 | 0.000308 | 0.000308 | 0.000307 | 0.000307 | |
worst | 0.023479 | 0.019276 | 0.004428 | 0.001241 | 0.020363 | 0.020363 | 0.002178 | 0.020942 | 0.000316 | 0.022553 | 0.000307 | |
std | 0.007244 | 0.00422 | 0.000696 | 0.0003 | 0.008834 | 0.008113 | 0.000457 | 0.009974 | 2.25E−06 | 0.008991 | 1.90E−19 | |
median | 0.004113 | 0.000307 | 0.00203 | 0.000315 | 0.000308 | 0.000627 | 0.000481 | 0.001072 | 0.000311 | 0.000653 | 0.000307 | |
rank | 10 | 5 | 6 | 3 | 9 | 7 | 4 | 11 | 2 | 8 | 1 | |
F16 | mean | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03005 | −1.03163 | −0.99082 | −1.03163 |
best | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | |
worst | −1.03161 | −1.03163 | −1.03163 | −1.03162 | −1.03163 | −1.03163 | −1.03163 | −1 | −1.03163 | −0.21546 | −1.03163 | |
std | 4.59E−06 | 1.35E−16 | 1.35E−16 | 1.59E−06 | 2.98E−09 | 3.18E−08 | 8.38E−11 | 0.007072 | 2.28E−16 | 0.1825 | 8.31E−17 | |
median | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | |
rank | 7 | 1 | 1 | 6 | 4 | 5 | 3 | 8 | 2 | 9 | 1 | |
F17 | mean | 0.422023 | 0.65439 | 0.397887 | 0.403109 | 0.397898 | 0.397887 | 0.397888 | 0.397909 | 0.397887 | 0.397887 | 0.397887 |
best | 0.397887 | 0.397887 | 0.397887 | 0.397893 | 0.397887 | 0.397887 | 0.397887 | 0.397888 | 0.397887 | 0.397887 | 0.397887 | |
worst | 0.832817 | 1.937365 | 0.397887 | 0.500697 | 0.3981 | 0.397888 | 0.39789 | 0.397946 | 0.397887 | 0.397887 | 0.397887 | |
std | 0.09697 | 0.526896 | 0 | 0.02297 | 4.74E−05 | 7.33E−08 | 7.31E−07 | 1.7E−05 | 0 | 8.97E−16 | 0 | |
median | 0.398304 | 0.397887 | 0.397887 | 0.397965 | 0.397888 | 0.397887 | 0.397887 | 0.397907 | 0.397887 | 0.397887 | 0.397887 | |
rank | 8 | 9 | 1 | 7 | 5 | 3 | 4 | 6 | 1 | 2 | 1 | |
F18 | mean | 8.421245 | 3 | 3 | 3 | 7.050008 | 3 | 3.000018 | 14.20181 | 3 | 13.8 | 3 |
best | 3 | 3 | 3 | 3 | 3.000001 | 3 | 3 | 3.000001 | 3 | 3 | 3 | |
worst | 30.31682 | 3 | 3 | 3.000002 | 84.00001 | 3.000001 | 3.000147 | 92.03579 | 3 | 84 | 3 | |
std | 11.11524 | 2.82E−15 | 2.79E−15 | 4.58E−07 | 18.11215 | 3.24E−07 | 3.46E−05 | 26.59322 | 1E−15 | 20.3563 | 2.88E−16 | |
median | 3.000586 | 3 | 3 | 3 | 3.000005 | 3 | 3.000005 | 3.000009 | 3 | 3 | 3 | |
rank | 8 | 2 | 3 | 5 | 7 | 4 | 6 | 10 | 1 | 9 | 1 | |
F19 | mean | −3.86265 | −3.82413 | −3.86278 | −3.86051 | −3.8621 | −3.86278 | −3.86068 | −3.86225 | −3.86278 | −3.74604 | −3.86278 |
best | −3.86278 | −3.86278 | −3.86278 | −3.8627 | −3.86278 | −3.86278 | −3.86276 | −3.86278 | −3.86278 | −3.86278 | −3.86278 | |
worst | −3.86161 | −3.08976 | −3.86278 | −3.85474 | −3.8549 | −3.86278 | −3.8549 | −3.85501 | −3.86278 | −3.08976 | −3.86274 | |
std | 0.000338 | 0.172852 | 1.92E−15 | 0.003385 | 0.002056 | 2.03E−07 | 0.002361 | 0.001753 | 2.28E−15 | 0.282864 | 9.02E−16 | |
median | −3.86278 | −3.86278 | −3.86278 | −3.86238 | −3.86277 | −3.86278 | −3.86162 | −3.86273 | −3.86278 | −3.86278 | −3.86278 | |
rank | 4 | 9 | 1 | 8 | 6 | 3 | 7 | 5 | 2 | 10 | 1 | |
F20 | mean | −3.19843 | −3.30089 | −3.322 | −3.27123 | −3.25578 | −3.26246 | −3.25729 | −3.25227 | −3.322 | −3.19517 | −3.322 |
best | −3.31774 | −3.322 | −3.322 | −3.31452 | −3.32199 | −3.32199 | −3.32181 | −3.32165 | −3.322 | −3.322 | −3.322 | |
worst | −3.02507 | −3.13764 | −3.322 | −3.15712 | −3.13762 | −3.20273 | −3.08687 | −3.08336 | −3.322 | −1.9217 | −3.322 | |
std | 0.081657 | 0.052988 | 3.67E−16 | 0.056572 | 0.06962 | 0.06108 | 0.091694 | 0.075807 | 3.81E−16 | 0.311345 | 1.41E−17 | |
median | −3.19362 | −3.322 | −3.322 | −3.30495 | −3.26241 | −3.26254 | −3.32111 | −3.26131 | −3.322 | −3.322 | −3.322 | |
rank | 9 | 3 | 1 | 4 | 7 | 5 | 6 | 8 | 2 | 10 | 1 | |
F21 | mean | −4.05229 | −6.6523 | −6.21031 | −6.63717 | −9.6474 | −8.12535 | −9.89304 | −5.79327 | −10.1532 | −8.78928 | −10.1532 |
best | −7.88766 | −10.1532 | −10.1532 | −9.30299 | −10.153 | −10.1532 | −10.1529 | −10.1034 | −10.1532 | −10.1532 | −10.1532 | |
worst | −2.294 | −2.63047 | −2.68286 | −4.07333 | −5.09985 | −5.05516 | −5.05519 | −2.62401 | −10.1532 | −0.88199 | −10.1532 | |
std | 2.072922 | 3.659234 | 3.702041 | 2.127264 | 1.555137 | 2.54809 | 1.138781 | 3.016364 | 2.41E−15 | 3.181731 | 2.07E−17 | |
median | −2.62469 | −7.62699 | −4.18158 | −6.69275 | −10.1527 | −10.1531 | −10.1516 | −4.95475 | −10.1532 | −10.1524 | −10.1532 | |
