Biomimetic Urban and Architectural Design: Illustrating and Leveraging Relationships between Ecosystem Services
Abstract
:1. Introduction
1.1. The Importance of Ecosystem Services
1.2. Ecosystem Services and Urban Environments
1.3. Producing Urban Ecosystem Services: Design Approaches
1.3.1. Ecosystem Services Analysis and Pre-Development Ecological Baselines
1.3.2. Analogous Ecosystem Methods
1.3.3. Interactive Procedural Modelling for Urban Ecosystem Services
1.3.4. Ecosystem Services Apps and Programmes
2. Materials and Methods
2.1. Step One: Defining Ecosystem Services
2.2. Step Two: Examining Known Relationships between Ecosystem Services
2.3. Step Three: Illustrating Relationships between Ecosystem Services
3. Results: Illustrating Relationships between Ecosystem Services for a Design Context
4. Discussion: Understanding Relationships between Ecosystem Services for a Design Context
5. Benefits and Challenges of Ecosystem Services Design
6. Conclusions
Funding
Conflicts of Interest
References
- Grêt-Regamey, A.; Celio, E.; Klein, T.M.; Hayek, U.W. Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landsc. Urban Plan. 2013, 109, 107–116. [Google Scholar] [CrossRef]
- Van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Ruth, M.; Coelho, D. Understanding and managing the complexity of urban systems under climate change. Clim. Policy 2007, 7, 317–336. [Google Scholar] [CrossRef]
- Doughty, M.; Hammond, G. Sustainability and the Built Environment at and Beyond the City Scale. Build. Environ. 2004, 39, 1223–1233. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Shach-Pinsly, D.; Capeluto, I.G. From Form-Based to Performance-Based Codes. Sustainability 2020, 12, 5657. [Google Scholar] [CrossRef]
- Carmona, M.; Sieh, L. Measuring Quality in Planning: Managing the Performance Process; Spon Press: Oxon, UK, 2004. [Google Scholar]
- Hayes, S.; Desha, C.; Baumeister, D. Learning from nature—Biomimicry innovation to support infrastructure sustainability and resilience. Technol. Forecast. Soc. Chang. 2020, 161, 120287. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Regenerative Urban Design and Ecosystem Biomimicry; Routledge: Oxon, UK, 2018. [Google Scholar]
- Baumeister, D.; Pedersen Zari, M.; Hayes, S. Biomimicry: An Opportunity for Buildings to Relate to Place. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Connolly, P., Southcombe, M., Eds.; Routledge: Oxon, UK, 2020; pp. 85–95. [Google Scholar]
- Hayes, S.; Desha, C.; Gibbs, M.T. Findings of Case-Study Analysis: System-Level Biomimicry in Built-Environment Design. Biomimetics 2019, 4, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buck, N.T. The art of imitating life: The potential contribution of biomimicry in shaping the future of our cities. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 120–140. [Google Scholar] [CrossRef]
- Yeang, K. Ecological Design as the Biointegration of a Set of ‘Infrastructures’: The ‘Quatrobrid’ Constructed Ecosystem. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Connolly, P., Southcombe, M., Eds.; Routledge: Oxon, UK, 2020; pp. 44–48. [Google Scholar]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Lee, H.; Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 2016, 66, 340–351. [Google Scholar] [CrossRef]
