Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium
Abstract
:1. Introduction
2. Results
2.1. Sorbents Characteristics
2.2. Magnetic Properties
2.3. Sorption Properties
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tursi, A.; De Vietro, N.; Beneduci, A.; Milella, A.; Chidichimo, F.; Fracassi, F.; Chidichimo, G. Low pressure plasma functionalized cellulose fiber for the remediation of petroleum hydrocarbons polluted water. J. Hazard. Mater. 2019, 373, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Tursi, A.; Chatzisymeon, E.; Chidichimo, F.; Beneduci, A.; Chidichimo, G. Removal of Endocrine Disrupting Chemicals from Water: Adsorption of Bisphenol-A by Biobased Hydrophobic Functionalized Cellulose. Int. J. Environ. Res. Public Health 2018, 15, 2419. [Google Scholar] [CrossRef] [Green Version]
- Tursi, A.; Beneduci, A.; Chidichimo, F.; De Vietro, N.; Chidichimo, G. Remediation of hydrocarbons polluted water by hydrophobic functionalized cellulose. Chemosphere 2018, 201, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Arias Arias, F.E.; Beneduci, A.; Chidichimo, F.; Furia, E.; Straface, S. Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere 2017, 180, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef]
- Joseph, L.; Flora, J.R.V.; Park, Y.-G.; Badawy, M.; Saleh, H.; Yoon, Y. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Sep. Purif. Technol. 2012, 95, 64–72. [Google Scholar] [CrossRef]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Gerente, C.; Lee, V.K.C.; Cloirec, P.L.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption—Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 41–127. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—A short review. Adv. Colloid Interface Sci. 2009, 152, 26–38. [Google Scholar] [CrossRef]
- Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30, 38–70. [Google Scholar] [CrossRef]
- Liu, B.; Wang, D.; Yu, G.; Meng, X. Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives—A review. J. Ocean Univ. China 2013, 12, 500–508. [Google Scholar] [CrossRef]
- Elwakeel, K.Z. Environmental Application of Chitosan Resins for the Treatment of Water and Wastewater: A Review. J. Dispers. Sci. Technol. 2010, 31, 273–288. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Qu, J. Research progress of novel adsorption processes in water purification: A review. J. Environ. Sci. 2008, 20, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-enabled water and wastewater treatment. NanoImpact 2016, 3–4, 22–39. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Bringas, E.; Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 2014, 256, 187–204. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 2014, 160, 129–141. [Google Scholar] [CrossRef]
- Tolmacheva, V.V.; Apyari, V.V.; Kochuk, E.V.; Dmitrienko, S.G. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds. J. Anal. Chem. 2016, 71, 321–338. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Lee, S.-M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci. 2013, 201–202, 68–93. [Google Scholar] [CrossRef]
- Sarkar, S.; Guibal, E.; Quignard, F.; SenGupta, A.K. Polymer-supported metals and metal oxide nanoparticles: Synthesis, characterization, and applications. J. Nanoparticle Res. 2012, 14, 715. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, B.; Zhang, W.; Pan, B.; Zhang, Q.; Ren, H. Arsenate Removal from Aqueous Media by Nanosized Hydrated Ferric Oxide (HFO)-Loaded Polymeric Sorbents: Effect of HFO Loadings. Ind. Eng. Chem. Res. 2008, 47, 3957–3962. [Google Scholar] [CrossRef]
- Pastukhov, A.V.; Davankov, V.A.; Volkov, V.V.; Amarantov, S.V.; Lubentsova, K.I. Structure and sorption properties of hypercrosslinked polystyrenes and magnetic nanocomposite materials based on them. J. Polym. Res. 2014, 21, 406. [Google Scholar] [CrossRef]
- Möller, T.; Sylvester, P. Effect of silica and pH on arsenic uptake by resin/iron oxide hybrid media. Water Res. 2008, 42, 1760–1766. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Blaney, L.M.; Gupta, A.; Ghosh, D.; SenGupta, A.K. Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. React. Funct. Polym. 2007, 67, 1599–1611. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Y.; Cheng, Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq. 2016, 214, 175–191. [Google Scholar] [CrossRef]
- Gupta, A.; Chauhan, V.S.; Sankararamakrishnan, N. Preparation and evaluation of iron–chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res. 2009, 43, 3862–3870. [Google Scholar] [CrossRef]
- Dhoble, R.M.; Lunge, S.; Bhole, A.G.; Rayalu, S. Magnetic binary oxide particles (MBOP): A promising adsorbent for removal of As (III) in water. Water Res. 2011, 45, 4769–4781. [Google Scholar] [CrossRef]
- Liu, B.; Wang, D.; Li, H.; Xu, Y.; Zhang, L. As(III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As(III) as imprinted ions. Desalination 2011, 272, 286–292. [Google Scholar] [CrossRef]
- Zemskova, L.; Egorin, A.; Tokar, E.; Ivanov, V.; Bratskaya, S. New Chitosan/Iron Oxide Composites: Fabrication and Application for Removal of Sr2+ Radionuclide from Aqueous Solutions. Biomimetics 2018, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- De Pablo, J.; Rovira, M.; Giménez, J.; Casas, I.; Clarens, F. Magnetite Sorption Capacity for Strontium as a Function of pH. MRS Online Proc. Libr. Arch. 2008, 593, 1107. [Google Scholar] [CrossRef]
- Cheng, Z.; Gao, Z.; Ma, W.; Sun, Q.; Wang, B.; Wang, X. Preparation of magnetic Fe3O4 particles modified sawdust as the adsorbent to remove strontium ions. Chem. Eng. J. 2012, 209, 451–457. [Google Scholar] [CrossRef]
- Liu, C.-H.; Shih, Y.-J.; Huang, Y.-H.; Huang, C.-P. Kinetic and thermodynamic studies for adsorptive removal of Sr2+ using waste iron oxide. J. Taiwan Inst. Chem. Eng. 2014, 45, 914–920. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J. Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl. Eng. Des. 2012, 242, 445–451. [Google Scholar] [CrossRef]
- Crystallography Open Database. Available online: https://www.crystallography.net/cod/ (accessed on 26 March 2020).