rank | 11 | 7 | 9 | 8 | 4 | 6 | 3 | 10 | 2 | 5 | 1 | |
F22 | mean | −6.76101 | −8.1775 | −9.6989 | −8.06962 | −10.4024 | −8.04873 | −8.69025 | −7.01929 | −10.4029 | −8.05397 | −10.4029 |
best | −10.2388 | −10.4029 | −10.4029 | −9.9566 | −10.4029 | −10.4029 | −10.4029 | −10.3661 | −10.4029 | −10.4029 | −10.4029 | |
worst | −2.5174 | −2.75193 | −4.67391 | −3.94552 | −10.402 | −2.76589 | −2.76539 | −2.68875 | −10.4029 | −0.90808 | −10.4029 | |
std | 3.154309 | 3.169789 | 1.757215 | 1.582401 | 0.000256 | 3.030069 | 2.723616 | 3.582683 | 3.65E−15 | 3.599306 | 1.61E−16 | |
median | −7.94704 | −10.4029 | −10.4029 | −8.43317 | −10.4025 | −10.4029 | −10.4006 | −9.45916 | −10.4029 | −10.3962 | −10.4029 | |
rank | 11 | 6 | 4 | 7 | 3 | 9 | 5 | 10 | 2 | 8 | 1 | |
F23 | mean | −8.18721 | −5.6555 | −10.5364 | −8.03277 | −10.536 | −9.99793 | −9.6541 | −7.04655 | −10.5364 | −7.32853 | −10.5364 |
best | −10.3471 | −10.5364 | −10.5364 | −9.58103 | −10.5363 | −10.5364 | −10.5362 | −10.5028 | −10.5364 | −10.5364 | −10.5364 | |
worst | −2.66877 | −2.42173 | −10.5364 | −3.95463 | −10.5356 | −5.12847 | −3.83473 | −2.41642 | −10.5364 | −1.85948 | −10.5363 | |
std | 2.385851 | 3.382098 | 1.58E−15 | 1.775707 | 0.000194 | 1.657273 | 2.150189 | 3.807051 | 2.31E−15 | 4.034066 | 1.95E−16 | |
median | −8.74676 | −3.83543 | −10.5364 | −8.62434 | −10.536 | −10.5363 | −10.5346 | −10.1711 | −10.5364 | −10.508 | −10.5364 | |
rank | 6 | 10 | 1 | 7 | 3 | 4 | 5 | 9 | 2 | 8 | 1 | |
sum rank | 77 | 58 | 34 | 59 | 57 | 48 | 48 | 87 | 17 | 77 | 10 | |
mean rank | 7.7 | 5.8 | 3.4 | 5.9 | 5.7 | 4.8 | 4.8 | 8.7 | 1.7 | 7.7 | 1 | |
total rank | 8 | 6 | 3 | 7 | 5 | 4 | 4 | 9 | 2 | 8 | 1 |
GOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 1.00E+02 | 1.05E+10 | 3.62E+07 | 1.78E+09 | 6.61E+06 | 7.71E+03 | 9.05E+07 | 1.51E+08 | 7.63E+02 | 3.22E+03 | 1.22E+07 |
best | 1.00E+02 | 9.05E+09 | 1.15E+04 | 3.82E+08 | 4.82E+06 | 4.90E+03 | 2.85E+04 | 6.72E+07 | 1.00E+02 | 3.52E+02 | 6.29E+06 | |
worst | 1.00E+02 | 1.25E+10 | 1.31E+08 | 3.89E+09 | 8.71E+06 | 1.14E+04 | 3.29E+08 | 3.64E+08 | 1.83E+03 | 9.55E+03 | 1.74E+07 | |
std | 0.00E+00 | 1.64E+09 | 6.77E+07 | 1.66E+09 | 1.75E+06 | 3.21E+03 | 1.69E+08 | 1.52E+08 | 7.96E+02 | 4.52E+03 | 4.95E+06 | |
median | 1.00E+02 | 1.02E+10 | 6.63E+06 | 1.43E+09 | 6.47E+06 | 7.29E+03 | 1.66E+07 | 8.62E+07 | 5.60E+02 | 1.50E+03 | 1.24E+07 | |
rank | 1 | 11 | 7 | 10 | 5 | 4 | 8 | 9 | 2 | 3 | 6 | |
C17-F3 | mean | 3.00E+02 | 9.88E+03 | 1.44E+03 | 1.15E+04 | 1.77E+03 | 3.00E+02 | 3.14E+03 | 7.37E+02 | 1.05E+04 | 3.00E+02 | 1.51E+04 |
best | 3.00E+02 | 5.33E+03 | 8.04E+02 | 4.37E+03 | 6.27E+02 | 3.00E+02 | 1.56E+03 | 4.76E+02 | 6.61E+03 | 3.00E+02 | 4.45E+03 | |
worst | 3.00E+02 | 1.32E+04 | 2.59E+03 | 1.62E+04 | 3.41E+03 | 3.00E+02 | 6.03E+03 | 9.08E+02 | 1.43E+04 | 3.00E+02 | 2.39E+04 | |
std | 0.00E+00 | 3.84E+03 | 8.76E+02 | 5.35E+03 | 1.39E+03 | 5.34E-02 | 2.19E+03 | 2.01E+02 | 3.36E+03 | 0.00E+00 | 1.08E+04 | |
median | 3.00E+02 | 1.05E+04 | 1.17E+03 | 1.27E+04 | 1.51E+03 | 3.00E+02 | 2.48E+03 | 7.82E+02 | 1.06E+04 | 3.00E+02 | 1.61E+04 | |
rank | 1 | 8 | 5 | 10 | 6 | 3 | 7 | 4 | 9 | 2 | 11 | |
C17-F4 | mean | 4.00E+02 | 1.38E+03 | 4.07E+02 | 5.81E+02 | 4.26E+02 | 4.03E+02 | 4.12E+02 | 4.09E+02 | 4.05E+02 | 4.21E+02 | 4.15E+02 |
best | 4.00E+02 | 8.57E+02 | 4.03E+02 | 4.80E+02 | 4.07E+02 | 4.02E+02 | 4.06E+02 | 4.09E+02 | 4.04E+02 | 4.00E+02 | 4.12E+02 | |
worst | 4.00E+02 | 1.88E+03 | 4.12E+02 | 6.99E+02 | 4.75E+02 | 4.05E+02 | 4.29E+02 | 4.10E+02 | 4.06E+02 | 4.72E+02 | 4.19E+02 | |
std | 0.00E+00 | 4.66E+02 | 4.80E+00 | 1.14E+02 | 3.53E+01 | 1.87E+00 | 1.21E+01 | 5.98E-01 | 1.26E+00 | 3.67E+01 | 3.22E+00 | |
median | 4.00E+02 | 1.38E+03 | 4.07E+02 | 5.73E+02 | 4.11E+02 | 4.04E+02 | 4.06E+02 | 4.10E+02 | 4.04E+02 | 4.06E+02 | 4.15E+02 | |
rank | 1 | 11 | 4 | 10 | 9 | 2 | 6 | 5 | 3 | 8 | 7 | |
C17-F5 | mean | 5.01E+02 | 5.75E+02 | 5.13E+02 | 5.67E+02 | 5.42E+02 | 5.25E+02 | 5.13E+02 | 5.35E+02 | 5.56E+02 | 5.29E+02 | 5.29E+02 |
best | 5.01E+02 | 5.60E+02 | 5.09E+02 | 5.45E+02 | 5.24E+02 | 5.11E+02 | 5.09E+02 | 5.30E+02 | 5.51E+02 | 5.12E+02 | 5.24E+02 | |