- Pedersen Zari, M.; Hecht, K. Biomimicry for regenerative built environments: Mapping design strategies for producing ecosystem services. Biomimetics 2020, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.; Pauleit, S. From Multifunctionality to Multiple Ecosystem Services? A Conceptual Framework for Multifunctionality in Green Infrastructure Planning for Urban Areas. AMBIO 2014, 43, 516–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daily, G.C.; Soderqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Folke, C.; Jansson, A.; Jansson, B.; Kautsky, N.; et al. The Value of Nature and the Nature of Value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, R.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem function, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington DC, USA, 2005. [Google Scholar]
- Potschin, M.; Haines-Young, R.; Fish, R.; Turner, K. Ecosystem Services in the Twenty-First Century. In Routledge Handbook of Ecosystem Services; Routledge: London, UK, 2016. [Google Scholar]
- Martín-López, B.; Gómez-Baggethun, E.; García-Llorente, M.; Montes, C. Trade-offs across value-domains in ecosystem services assessment. Ecol. Indic. 2014, 37, 220–228. [Google Scholar] [CrossRef]
- Costanza, R.; Folke, C. Valuing Ecosystem Services with Efficiency, Fairness, and Sustainability as Goals. In Nature Services; Daily, G., Ed.; Island Press: Washington DC, USA, 1997. [Google Scholar]
- Jax, K.; Barton, D.N.; Chan, K.M.A.; De Groot, R.; Doyle, U.; Eser, U.; Görg, C.; Gómez-Baggethun, E.; Griewald, Y.; Haber, W.; et al. Ecosystem services and ethics. Ecol. Econ. 2013, 93, 260–268. [Google Scholar] [CrossRef]
- Turner, G. A Comparison of the Limits to Growth with Thirty Years of Reality; CSIRO: Canberra, Australia, 2008. [Google Scholar]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Diaz, S.; Whyte, A. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Norberg, J. Linking Nature’s services to ecosystems: Some general ecological concepts. Ecol. Econ. 1999, 29, 183–202. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Kilpatrick, A.M.; Salkeld, D.J.; Titcomb, G.; Hahn, M.B. Conservation of biodiversity as a strategy for improving human health and well-being. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, P.; Chapman, R.; Gyde, E.; Howden-Chapman, P.; Ombler, J.; Pedersen Zari, M.; Perry, M.; Randal, E. Green Space in Wellington’s Central City: Current Provision, and Design for Future Wellbeing; A Report for Wellington City Council; New Zealand Centre for Sustainable Cities: Wellington, New Zealand, 2019. [Google Scholar]
- Beatley, T. The Emergence of Biophilic Design and Planning: Re-Envisioning Cities and City Life. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Connolly, P., Southcombe, M., Eds.; Routledge: Oxon, UK, 2020; pp. 96–105. [Google Scholar]
- Frumkin, H.; Bratman, G.N.; Breslow, S.J.; Cochran, B.; Kahn, P.H., Jr.; Lawler, J.J.; Wood, S.A. Nature Contact and Human Health: A Research Agenda. Environ. Health Perspect. 2017, 125, 075001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botzat, A.; Fischer, L.K.; Kowarik, I. Unexploited opportunities in understanding liveable and biodiverse cities. A review on urban biodiversity perception and valuation. Glob. Environ. Chang. 2016, 39, 220–233. [Google Scholar] [CrossRef]
- Vierikko, K.; Elands, B.; Niemelä, J.; Andersson, E.; Buijs, A.; Fischer, L.K.; Haase, D.; Kabisch, N.; Kowarik, I.; Luz, A.C.; et al. Considering the ways biocultural diversity helps enforce the urban green infrastructure in times of urban transformation. Curr. Opin. Environ. Sustain. 2016, 22, 7–12. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.R.; Carpenter, S.R.; Vander Zanden, M.J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. USA 2016, 113, 4081–4085. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Elmqvist, T.; Gomez-Baggethun, E.; Langemeyer, J. Ecosystem Services Provided by Urban Green Infrastructure. In Routledge Handbook of Ecosystem Services; Routledge: London, UK, 2016. [Google Scholar]