- Egorin, A.; Tokar, E.; Kalashnikova, A.; Sokolnitskaya, T.; Tkachenko, I.; Matskevich, A.; Filatov, E.; Zemskova, L. Synthesis and Sorption Properties towards Sr-90 of Composite Sorbents Based on Magnetite and Hematite. Materials 2020, 13, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Samples | Sizes (nm) for 2θ Angles | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
20.3 | 20.9 | 21.5 | 30.2 | 30.3 | 34.5 | 35.5 | 35.6 | 35.3 | 35.6 | 35.9 | |
M | 9.7 | 7.9 | |||||||||
3M-2 | 5.9 | 6.4 | |||||||||
3M-4 | 12 | 5.2 | |||||||||
MAG | 27.8 | 25.2 | |||||||||
KU-MAG | 9.7 |
Sorbent | Washed-Out Iron Mass (mg) * | Washed-Out Iron Fraction (%) ** |
---|---|---|
3M | 0.1 | 0.02 |
3M-2 | 0.08 | 0.04 |
3M-4 | 0.18 | 0.17 |
KU-MAG | 0.12 | 0.23 |
Sorbent | Freundlich Equation | Langmuir Equation | Sips Equation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
KF | n | R2 | KL | Gmax | R2 | KLF | Gmax | n | R2 | |
3M | 0.002 ± 0.0002 | 0.488 ± 0.054 | 0.972 | 0.37 ± 0.05 | 0.009 ± 0.001 | 0.993 | 0.34 ± 0.08 | 0.009 ± 0.002 | 0.92 ± 0.15 | 0.994 |
3M-2 | 0.004 ± 0.0004 | 0.564 ± 0.064 | 0.973 | 0.26 ± 0.02 | 0.019 ± 0.001 | 0.998 | 0.017 ± 0.001 | 0.28 ± 0.03 | 1.1 ± 0.1 | 0.998 |
3M-4 | 0.005 ± 0.001 | 0.606 ± 0.044 | 0.989 | 0.18 ± 0.03 | 0.029 ± 0.003 | 0.993 | 0.14 ± 0.06 | 0.039 ± 0.016 | 0.85 ± 0.15 | 0.994 |
KU-MAG | 0.161 ± 0.001 | 0.443 ± 0.007 | 0.999 | 1.39 ± 0.47 | 0.31 ± 0.04 | 0.975 | 0.004 ± 0.075 | 43 ± 85 | 0.45 ± 0.0291 | 0.999 |
Sorbent | Matrix | Content of Inorganic Phase (wt. %) |
---|---|---|
3M | Chitosan | 42 |
3M-2 | Chitosan | 21 |
3M-4 | Chitosan | 10.5 |
KU-MAG | Styrene divinyl-benzene | 5.3 |
KU 2-8 | Styrene divinyl-benzene | - |
MAG | - | 1000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorin, A.; Tokar, E.; Matskevich, A.; Ivanov, N.; Tkachenko, I.; Sokolnitskaya, T.; Zemskova, L. Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium. Biomimetics 2020, 5, 22. https://doi.org/10.3390/biomimetics5020022
Egorin A, Tokar E, Matskevich A, Ivanov N, Tkachenko I, Sokolnitskaya T, Zemskova L. Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium. Biomimetics. 2020; 5(2):22. https://doi.org/10.3390/biomimetics5020022
Chicago/Turabian StyleEgorin, Andrei, Eduard Tokar, Anna Matskevich, Nikita Ivanov, Ivan Tkachenko, Tatiana Sokolnitskaya, and Larisa Zemskova. 2020. "Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium" Biomimetics 5, no. 2: 22. https://doi.org/10.3390/biomimetics5020022
APA StyleEgorin, A., Tokar, E., Matskevich, A., Ivanov, N., Tkachenko, I., Sokolnitskaya, T., & Zemskova, L. (2020). Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium. Biomimetics, 5(2), 22. https://doi.org/10.3390/biomimetics5020022