worst | 5.02E+02 | 5.91E+02 | 5.19E+02 | 6.00E+02 | 5.80E+02 | 5.39E+02 | 5.21E+02 | 5.39E+02 | 5.68E+02 | 5.54E+02 | 5.35E+02 | |
std | 5.27E-01 | 1.81E+01 | 5.59E+00 | 2.59E+01 | 2.75E+01 | 1.27E+01 | 5.60E+00 | 4.36E+00 | 8.74E+00 | 2.06E+01 | 5.21E+00 | |
median | 5.01E+02 | 5.75E+02 | 5.13E+02 | 5.61E+02 | 5.33E+02 | 5.24E+02 | 5.12E+02 | 5.36E+02 | 5.52E+02 | 5.25E+02 | 5.28E+02 | |
rank | 1 | 11 | 2 | 10 | 8 | 4 | 3 | 7 | 9 | 5 | 6 | |
C17-F6 | mean | 6.00E+02 | 6.42E+02 | 6.01E+02 | 6.26E+02 | 6.24E+02 | 6.02E+02 | 6.01E+02 | 6.07E+02 | 6.18E+02 | 6.08E+02 | 6.11E+02 |
best | 6.00E+02 | 6.39E+02 | 6.01E+02 | 6.16E+02 | 6.08E+02 | 6.00E+02 | 6.01E+02 | 6.05E+02 | 6.03E+02 | 6.01E+02 | 6.07E+02 | |
worst | 6.00E+02 | 6.47E+02 | 6.02E+02 | 6.42E+02 | 6.47E+02 | 6.04E+02 | 6.02E+02 | 6.11E+02 | 6.38E+02 | 6.20E+02 | 6.15E+02 | |
std | 0.00E+00 | 3.71E+00 | 8.89E-01 | 1.21E+01 | 1.75E+01 | 1.91E+00 | 5.13E-01 | 2.71E+00 | 1.70E+01 | 8.97E+00 | 3.72E+00 | |
median | 6.00E+02 | 6.42E+02 | 6.01E+02 | 6.23E+02 | 6.21E+02 | 6.02E+02 | 6.01E+02 | 6.07E+02 | 6.15E+02 | 6.05E+02 | 6.10E+02 | |
rank | 1 | 11 | 3 | 10 | 9 | 4 | 2 | 5 | 8 | 6 | 7 | |
C17-F7 | mean | 7.11E+02 | 8.08E+02 | 7.25E+02 | 8.33E+02 | 7.64E+02 | 7.32E+02 | 7.27E+02 | 7.54E+02 | 7.17E+02 | 7.34E+02 | 7.38E+02 |
best | 7.11E+02 | 7.94E+02 | 7.21E+02 | 7.92E+02 | 7.53E+02 | 7.17E+02 | 7.18E+02 | 7.49E+02 | 7.15E+02 | 7.26E+02 | 7.27E+02 | |
worst | 7.12E+02 | 8.21E+02 | 7.30E+02 | 8.76E+02 | 7.95E+02 | 7.52E+02 | 7.45E+02 | 7.62E+02 | 7.21E+02 | 7.46E+02 | 7.43E+02 | |
std | 5.44E-01 | 1.34E+01 | 4.03E+00 | 3.91E+01 | 2.17E+01 | 1.53E+01 | 1.32E+01 | 6.26E+00 | 2.90E+00 | 9.45E+00 | 7.76E+00 | |
median | 7.11E+02 | 8.08E+02 | 7.25E+02 | 8.33E+02 | 7.55E+02 | 7.29E+02 | 7.22E+02 | 7.52E+02 | 7.17E+02 | 7.31E+02 | 7.41E+02 | |
rank | 1 | 10 | 3 | 11 | 9 | 5 | 4 | 8 | 2 | 6 | 7 | |
C17-F8 | mean | 8.01E+02 | 8.56E+02 | 8.13E+02 | 8.50E+02 | 8.38E+02 | 8.12E+02 | 8.16E+02 | 8.39E+02 | 8.21E+02 | 8.24E+02 | 8.17E+02 |
best | 8.01E+02 | 8.44E+02 | 8.09E+02 | 8.33E+02 | 8.19E+02 | 8.08E+02 | 8.11E+02 | 8.32E+02 | 8.12E+02 | 8.16E+02 | 8.13E+02 | |
worst | 8.02E+02 | 8.61E+02 | 8.15E+02 | 8.70E+02 | 8.50E+02 | 8.17E+02 | 8.22E+02 | 8.48E+02 | 8.29E+02 | 8.30E+02 | 8.26E+02 | |
std | 6.10E-01 | 8.41E+00 | 3.03E+00 | 1.75E+01 | 1.42E+01 | 4.18E+00 | 4.77E+00 | 8.43E+00 | 7.35E+00 | 7.39E+00 | 5.86E+00 | |
median | 8.01E+02 | 8.59E+02 | 8.14E+02 | 8.49E+02 | 8.41E+02 | 8.12E+02 | 8.17E+02 | 8.39E+02 | 8.21E+02 | 8.24E+02 | 8.15E+02 | |
rank | 1 | 11 | 3 | 10 | 8 | 2 | 4 | 9 | 6 | 7 | 5 | |
C17-F9 | mean | 9.00E+02 | 1.49E+03 | 9.05E+02 | 1.40E+03 | 1.39E+03 | 9.01E+02 | 9.12E+02 | 9.12E+02 | 9.00E+02 | 9.04E+02 | 9.05E+02 |
best | 9.00E+02 | 1.39E+03 | 9.00E+02 | 1.18E+03 | 1.08E+03 | 9.00E+02 | 9.01E+02 | 9.08E+02 | 9.00E+02 | 9.01E+02 | 9.03E+02 | |
worst | 9.00E+02 | 1.63E+03 | 9.14E+02 | 1.70E+03 | 1.69E+03 | 9.03E+02 | 9.34E+02 | 9.21E+02 | 9.00E+02 | 9.13E+02 | 9.09E+02 | |
std | 0.00E+00 | 1.10E+02 | 6.47E+00 | 2.40E+02 | 2.71E+02 | 1.70E+00 | 1.69E+01 | 6.20E+00 | 0.00E+00 | 6.03E+00 | 3.14E+00 | |
median | 9.00E+02 | 1.47E+03 | 9.04E+02 | 1.36E+03 | 1.41E+03 | 9.00E+02 | 9.07E+02 | 9.10E+02 | 9.00E+02 | 9.02E+02 | 9.04E+02 | |
rank | 1 | 10 | 5 | 9 | 8 | 2 | 7 | 6 | 1 | 3 | 4 | |
C17-F10 | mean | 1.01E+03 | 2.63E+03 | 1.53E+03 | 2.06E+03 | 2.06E+03 | 1.80E+03 | 1.75E+03 | 2.21E+03 | 2.32E+03 | 1.97E+03 | 1.74E+03 |
best | 1.00E+03 | 2.45E+03 | 1.40E+03 | 1.78E+03 | 1.46E+03 | 1.47E+03 | 1.56E+03 | 1.80E+03 | 2.03E+03 | 1.58E+03 | 1.43E+03 | |
worst | 1.01E+03 | 3.00E+03 | 1.61E+03 | 2.32E+03 | 2.60E+03 | 2.32E+03 | 2.02E+03 | 2.51E+03 | 2.43E+03 | 2.39E+03 | 2.15E+03 | |
std | 7.07E+00 | 2.71E+02 | 1.04E+02 | 3.05E+02 | 5.82E+02 | 4.38E+02 | 2.11E+02 | 3.16E+02 | 2.05E+02 | 3.56E+02 | 3.27E+02 | |
median | 1.01E+03 | 2.53E+03 | 1.56E+03 | 2.08E+03 | 2.08E+03 | 1.71E+03 | 1.71E+03 | 2.26E+03 | 2.41E+03 | 1.96E+03 | 1.69E+03 | |
rank | 1 | 11 | 2 | 8 | 7 | 5 | 4 | 9 | 10 | 6 | 3 | |
C17-F11 | mean | 1.10E+03 | 4.07E+03 | 1.13E+03 | 5.59E+03 | 1.15E+03 | 1.13E+03 | 1.16E+03 | 1.15E+03 | 1.14E+03 | 1.14E+03 | 2.42E+03 |