- Pedersen Zari, M.; Kiddle, G.L.; Blaschke, P.; Gawler, S.; Loubser, D. Utilising nature-based solutions to increase resilience in Pacific Ocean Cities. Ecosyst. Serv. 2019, 38, 1–10. [Google Scholar] [CrossRef]
- Foley, R.; Kistemann, T. Blue space geographies: Enabling health in place. Health Place 2015, 35, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Birkeland, J. Positive Development: From Vicious Circles to Virtuous Cycles; Earthscan: London, UK, 2008. [Google Scholar]
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations Economic and Social Commission for Asia and the Pacific (ESCAP). Ocean Cities Regional Policy Guide; UNESCAP: Bangkok, Thailand, 2019. [Google Scholar]
- Pedersen Zari, M. Biomimetic design for climate change adaptation and mitigation. Arch. Sci. Rev. 2010, 53, 172–183. [Google Scholar] [CrossRef]
- Mckinney, M.L. Urbanization, Biodiversity, and Conservation. Bioscience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.W.; Chan, K.M.A.; von der Dunk, A. Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [Google Scholar] [CrossRef] [Green Version]
- Ellis, G.; Hunter, R.; Tully, M.A.; Donnelly, M.; Kelleher, L.; Kee, F. Connectivity and physical activity: Using footpath networks to measure the walkability of built environments. Environ. Plan. B Plan. Des. 2016, 43, 130–151. [Google Scholar] [CrossRef] [Green Version]
- Shach-Pinsly, D. Measuring security in the built environment: Evaluating urban vulnerability in a human-scale urban form. Landsc. Urban Plan. 2019, 191, 103412. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Biomimetic Urban Design: Ecosystem Service Provision of Water and Energy. Buildings 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Portland Development Commission. Lloyd Crossing: Sustainable Urban Design Plan and Catalyst Project; Portland Development Commission: Portland, OR, USA, 2004. [Google Scholar]
- Urban Greenprint. Seed Kit: Design Concepts Learned from Pacific Northwest Forests; Urban Greenprint: Seattle, WA, USA, 2017. [Google Scholar]
- Rossin, K.J. Biomimicry: Nature’s Design Process Versus the Designer’s Process. Wit Trans. Ecol. Environ. 2010, 138, 559–570. [Google Scholar]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Burkhard, B.; Maes, J. Mapping ecosystem services. Adv. Books 2017, 1, e12837. [Google Scholar]
- Delpy, F.; Pedersen Zari, M. Ecosystem services assessment tools for regenerative urban design in Oceania. Imaginable Futures: Design Thinking, and the Scientific Method. In Proceedings of the 54th International Conference of the Architectural Science Association, Auckland, New Zealand, 26–27 November 2020. [Google Scholar]
- Mouchet, M.A.; Lamarque, P.; Martín-López, B.; Crouzat, E.; Gos, P.; Byczek, C.; Lavorel, S. An interdisciplinary methodological guide for quantifying associations between ecosystem services. Glob. Environ. Chang. 2014, 28, 298–308. [Google Scholar] [CrossRef]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Chang. 2014, 28, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, trade-offs, and losses of ecosystem services in urban regions: An integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Pedersen Zari, M.; Connolly, P.; Southcombe, M. Ecologies Design: Transforming Architecture, Landscape, and Urbanism, Routledge Research in Sustainable Urbanism; Routledge: Oxon, UK, 2020. [Google Scholar]
- Archdaily. Nest We Grow. 2015. Available online: https://www.archdaily.com/592660/nest-we-grow-college-of-environmental-design-uc-berkeley-kengo-kuma-and-associates/ (accessed on 1 December 2019).
