Bridging the Gap: From Biomechanics and Functional Morphology of Plants to Biomimetic Developments
1. Introduction
2. Broad Spectrum of Topics
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Speck, T.; Speck, O. Quo vadis plant biomechanics–Old wine in new bottles or an up-and-coming field of modern plant science? Am. J. Bot. 2019, 106, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speck, O.; Speck, T. Functional morphology of plants—A key to biomimetic applications. New Phytol. 2021, 231, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mat. 2015, 14, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Niklas, K.J.; Walker, I.D. The challenges of inferring organic function from structure and its emulation in biomechanics and biomimetics. Biomimetics 2021, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Wunnenberg, J.; Rjosk, A.; Neinhuis, C.; Lautenschläger, T. Strengthening structures in the petiole–lamina junction of peltate leaves. Biomimetics 2021, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Masselter, T.; Speck, O.; Speck, T. 3D reticulated actuator inspired by plant up-righting movement through a cortical fiber network. Biomimetics 2021, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Klang, K.; Nickel, K.G. The plant-like structure of lance sea urchin spines as biomimetic concept generator for freeze-casted structural graded ceramics. Biomimetics 2021, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Poppinga, S.; Schenck, P.; Speck, O.; Speck, T.; Bruchmann, B.; Masselter, T. Self-actuated paper and wood models: Low-cost handcrafted biomimetic compliant systems for research and teaching. Biomimetics 2021, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Mühlich, M.; González, E.A.; Born, L.; Körner, A.; Schwill, L.; Gresser, G.T.; Knippers, J. Deformation behavior of elastomer-glass fiber-reinforced plastics in dependence of pneumatic actuation. Biomimetics 2021, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Krüger, F.; Thierer, R.; Tahouni, Y.; Sachse, R.; Wood, D.; Menges, A.; Bischoff, M.; Rühe, J. Development of a material design space for 4D-printed bio-inspired hygroscopically actuated bilayer structures with unequal effective layer widths. Biomimetics 2021, 6, 58. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speck, O.; Speck, T. Bridging the Gap: From Biomechanics and Functional Morphology of Plants to Biomimetic Developments. Biomimetics 2021, 6, 60. https://doi.org/10.3390/biomimetics6040060
Speck O, Speck T. Bridging the Gap: From Biomechanics and Functional Morphology of Plants to Biomimetic Developments. Biomimetics. 2021; 6(4):60. https://doi.org/10.3390/biomimetics6040060
Chicago/Turabian StyleSpeck, Olga, and Thomas Speck. 2021. "Bridging the Gap: From Biomechanics and Functional Morphology of Plants to Biomimetic Developments" Biomimetics 6, no. 4: 60. https://doi.org/10.3390/biomimetics6040060
APA StyleSpeck, O., & Speck, T. (2021). Bridging the Gap: From Biomechanics and Functional Morphology of Plants to Biomimetic Developments. Biomimetics, 6(4), 60. https://doi.org/10.3390/biomimetics6040060