best | 1.10E+03 | 1.47E+03 | 1.11E+03 | 5.44E+03 | 1.11E+03 | 1.11E+03 | 1.12E+03 | 1.14E+03 | 1.12E+03 | 1.13E+03 | 1.12E+03 | |
worst | 1.10E+03 | 6.64E+03 | 1.16E+03 | 5.67E+03 | 1.18E+03 | 1.15E+03 | 1.23E+03 | 1.17E+03 | 1.17E+03 | 1.17E+03 | 6.13E+03 | |
std | 0.00E+00 | 2.47E+03 | 2.35E+01 | 1.12E+02 | 3.04E+01 | 2.37E+01 | 5.44E+01 | 1.63E+01 | 2.29E+01 | 1.61E+01 | 2.62E+03 | |
median | 1.10E+03 | 4.09E+03 | 1.12E+03 | 5.62E+03 | 1.16E+03 | 1.13E+03 | 1.14E+03 | 1.15E+03 | 1.14E+03 | 1.14E+03 | 1.22E+03 | |
rank | 1 | 10 | 2 | 11 | 7 | 3 | 8 | 6 | 4 | 5 | 9 | |
C17-F12 | mean | 1.35E+03 | 7.28E+08 | 5.86E+05 | 1.07E+06 | 2.43E+06 | 1.06E+06 | 1.46E+06 | 5.22E+06 | 1.05E+06 | 8.31E+03 | 6.25E+05 |
best | 1.32E+03 | 1.62E+08 | 2.05E+04 | 5.57E+05 | 1.77E+05 | 9.08E+03 | 4.69E+04 | 1.40E+06 | 4.90E+05 | 2.56E+03 | 1.81E+05 | |
worst | 1.44E+03 | 1.27E+09 | 9.17E+05 | 1.32E+06 | 4.03E+06 | 3.34E+06 | 2.29E+06 | 9.24E+06 | 1.78E+06 | 1.43E+04 | 1.10E+06 | |
std | 6.08E+01 | 5.97E+08 | 4.19E+05 | 3.81E+05 | 1.90E+06 | 1.63E+06 | 1.05E+06 | 4.41E+06 | 5.81E+05 | 5.69E+03 | 4.02E+05 | |
median | 1.33E+03 | 7.39E+08 | 7.03E+05 | 1.21E+06 | 2.76E+06 | 4.52E+05 | 1.76E+06 | 5.12E+06 | 9.71E+05 | 8.18E+03 | 6.08E+05 | |
rank | 1 | 11 | 3 | 7 | 9 | 6 | 8 | 10 | 5 | 2 | 4 | |
C17-F13 | mean | 1.31E+03 | 3.55E+07 | 5.57E+03 | 1.31E+04 | 7.78E+03 | 6.91E+03 | 1.06E+04 | 1.72E+04 | 1.04E+04 | 6.79E+03 | 5.62E+04 |
best | 1.30E+03 | 2.95E+06 | 3.80E+03 | 7.79E+03 | 3.35E+03 | 1.39E+03 | 6.68E+03 | 1.63E+04 | 5.17E+03 | 2.41E+03 | 8.78E+03 | |
worst | 1.31E+03 | 1.18E+08 | 6.82E+03 | 2.08E+04 | 1.56E+04 | 1.27E+04 | 1.48E+04 | 1.96E+04 | 1.46E+04 | 1.72E+04 | 1.86E+05 | |
std | 2.41E+00 | 5.84E+07 | 1.53E+03 | 5.96E+03 | 5.93E+03 | 6.24E+03 | 3.54E+03 | 1.68E+03 | 4.23E+03 | 7.46E+03 | 9.18E+04 | |
median | 1.30E+03 | 1.06E+07 | 5.83E+03 | 1.19E+04 | 6.09E+03 | 6.75E+03 | 1.04E+04 | 1.65E+04 | 1.08E+04 | 3.77E+03 | 1.50E+04 | |
rank | 1 | 11 | 2 | 8 | 5 | 4 | 7 | 9 | 6 | 3 | 10 | |
C17-F14 | mean | 1.40E+03 | 5.48E+03 | 1.96E+03 | 3.45E+03 | 1.52E+03 | 1.58E+03 | 2.38E+03 | 1.60E+03 | 5.71E+03 | 3.05E+03 | 1.34E+04 |
best | 1.40E+03 | 4.79E+03 | 1.44E+03 | 1.49E+03 | 1.48E+03 | 1.42E+03 | 1.46E+03 | 1.52E+03 | 4.71E+03 | 1.43E+03 | 3.81E+03 | |
worst | 1.40E+03 | 7.08E+03 | 2.95E+03 | 5.72E+03 | 1.56E+03 | 2.01E+03 | 5.08E+03 | 1.63E+03 | 7.76E+03 | 7.03E+03 | 2.67E+04 | |
std | 5.28E-01 | 1.14E+03 | 7.56E+02 | 2.39E+03 | 4.32E+01 | 3.09E+02 | 1.91E+03 | 5.49E+01 | 1.52E+03 | 2.84E+03 | 1.03E+04 | |
median | 1.40E+03 | 5.02E+03 | 1.72E+03 | 3.30E+03 | 1.52E+03 | 1.44E+03 | 1.48E+03 | 1.62E+03 | 5.18E+03 | 1.87E+03 | 1.15E+04 | |
rank | 1 | 9 | 5 | 8 | 2 | 3 | 6 | 4 | 10 | 7 | 11 | |
C17-F15 | mean | 1.50E+03 | 1.43E+04 | 4.06E+03 | 7.19E+03 | 6.38E+03 | 1.54E+03 | 5.96E+03 | 1.72E+03 | 2.46E+04 | 9.25E+03 | 4.65E+03 |
best | 1.50E+03 | 2.78E+03 | 3.28E+03 | 2.35E+03 | 2.03E+03 | 1.53E+03 | 3.64E+03 | 1.59E+03 | 1.16E+04 | 2.92E+03 | 1.90E+03 | |
worst | 1.50E+03 | 3.13E+04 | 5.01E+03 | 1.29E+04 | 1.38E+04 | 1.56E+03 | 7.08E+03 | 1.81E+03 | 3.70E+04 | 1.52E+04 | 8.23E+03 | |
std | 2.50E-01 | 1.32E+04 | 7.60E+02 | 4.82E+03 | 5.47E+03 | 1.34E+01 | 1.68E+03 | 1.16E+02 | 1.29E+04 | 5.47E+03 | 3.34E+03 | |
median | 1.50E+03 | 1.15E+04 | 3.97E+03 | 6.74E+03 | 4.81E+03 | 1.55E+03 | 6.56E+03 | 1.73E+03 | 2.50E+04 | 9.42E+03 | 4.24E+03 | |
rank | 1 | 10 | 4 | 8 | 7 | 2 | 6 | 3 | 11 | 9 | 5 | |
C17-F16 | mean | 1.60E+03 | 2.03E+03 | 1.69E+03 | 2.06E+03 | 1.96E+03 | 1.82E+03 | 1.73E+03 | 1.68E+03 | 2.09E+03 | 1.93E+03 | 1.81E+03 |
best | 1.60E+03 | 1.83E+03 | 1.64E+03 | 1.87E+03 | 1.77E+03 | 1.73E+03 | 1.62E+03 | 1.65E+03 | 1.96E+03 | 1.83E+03 | 1.72E+03 | |
worst | 1.60E+03 | 2.31E+03 | 1.72E+03 | 2.25E+03 | 2.09E+03 | 1.89E+03 | 1.83E+03 | 1.74E+03 | 2.29E+03 | 2.10E+03 | 1.84E+03 | |
std | 3.35E-01 | 2.18E+02 | 3.45E+01 | 1.84E+02 | 1.64E+02 | 7.03E+01 | 9.49E+01 | 4.10E+01 | 1.60E+02 | 1.33E+02 | 6.12E+01 | |
median | 1.60E+03 | 1.99E+03 | 1.69E+03 | 2.06E+03 | 1.99E+03 | 1.84E+03 | 1.74E+03 | 1.66E+03 | 2.05E+03 | 1.90E+03 | 1.84E+03 | |
rank | 1 | 9 | 3 | 10 | 8 | 6 | 4 | 2 | 11 | 7 | 5 | |
C17-F17 | mean | 1.70E+03 | 1.82E+03 | 1.74E+03 | 1.81E+03 | 1.85E+03 | 1.85E+03 | 1.77E+03 | 1.76E+03 | 1.85E+03 | 1.75E+03 | 1.76E+03 |