- Shell, S.; Gutierrez, O.; Fisher, L. Design for Deconstruction: The Chartwell School Case Study; US Environmental Protection Agency: Washington DC, USA, 2008. [Google Scholar]
- Leah, A. The Bullitt Centre: A ‘Living Building’. In Materials for a Healthy, Ecological and Sustainable Built Environment: Principles for Evaluation; Petrović, E.K., Vale, B., Pedersen Zari, M., Eds.; Routledge: Oxon, UK, 2017; pp. 357–371. [Google Scholar]
- Partington, J.; Pedersen Zari, M. Ngāi Tūhoe’s Te Kura Whare: Our Living Building. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Connolly, P., Southcombe, M., Eds.; Woodhead Publishing: Duxford, UK, 2020; pp. 96–105. [Google Scholar]
- Cerra, J.F. Emerging strategies for voluntary urban ecological stewardship on private property. Landsc. Urban Plan. 2017, 157, 586–597. [Google Scholar] [CrossRef]
- Utzinger, D.M.; Bradley, D.E. Integrating energy simulation into the design process of high performance buildings: A case study of the Aldo Leopold Legacy Center. Building Simulation’09. In Proceedings of the 11th International IBPSA Conference, Glasgow, Scotland, 27–30 July 2009; pp. 27–30. [Google Scholar]
- D’Arcy, P. When Bangkok Floods (and it Floods a Lot), This Park Does Something Amazing. TED Conferences. 2018. Available online: https://ideas.ted.com/when-bangkok-floods-and-it-floods-a-lot-this-park-does-something-amazing/ (accessed on 1 July 2019).
- Halilovic, M. Potential of air quality improvements in Sarajevo using innovative architecture approach. Period. Eng. Nat. Sci. 2017, 5. [Google Scholar] [CrossRef]
- Hes, D.; Bush, J. Designing for Living Environments Using Regenerative Development: A Case Study of The Paddock. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Connolly, P., Southcombe, M., Eds.; Routledge: Oxon, UK, 2020; pp. 96–105. [Google Scholar]
- Maguire, M. Affordable, developer-driven ecovillages: Meeting an unmet need. Communities 2017, 174, 54–57. [Google Scholar]
- Haines-Young, R.; Potschin, M. England’s Terrestrial Ecosystem Services and the Rationale for an Ecosystem Approach; DEFRA Overview Report Project Code NR0107; DEFRA: London, UK, 2008. [Google Scholar]
- Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pedersen Zari, M.; Jenkin, S. Value Case for a Sustainable Built Environment–Towards Regenerative Development; Ministry for the Environment: Wellington, New Zealand, 2008. [Google Scholar]
- The Economics of Ecosystems and Biodiversity (TEEB). TEEB Manual for Cities: Ecosystem Services in Urban Management; TEEB: Geneva, Switzerland, 2011. [Google Scholar]
- Martínez-Harms, M.J.; Balvanera, P. Methods for mapping ecosystem service supply: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 17–25. [Google Scholar] [CrossRef]
- Brown, B.; Harkness, T.; Johnston, D. Eco-revelatory design: Nature constructed/nature revealed. Landsc. J. 1998, 17, 15–17. [Google Scholar]
- Pedersen Zari, M. Utilizing Relationships Between Ecosystem Services, Built Environments, and Building Materials. In Materials for a Healthy, Ecological and Sustainable Built Environment: Principles for Evaluation; Petrović, E.K., Vale, B., Pedersen Zari, M., Eds.; Woodhead: Duxford, UK, 2017. [Google Scholar]
- Koellner, T.; Geyer, R. Global land use impact assessment on biodiversity and ecosystem services in LCA. Int. J. Life Cycle Assess. 2013, 18, 1185–1187. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Zhang, Y.; Singh, S.; Bakshi, B.R. Accounting for Ecosystem Services in Life Cycle Assessment, Part I: A Critical Review. Environ. Sci. Technol. 2010, 44, 2224–2232. [Google Scholar] [CrossRef] [PubMed]
1. Provisioning Services (P) | 2. Regulating Services (R) | 3. Supporting Services (S) | 4. Cultural Services (C) |
---|---|---|---|