best | 1.70E+03 | 1.80E+03 | 1.72E+03 | 1.79E+03 | 1.78E+03 | 1.78E+03 | 1.73E+03 | 1.75E+03 | 1.75E+03 | 1.75E+03 | 1.75E+03 | |
worst | 1.70E+03 | 1.83E+03 | 1.78E+03 | 1.82E+03 | 1.90E+03 | 1.96E+03 | 1.88E+03 | 1.77E+03 | 1.98E+03 | 1.76E+03 | 1.76E+03 | |
std | 1.65E-01 | 1.28E+01 | 2.87E+01 | 1.23E+01 | 5.52E+01 | 8.94E+01 | 7.58E+01 | 1.09E+01 | 1.26E+02 | 6.26E+00 | 2.76E+00 | |
median | 1.70E+03 | 1.83E+03 | 1.72E+03 | 1.81E+03 | 1.86E+03 | 1.83E+03 | 1.74E+03 | 1.76E+03 | 1.84E+03 | 1.75E+03 | 1.76E+03 | |
rank | 1 | 8 | 2 | 7 | 9 | 10 | 6 | 5 | 11 | 3 | 4 | |
C17-F18 | mean | 1.81E+03 | 5.87E+06 | 1.13E+04 | 1.24E+04 | 2.40E+04 | 2.15E+04 | 2.05E+04 | 3.04E+04 | 9.96E+03 | 2.25E+04 | 1.32E+04 |
best | 1.80E+03 | 2.91E+05 | 4.23E+03 | 7.64E+03 | 6.59E+03 | 8.92E+03 | 6.46E+03 | 2.47E+04 | 6.54E+03 | 2.91E+03 | 3.49E+03 | |
worst | 1.82E+03 | 1.71E+07 | 1.70E+04 | 1.67E+04 | 3.77E+04 | 3.47E+04 | 3.46E+04 | 3.80E+04 | 1.22E+04 | 4.19E+04 | 1.90E+04 | |
std | 1.07E+01 | 8.24E+06 | 6.15E+03 | 4.02E+03 | 1.59E+04 | 1.29E+04 | 1.51E+04 | 6.50E+03 | 2.55E+03 | 2.14E+04 | 7.19E+03 | |
median | 1.80E+03 | 3.08E+06 | 1.21E+04 | 1.26E+04 | 2.58E+04 | 2.13E+04 | 2.04E+04 | 2.94E+04 | 1.06E+04 | 2.26E+04 | 1.51E+04 | |
rank | 1 | 11 | 3 | 4 | 9 | 7 | 6 | 10 | 2 | 8 | 5 | |
C17-F19 | mean | 1.90E+03 | 7.26E+05 | 5.71E+03 | 1.29E+05 | 3.58E+04 | 1.92E+03 | 5.49E+03 | 4.78E+03 | 4.16E+04 | 2.57E+04 | 6.32E+03 |
best | 1.90E+03 | 4.72E+04 | 2.33E+03 | 1.95E+03 | 7.84E+03 | 1.91E+03 | 1.95E+03 | 2.05E+03 | 1.14E+04 | 2.65E+03 | 2.22E+03 | |
worst | 1.90E+03 | 1.56E+06 | 9.65E+03 | 2.58E+05 | 6.56E+04 | 1.93E+03 | 1.42E+04 | 1.28E+04 | 6.04E+04 | 7.92E+04 | 1.01E+04 | |
std | 7.90E-01 | 7.24E+05 | 3.96E+03 | 1.56E+05 | 2.52E+04 | 7.69E+00 | 6.21E+03 | 5.69E+03 | 2.33E+04 | 3.83E+04 | 3.46E+03 | |
median | 1.90E+03 | 6.48E+05 | 5.44E+03 | 1.29E+05 | 3.49E+04 | 1.91E+03 | 2.92E+03 | 2.13E+03 | 4.73E+04 | 1.04E+04 | 6.45E+03 | |
rank | 1 | 11 | 5 | 10 | 8 | 2 | 4 | 3 | 9 | 7 | 6 | |
C17-F20 | mean | 2.00E+03 | 2.23E+03 | 2.10E+03 | 2.21E+03 | 2.21E+03 | 2.14E+03 | 2.18E+03 | 2.07E+03 | 2.26E+03 | 2.17E+03 | 2.05E+03 |
best | 2.00E+03 | 2.17E+03 | 2.07E+03 | 2.11E+03 | 2.10E+03 | 2.05E+03 | 2.13E+03 | 2.06E+03 | 2.19E+03 | 2.15E+03 | 2.04E+03 | |
worst | 2.00E+03 | 2.29E+03 | 2.13E+03 | 2.33E+03 | 2.30E+03 | 2.26E+03 | 2.25E+03 | 2.08E+03 | 2.36E+03 | 2.21E+03 | 2.06E+03 | |
std | 0.00E+00 | 6.14E+01 | 2.35E+01 | 9.93E+01 | 9.92E+01 | 9.01E+01 | 5.68E+01 | 9.84E+00 | 8.47E+01 | 3.04E+01 | 1.12E+01 | |
median | 2.00E+03 | 2.23E+03 | 2.09E+03 | 2.21E+03 | 2.23E+03 | 2.14E+03 | 2.16E+03 | 2.07E+03 | 2.25E+03 | 2.17E+03 | 2.06E+03 | |
rank | 1 | 10 | 4 | 9 | 8 | 5 | 7 | 3 | 11 | 6 | 2 | |
C17-F21 | mean | 2.20E+03 | 2.27E+03 | 2.26E+03 | 2.33E+03 | 2.31E+03 | 2.25E+03 | 2.32E+03 | 2.30E+03 | 2.37E+03 | 2.32E+03 | 2.30E+03 |
best | 2.20E+03 | 2.22E+03 | 2.26E+03 | 2.22E+03 | 2.22E+03 | 2.20E+03 | 2.31E+03 | 2.20E+03 | 2.36E+03 | 2.31E+03 | 2.23E+03 | |
worst | 2.20E+03 | 2.29E+03 | 2.26E+03 | 2.38E+03 | 2.36E+03 | 2.31E+03 | 2.32E+03 | 2.34E+03 | 2.39E+03 | 2.33E+03 | 2.34E+03 | |
std | 0.00E+00 | 3.28E+01 | 2.33E+00 | 7.72E+01 | 6.76E+01 | 6.72E+01 | 4.13E+00 | 7.06E+01 | 1.59E+01 | 8.41E+00 | 5.30E+01 | |
median | 2.20E+03 | 2.28E+03 | 2.26E+03 | 2.36E+03 | 2.34E+03 | 2.25E+03 | 2.32E+03 | 2.33E+03 | 2.37E+03 | 2.32E+03 | 2.32E+03 | |
rank | 1 | 4 | 3 | 10 | 7 | 2 | 8 | 6 | 11 | 9 | 5 | |
C17-F22 | mean | 2.30E+03 | 2.94E+03 | 2.31E+03 | 2.73E+03 | 2.32E+03 | 2.29E+03 | 2.31E+03 | 2.32E+03 | 2.30E+03 | 2.31E+03 | 2.32E+03 |
best | 2.30E+03 | 2.72E+03 | 2.30E+03 | 2.45E+03 | 2.32E+03 | 2.23E+03 | 2.30E+03 | 2.31E+03 | 2.30E+03 | 2.30E+03 | 2.32E+03 | |
worst | 2.30E+03 | 3.09E+03 | 2.31E+03 | 2.94E+03 | 2.33E+03 | 2.31E+03 | 2.32E+03 | 2.33E+03 | 2.30E+03 | 2.35E+03 | 2.32E+03 | |
std | 1.54E-01 | 1.67E+02 | 3.89E+00 | 2.31E+02 | 6.03E+00 | 4.12E+01 | 1.07E+01 | 9.03E+00 | 5.92E-03 | 2.36E+01 | 3.45E+00 | |
median | 2.30E+03 | 2.96E+03 | 2.31E+03 | 2.76E+03 | 2.32E+03 | 2.30E+03 | 2.31E+03 | 2.32E+03 | 2.30E+03 | 2.30E+03 | 2.32E+03 | |
rank | 3 | 11 | 4 | 10 | 9 | 1 | 5 | 8 | 2 | 6 | 7 | |