P1 Food -Human (land/fresh water/marine) -Forage P2 Biochemicals -Medicines -Other P3 Raw materials -Timber -Fibre -Stone -Minerals/ores P4 Fuel/energy -Biomass -Solar -Hydro -Other P5 Fresh water -Consumption -Irrigation -Industrial processes P6 Genetic information | R1 Pollination and seed dispersal R2 Biological control -Pest/disease regulation -Invasive species resistance R3 Climate regulation -GHG regulation -UV protection -Moderation of temperature -Moderation of noise R4 Prevention of disturbance and moderation of extremes -Wind/wave/runoff modification -Mitigation of flood/drought/erosion R5 Decomposition -Waste removal R6 Purification -Water/air/soil | S1 Species maintenance -Biodiversity -Natural selection -Self organisation S2 Habitat provision -Habitat for organisms -Reproduction and nursery habitat S3 Nutrient cycling -Regulation of biogeochemical cycles -Retention of nutrients S4 Fixation of solar energy -Primary production/plant growth (above ground, below ground, marine, fresh water) S5 Soil building -Formation -Retention -Renewal of fertility -Quality control | C1 Education and knowledge C2 Aesthetic value and artistic inspiration C3 Recreation, relaxation and psychological wellbeing C4 Spiritual inspiration C5 Creation of a sense of place and relationship -Cultural diversity and history |
Selection of Design Strategies/Technologies to Increase Ecosystem Services | Scale * | Precedents | ||
---|---|---|---|---|
Provisioning Services | Provision of food & bio-chemicals (P1, P2) |
| N, U U, R - A-R A R | Nest We Grow, Hokkaido, Japan, 2014. College of Environmental Design UC Berkeley &. Kengo Kuma & Associates [63]. |
Raw materials (P3) |
| U A A, N, U U, R | Chartwell School, Seaside (CA), USA. 2007. EHDD Architecture & Taylor Engineering [64]. | |
Energy/Fuel (P4) |
| A A A-R A | Bullitt Centre, Seattle, USA, 2013. Miller Hull [65]. | |
Fresh water (P5) |
| A-R A, N A-R A-R A-U U, R | Te Kura Whare for Tūhoe, Tāneatua, New Zealand, 2014. Jasmax [66]. | |
Regulating Services | Pollination (R1) |
| A, N, U A-R A, N N, U | Pollinator Pathway Project, Seattle, USA. 2014. S. Bergmann [67]. |
Climate regulation (R3) |
| A, N, U U, R U, R A-R N, U | Aldo Leopold Legacy Center, Baraboo (WI), USA. 2007. Kubala Washatko Architects [68]. | |
Prevention of disturbance (R4) |
| A-R U, R U U, R | Chulalongkorn University Centennial Park, Bangkok, Thailand. 2017. by K. Voraakhom [69]. | |
Purification (R6) |
| U N, U U A, N A, N A N, U | Manuel Gea Gonzales Hospital, Mexico City, Mexico. 2014. Elegant Embellishments, Joshua Socolar, WiLaufs & Buro Happold [70]. | |
Supporting Services | Habitat provision (S1, S2, S4, S5, R2, P6) |
| U, R U, R U, R N, U A, N N, U, R | The Paddock, Castlemaine, Australia. Hes and Biourbem [71]. |
Nutrient cycling and decomposition (S3, R5) |
| U, R U, R R A A, N A-U A-U | ReGen Villages (concept). EFFEKT Architects [72]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedersen Zari, M. Biomimetic Urban and Architectural Design: Illustrating and Leveraging Relationships between Ecosystem Services. Biomimetics 2021, 6, 2. https://doi.org/10.3390/biomimetics6010002
Pedersen Zari M. Biomimetic Urban and Architectural Design: Illustrating and Leveraging Relationships between Ecosystem Services. Biomimetics. 2021; 6(1):2. https://doi.org/10.3390/biomimetics6010002
Chicago/Turabian StylePedersen Zari, Maibritt. 2021. "Biomimetic Urban and Architectural Design: Illustrating and Leveraging Relationships between Ecosystem Services" Biomimetics 6, no. 1: 2. https://doi.org/10.3390/biomimetics6010002
APA StylePedersen Zari, M. (2021). Biomimetic Urban and Architectural Design: Illustrating and Leveraging Relationships between Ecosystem Services. Biomimetics, 6(1), 2. https://doi.org/10.3390/biomimetics6010002