C17-F23 | mean | 2.60E+03 | 2.70E+03 | 2.61E+03 | 2.73E+03 | 2.65E+03 | 2.62E+03 | 2.61E+03 | 2.64E+03 | 2.80E+03 | 2.65E+03 | 2.66E+03 |
best | 2.60E+03 | 2.67E+03 | 2.61E+03 | 2.64E+03 | 2.63E+03 | 2.61E+03 | 2.61E+03 | 2.63E+03 | 2.73E+03 | 2.64E+03 | 2.64E+03 | |
worst | 2.60E+03 | 2.75E+03 | 2.62E+03 | 2.77E+03 | 2.67E+03 | 2.63E+03 | 2.62E+03 | 2.65E+03 | 2.94E+03 | 2.66E+03 | 2.67E+03 | |
std | 1.40E+00 | 3.58E+01 | 2.70E+00 | 6.62E+01 | 2.25E+01 | 1.18E+01 | 7.18E+00 | 9.79E+00 | 1.05E+02 | 9.53E+00 | 1.48E+01 | |
median | 2.60E+03 | 2.70E+03 | 2.61E+03 | 2.75E+03 | 2.65E+03 | 2.62E+03 | 2.61E+03 | 2.64E+03 | 2.76E+03 | 2.64E+03 | 2.66E+03 | |
rank | 1 | 9 | 3 | 10 | 7 | 4 | 2 | 5 | 11 | 6 | 8 | |
C17-F24 | mean | 2.63E+03 | 2.86E+03 | 2.63E+03 | 2.67E+03 | 2.77E+03 | 2.69E+03 | 2.75E+03 | 2.76E+03 | 2.75E+03 | 2.77E+03 | 2.73E+03 |
best | 2.52E+03 | 2.83E+03 | 2.62E+03 | 2.52E+03 | 2.74E+03 | 2.50E+03 | 2.73E+03 | 2.75E+03 | 2.50E+03 | 2.76E+03 | 2.53E+03 | |
worst | 2.73E+03 | 2.92E+03 | 2.64E+03 | 2.81E+03 | 2.79E+03 | 2.76E+03 | 2.77E+03 | 2.77E+03 | 2.90E+03 | 2.79E+03 | 2.81E+03 | |
std | 1.24E+02 | 4.34E+01 | 7.70E+00 | 1.68E+02 | 2.28E+01 | 1.31E+02 | 1.84E+01 | 7.73E+00 | 1.84E+02 | 1.43E+01 | 1.39E+02 | |
median | 2.64E+03 | 2.84E+03 | 2.63E+03 | 2.67E+03 | 2.76E+03 | 2.74E+03 | 2.75E+03 | 2.76E+03 | 2.80E+03 | 2.77E+03 | 2.78E+03 | |
rank | 1 | 11 | 2 | 3 | 9 | 4 | 7 | 8 | 6 | 10 | 5 | |
C17-F25 | mean | 2.93E+03 | 3.29E+03 | 2.92E+03 | 3.14E+03 | 2.91E+03 | 2.92E+03 | 2.94E+03 | 2.93E+03 | 2.92E+03 | 2.92E+03 | 2.95E+03 |
best | 2.90E+03 | 3.22E+03 | 2.91E+03 | 2.90E+03 | 2.76E+03 | 2.90E+03 | 2.92E+03 | 2.92E+03 | 2.90E+03 | 2.90E+03 | 2.94E+03 | |
worst | 2.95E+03 | 3.37E+03 | 2.92E+03 | 3.68E+03 | 2.96E+03 | 2.94E+03 | 2.95E+03 | 2.95E+03 | 2.94E+03 | 2.95E+03 | 2.96E+03 | |
std | 2.45E+01 | 6.63E+01 | 4.38E+00 | 3.88E+02 | 1.05E+02 | 2.71E+01 | 1.31E+01 | 2.16E+01 | 2.53E+01 | 2.83E+01 | 1.08E+01 | |
median | 2.94E+03 | 3.28E+03 | 2.92E+03 | 2.99E+03 | 2.95E+03 | 2.92E+03 | 2.94E+03 | 2.93E+03 | 2.92E+03 | 2.92E+03 | 2.95E+03 | |
rank | 6 | 11 | 2 | 10 | 1 | 3 | 8 | 7 | 4 | 5 | 9 | |
C17-F26 | mean | 2.90E+03 | 3.79E+03 | 3.02E+03 | 3.65E+03 | 3.19E+03 | 2.90E+03 | 3.28E+03 | 3.22E+03 | 3.89E+03 | 2.90E+03 | 2.90E+03 |
best | 2.90E+03 | 3.45E+03 | 2.89E+03 | 3.15E+03 | 2.93E+03 | 2.90E+03 | 2.97E+03 | 2.91E+03 | 2.80E+03 | 2.80E+03 | 2.70E+03 | |
worst | 2.90E+03 | 4.13E+03 | 3.31E+03 | 4.32E+03 | 3.62E+03 | 2.90E+03 | 3.94E+03 | 3.91E+03 | 4.40E+03 | 3.01E+03 | 3.12E+03 | |
std | 3.94E-13 | 3.13E+02 | 2.07E+02 | 6.04E+02 | 3.20E+02 | 3.93E-02 | 4.74E+02 | 4.93E+02 | 7.84E+02 | 9.08E+01 | 2.24E+02 | |
median | 2.90E+03 | 3.78E+03 | 2.93E+03 | 3.56E+03 | 3.11E+03 | 2.90E+03 | 3.10E+03 | 3.02E+03 | 4.19E+03 | 2.90E+03 | 2.89E+03 | |
rank | 2 | 10 | 5 | 9 | 6 | 3 | 8 | 7 | 11 | 4 | 1 | |
C17-F27 | mean | 3.09E+03 | 3.24E+03 | 3.11E+03 | 3.18E+03 | 3.20E+03 | 3.09E+03 | 3.12E+03 | 3.12E+03 | 3.23E+03 | 3.14E+03 | 3.16E+03 |
best | 3.09E+03 | 3.13E+03 | 3.09E+03 | 3.10E+03 | 3.18E+03 | 3.09E+03 | 3.09E+03 | 3.10E+03 | 3.22E+03 | 3.10E+03 | 3.12E+03 | |
worst | 3.09E+03 | 3.43E+03 | 3.14E+03 | 3.23E+03 | 3.21E+03 | 3.10E+03 | 3.18E+03 | 3.17E+03 | 3.25E+03 | 3.19E+03 | 3.22E+03 | |
std | 2.79E-13 | 1.44E+02 | 2.15E+01 | 5.94E+01 | 1.27E+01 | 2.71E+00 | 4.44E+01 | 4.11E+01 | 1.65E+01 | 3.98E+01 | 4.62E+01 | |
median | 3.09E+03 | 3.19E+03 | 3.10E+03 | 3.20E+03 | 3.20E+03 | 3.09E+03 | 3.10E+03 | 3.10E+03 | 3.23E+03 | 3.13E+03 | 3.15E+03 | |
rank | 1 | 11 | 3 | 8 | 9 | 2 | 5 | 4 | 10 | 6 | 7 | |
C17-F28 | mean | 3.10E+03 | 3.80E+03 | 3.22E+03 | 3.60E+03 | 3.29E+03 | 3.24E+03 | 3.35E+03 | 3.33E+03 | 3.46E+03 | 3.31E+03 | 3.25E+03 |
best | 3.10E+03 | 3.72E+03 | 3.17E+03 | 3.42E+03 | 3.15E+03 | 3.10E+03 | 3.20E+03 | 3.22E+03 | 3.45E+03 | 3.18E+03 | 3.15E+03 | |
worst | 3.10E+03 | 3.86E+03 | 3.25E+03 | 3.82E+03 | 3.40E+03 | 3.40E+03 | 3.42E+03 | 3.40E+03 | 3.48E+03 | 3.40E+03 | 3.53E+03 | |
std | 0.00E+00 | 7.21E+01 | 3.88E+01 | 2.18E+02 | 1.34E+02 | 1.76E+02 | 1.11E+02 | 9.24E+01 | 1.61E+01 | 1.06E+02 | 1.96E+02 | |
median | 3.10E+03 | 3.81E+03 | 3.24E+03 | 3.58E+03 | 3.31E+03 | 3.24E+03 | 3.40E+03 | 3.36E+03 | 3.46E+03 | 3.33E+03 | 3.17E+03 | |
rank | 1 | 11 | 2 | 10 | 5 | 3 | 8 | 7 | 9 | 6 | 4 | |
C17-F29 | mean | 3.13E+03 | 3.38E+03 | 3.21E+03 | 3.24E+03 | 3.36E+03 | 3.21E+03 | 3.27E+03 | 3.22E+03 | 3.35E+03 | 3.27E+03 | 3.24E+03 |
best | 3.13E+03 | 3.31E+03 | 3.17E+03 | 3.17E+03 | 3.24E+03 | 3.14E+03 | 3.19E+03 | 3.17E+03 | 3.24E+03 | 3.17E+03 | 3.19E+03 | |
worst | 3.13E+03 | 3.45E+03 | 3.25E+03 | 3.31E+03 | 3.51E+03 | 3.29E+03 | 3.39E+03 | 3.24E+03 | 3.65E+03 | 3.36E+03 | 3.29E+03 | |
std | 2.64E+00 | 7.84E+01 | 3.79E+01 | 6.30E+01 | 1.20E+02 | 6.70E+01 | 9.89E+01 | 3.58E+01 | 2.12E+02 | 9.02E+01 | 4.52E+01 | |
median | 3.13E+03 | 3.39E+03 | 3.20E+03 | 3.24E+03 | 3.34E+03 | 3.19E+03 | 3.25E+03 | 3.23E+03 | 3.26E+03 | 3.28E+03 | 3.24E+03 | |
rank | 1 | 11 | 3 | 5 | 10 | 2 | 7 | 4 | 9 | 8 | 6 | |
C17-F30 | mean | 3.42E+03 | 3.78E+06 | 4.27E+05 | 6.33E+05 | 1.02E+06 | 3.12E+05 | 9.63E+05 | 6.23E+04 | 8.06E+05 | 3.99E+05 | 1.57E+06 |
best | 3.39E+03 | 8.52E+05 | 1.63E+04 | 1.16E+05 | 4.50E+03 | 7.56E+03 | 3.45E+04 | 3.01E+04 | 6.19E+05 | 6.48E+03 | 5.41E+05 | |
worst | 3.44E+03 | 5.98E+06 | 6.30E+05 | 1.34E+06 | 3.86E+06 | 1.19E+06 | 1.39E+06 | 1.05E+05 | 1.03E+06 | 7.90E+05 | 3.58E+06 | |
std | 2.95E+01 | 2.28E+06 | 2.96E+05 | 5.51E+05 | 2.01E+06 | 6.21E+05 | 6.78E+05 | 3.87E+04 | 1.81E+05 | 4.80E+05 | 1.52E+06 | |
median | 3.42E+03 | 4.15E+06 | 5.31E+05 | 5.39E+05 | 1.12E+05 | 2.53E+04 | 1.21E+06 | 5.73E+04 | 7.87E+05 | 3.99E+05 | 1.08E+06 | |
rank | 1 | 11 | 5 | 6 | 9 | 3 | 8 | 2 | 7 | 4 | 10 | |
Sum rank | 37 | 294 | 99 | 251 | 213 | 106 | 173 | 175 | 210 | 167 | 179 | |
Mean rank | 1.28E+00 | 1.01E+01 | 3.41E+00 | 8.66E+00 | 7.34E+00 | 3.66E+00 | 5.97E+00 | 6.03E+00 | 7.24E+00 | 5.76E+00 | 6.17E+00 | |
Total rank | 1 | 11 | 2 | 10 | 9 | 3 | 5 | 6 | 8 | 4 | 7 |
DP | GOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TCS | mean | 0.012602 | 0.013292 | 0.012677 | 0.012992 | 0.01332 | 0.016708 | 0.012738 | 0.018401 | 0.019829 | 2.21E+13 | 1.73E+12 |
best | 0.012602 | 0.013206 | 0.012677 | 0.012695 | 0.012683 | 0.012768 | 0.012683 | 0.017838 | 0.013115 | 0.017729 | 0.01826 | |
worst | 0.012602 | 0.013444 | 0.012677 | 0.013588 | 0.014618 | 0.018229 | 0.012975 | 0.019043 | 0.033208 | 3.93E+14 | 1.79E+13 | |
std | 7.63E-18 | 8.14E-05 | 3.34E-09 | 0.000283 | 0.000709 | 0.001933 | 6.49E-05 | 0.00042 | 0.004999 | 9.75E+13 | 5.73E+12 | |
median | 0.012602 | 0.01327 | 0.012677 | 0.012914 | 0.01311 | 0.017677 | 0.012736 | 0.018354 | 0.019378 | 0.017729 | 0.026318 | |
rank | 1 | 5 | 2 | 4 | 6 | 7 | 3 | 8 | 9 | 11 | 10 | |
WB | mean | 1.72468 | 2.216423 | 1.726575 | 1.746197 | 2.354864 | 1.744131 | 1.729149 | 3.57E+13 | 2.497481 | 4.92E+13 | 1.21E+13 |
best | 1.72468 | 1.995372 | 1.726575 | 1.73622 | 1.830046 | 1.730342 | 1.727295 | 3.119519 | 2.112272 | 4.191127 | 2.837774 | |
worst | 1.72468 | 2.589229 | 1.726575 | 1.756055 | 4.215966 | 1.780406 | 1.733486 | 3.44E+14 | 2.828401 | 2.98E+14 | 1.31E+14 | |
std | 2.53E-16 | 0.171437 | 3.99E-09 | 0.006667 | 0.76323 | 0.016362 | 0.001621 | 9.65E+13 | 0.227781 | 1.04E+14 | 4.11E+13 | |
median | 1.72468 | 2.189572 | 1.726575 | 1.7463 | 2.113632 | 1.739766 | 1.728886 | 5.980438 | 2.529163 | 7.094138 | 5.944616 | |
rank | 1 | 6 | 2 | 5 | 7 | 4 | 3 | 10 | 8 | 11 | 9 | |
SR | mean | 2996.348 | 3300.259 | 2999.345 | 3037.742 | 3164.274 | 3035.264 | 3008.222 | 7.46E+13 | 3491.113 | 1.1E+14 | 5.3E+13 |
best | 2996.348 | 3199.444 | 2999.345 | 3018.152 | 3044.306 | 3012.098 | 3004.887 | 5439.3 | 3185.38 | 3327.892 | 3375.447 | |
worst | 2996.348 | 3362.826 | 2999.345 | 3052.476 | 3480.881 | 3078.566 | 3014.622 | 5.4E+14 | 4157.493 | 5.58E+14 | 3.42E+14 | |
std | 1.03E-12 | 68.44571 | 3.79E-06 | 12.06662 | 126.4984 | 15.77681 | 2.983754 | 1.38E+14 | 312.033 | 1.48E+14 | 9.26E+13 | |
median | 2996.348 | 3316.223 | 2999.345 | 3039.661 | 3128.502 | 3035.736 | 3007.666 | 2.92E+13 | 3351.996 | 7.88E+13 | 2.12E+13 | |
rank | 1 | 7 | 2 | 5 | 6 | 4 | 3 | 10 | 8 | 11 | 9 | |
PV | mean | 5882.895 | 13,838.04 | 5888.784 | 6361.634 | 8465.669 | 6662.434 | 6046.469 | 33,159.47 | 23,866.74 | 34,881.96 | 29,693.68 |
best | 5882.895 | 8174.803 | 5888.784 | 5921.028 | 6361.305 | 6036.095 | 5897.686 | 11,886.59 | 13,320.2 | 10,901.6 | 12,024.12 | |
worst | 5882.895 | 23,072.84 | 5888.784 | 7186.495 | 14,320.11 | 7310.76 | 6848.651 | 72,180.9 | 37,826.84 | 60,489.28 | 54,178.55 | |
std | 2.07E-12 | 4223.96 | 4.97E-06 | 450.0219 | 2271.864 | 432.6787 | 323.3558 | 18,634.81 | 9065.95 | 17,445.68 | 14,627.29 | |
median | 5882.895 | 12,612.46 | 5888.784 | 6206.324 | 7955.339 | 6728.311 | 5907.843 | 29,142.83 | 22,876.3 | 38,562.36 | 26,190.2 | |
rank | 1 | 7 | 2 | 4 | 6 | 5 | 3 | 10 | 8 | 11 | 9 | |
Sum rank | 4 | 25 | 8 | 18 | 25 | 20 | 12 | 38 | 33 | 44 | 37 | |
Mean rank | 1 | 6.25 | 2 | 4.5 | 6.25 | 5 | 3 | 9.5 | 8.25 | 11 | 9.25 | |
Total ranking | 1 | 6 | 2 | 4 | 6 | 5 | 3 | 9 | 7 | 10 | 8 |
Compared Algorithm | Objective Function Type | ||||
---|---|---|---|---|---|
F1 to F7 | F8 to F13 | F14 to F23 | CEC 2017 | Engineering Problems | |
GOA vs. RSA | 3.6E-21 | 1.97E-21 | 1.97E-21 | 1.97E-21 | 2.79E-07 |
GOA vs. MPA | 2.43E-05 | 4.35E-10 | 1.49E-11 | 3.34E-15 | 6.24E-06 |
GOA vs. TSA | 7.23E-21 | 1.97E-21 | 1.97E-21 | 1.97E-21 | 1.37E-07 |
GOA vs. WOA | 9.04E-21 | 1.97E-21 | 1.97E-21 | 1.97E-21 | 1.84E-07 |
GOA vs. MVO | 8.04E-17 | 5.13E-19 | 5.68E-20 | 6.41E-20 | 4.64E-07 |
GOA vs. GWO | 1.44E-18 | 9.98E-21 | 5.64E-21 | 9.5E-21 | 1.49E-06 |
GOA vs. TLBO | 7.06E-20 | 1.97E-21 | 1.97E-21 | 1.97E-21 | 2.28E-07 |
GOA vs. GSA | 3.02E-20 | 2.87E-21 | 1.97E-21 | 1.97E-21 | 3.57E-08 |
GOA vs. PSO | 6.25E-20 | 9.98E-21 | 1.72E-20 | 2.24E-21 | 7.06E-07 |
GOA vs. GA | 3.09E-20 | 1.97E-21 | 2.02E-21 | 1.97E-21 | 1.59E-07 |
Algorithm | Mean (Dollar) | Best (Dollar) | Worst (Dollar) | Std (Dollar) | Median (Dollar) | Rank |
---|---|---|---|---|---|---|
GOA | 2.1148E07 | 2.1056E07 | 2.1297E07 | 7.5142E01 | 2.1137E07 | 1 |
GA | 8.5146E08 | 8.4236E08 | 8.5891E08 | 2.6145E06 | 8.4809E08 | 11 |
PSO | 5.2158E08 | 5.0369E08 | 5.2621E08 | 1.2485E06 | 5.1262E08 | 10 |
GSA | 6.7624E07 | 6.4512E07 | 6.8002E07 | 5.2176E04 | 6.4849E07 | 9 |
TLBO | 3.2648E07 | 3.0914E07 | 3.2861E07 | 7.5423E03 | 3.1562E07 | 8 |
GWO | 2.7592E07 | 2.5627E07 | 2.7806E07 | 8.6427E02 | 2.6208E07 | 7 |
MVO | 2.4257E07 | 2.1045E07 | 2.4614E07 | 6.5654E02 | 2.2162E07 | 6 |
WOA | 2.1739E07 | 2.1296E07 | 2.2146E07 | 2.7865E02 | 2.1428E07 | 3 |
MPA | 2.2365E07 | 2.1624E07 | 2.2948E07 | 1.4552E02 | 2.2061E07 | 5 |
TSA | 2.1562E07 | 2.1204E07 | 2.1854E07 | 1.6254E02 | 2.1454E07 | 2 |
RSA | 2.1851E07 | 2.1425E07 | 2.2004E07 | 1.1986E02 | 2.1619E07 | 4 |
Algorithm | Mean (Dollar) | Best (Dollar) | Worst (Dollar) | Std (Dollar) | Median (Dollar) | Rank |
---|---|---|---|---|---|---|
GOA | 2.34E+07 | 2.28E+07 | 2.55E+07 | 8.24E+01 | 2.29E+07 | 1 |
GA | 9.79E+08 | 9.48E+08 | 9.94E+08 | 2.94E+06 | 9.60E+08 | 11 |
PSO | 6.41E+08 | 6.10E+08 | 6.58E+08 | 1.34E+06 | 6.31E+08 | 10 |
GSA | 8.59E+07 | 8.49E+07 | 8.71E+07 | 5.89E+04 | 8.55E+07 | 9 |
TLBO | 4.27E+07 | 4.10E+07 | 4.48E+07 | 7.99E+03 | 4.25E+07 | 8 |
GWO | 3.24E+07 | 3.00E+07 | 3.28E+07 | 9.37E+02 | 3.19E+07 | 7 |
MVO | 3.21E+07 | 3.05E+07 | 3.34E+07 | 6.96E+02 | 3.18E+07 | 6 |
WOA | 2.78E+07 | 2.73E+07 | 2.84E+07 | 2.97E+02 | 2.76E+07 | 5 |
MPA | 2.66E+07 | 2.59E+07 | 2.69E+07 | 1.66E+02 | 2.64E+07 | 3 |
TSA | 2.68E+07 | 2.64E+07 | 2.70E+07 | 1.83E+02 | 2.65E+07 | 4 |
RSA | 2.46E+07 | 2.37E+07 | 2.58E+07 | 1.30E+02 | 2.40E+07 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montazeri, Z.; Niknam, T.; Aghaei, J.; Malik, O.P.; Dehghani, M.; Dhiman, G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics 2023, 8, 386. https://doi.org/10.3390/biomimetics8050386
Montazeri Z, Niknam T, Aghaei J, Malik OP, Dehghani M, Dhiman G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics. 2023; 8(5):386. https://doi.org/10.3390/biomimetics8050386
Chicago/Turabian StyleMontazeri, Zeinab, Taher Niknam, Jamshid Aghaei, Om Parkash Malik, Mohammad Dehghani, and Gaurav Dhiman. 2023. "Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience" Biomimetics 8, no. 5: 386. https://doi.org/10.3390/biomimetics8050386
APA StyleMontazeri, Z., Niknam, T., Aghaei, J., Malik, O. P., Dehghani, M., & Dhiman, G. (2023). Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics, 8(5), 386. https://doi.org/10.3390/biomimetics8050386