A Hybrid Black-Winged Kite Algorithm with PSO and Differential Mutation for Superior Global Optimization and Engineering Applications
Abstract
:1. Introduction
2. Black-Winged Kite Algorithm
2.1. Population Initialization
2.2. Attacking Behavior
2.3. Migration Behavior
3. Enhanced Black-Winged Kite Optimization
3.1. PSO
3.2. Random-Elite Difference Mutation
- (1)
- Random Selection for Mutation: A value for rand is randomly generated within the range [0, 1]. If rand > p, the mutation operation is triggered. Otherwise, the individual solution remains unchanged. This probabilistic approach ensures that not every individual undergoes mutation, promoting exploration and stability.
- (2)
- Mutation Formula: When mutation occurs, the new solution is computed using the following formula:is the current position vector of an individual.represents the global best solution found so far.is the matrix of all individuals in the population.F is a scaling factor that controls the magnitude of the mutation.is used to randomly select two different population members for the second mutation term.
Algorithm 1 BKAPI algorithm |
Require: : Population size. : Dimension of the problem. , : Upper and lower bounds for each dimension. T: Maximum number of iterations. : Objective function. Ensure: : The best quasi-optimal solution obtained by BKAPI for a given optimization problem. : The fitness value of the best solution.
|
3.3. Ablation Study of BKAPI
4. Experimental Analysis
4.1. Experimental Setting
4.2. Results and Analysis of the Test Functions for CEC 2017 with Dimensions of 10 and 100
4.3. Results and Analysis of the Test Functions for CEC 2022
5. Engineering Optimization Application
5.1. Welded Beam Project
5.2. Himmelblau Function
5.3. Visible Light Positioning (VLP) System
6. Conclusions and Prospects
- Algorithm Enhancement: The BKAPI faces challenges related to computational cost, scalability, parameter sensitivity, and premature convergence. Future research should focus on adaptive parameter tuning, hybridization with machine learning, parallel computing, and theoretical analysis to address these limitations and enhance its performance.
- Large-Scale Testing: The algorithm’s performance should be validated on large-scale industrial datasets to assess its scalability and efficiency in real-world scenarios.
- Extension to Constrained Optimization: The BKAPI should be extended to handle constrained optimization problems, which are ubiquitous in real-world applications. This could involve incorporating constraint-handling techniques such as penalty functions, feasibility rules, or multi-archive strategies, as discussed in recent works [63,64].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BKA | Black-Winged Kite Algorithm |
PSO | Particle Swarm Optimization |
BKAPI | Hybrid Black-Winged Kite Algorithm with Particle Swarm Optimization |
VLP | Visible Light Positioning |
References
- Dong, Y.; Sun, C.; Han, Y.; Liu, Q. Intelligent optimization: A novel framework to automatize multi-objective optimization of building daylighting and energy performances. J. Build. Eng. 2021, 43, 102804. [Google Scholar] [CrossRef]
- Kamal, M.; Tariq, M.; Srivastava, G.; Malina, L. Optimized security algorithms for intelligent and autonomous vehicular transportation systems. IEEE Trans. Intell. Transp. Syst. 2021, 24, 2038–2044. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.-G.; Gandomi, A.H. A survey of learning-based intelligent optimization algorithms. Arch. Comput. Methods Eng. 2021, 28, 3781–3799. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, C. Application and comparative study of optimization algorithms in financial investment portfolio problems. Mob. Inf. Syst. 2021, 2021, 3462715. [Google Scholar] [CrossRef]
- Zhou, Y.; Rao, B.; Wang, W. UAV swarm intelligence: Recent advances and future trends. IEEE Access 2020, 8, 183856–183878. [Google Scholar] [CrossRef]
- Tang, J.; Duan, H.; Lao, S. Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive review. Artif. Intell. Rev. 2023, 56, 4295–4327. [Google Scholar] [CrossRef]
- Zhou, M.C.; Cui, M.; Xu, D.; Zhu, S.; Zhao, Z.; Abusorrah, A. Evolutionary optimization methods for high-dimensional expensive problems: A survey. IEEE/CAA J. Autom. Sin. 2024, 11, 1092–1105. [Google Scholar] [CrossRef]
- Berahas, A.S.; Bollapragada, R.; Nocedal, J. An investigation of Newton-sketch and subsampled Newton methods. Optim. Methods Softw. 2020, 35, 661–680. [Google Scholar] [CrossRef]
- Li, M. Some New Descent Nonlinear Conjugate Gradient Methods for Unconstrained Optimization Problems with Global Convergence. Asia-Pac. J. Oper. Res. 2024, 41, 2350020. [Google Scholar] [CrossRef]
- Upadhyay, B.B.; Pandey, R.K.; Liao, S. Newton’s method for interval-valued multiobjective optimization problem. J. Ind. Manag. Optim. 2024, 20, 1633–1661. [Google Scholar] [CrossRef]
- Altay, E.V.; Alatas, B. Intelligent optimization algorithms for the problem of mining numerical association rules. Physica A 2020, 540, 123142. [Google Scholar] [CrossRef]
- Chandra, V.S.; Anand, H.S. Nature inspired meta heuristic algorithms for optimization problems. Computing 2022, 104, 251–269. [Google Scholar]
- Wang, T.; Huang, Q. A new Newton method for convex optimization problems with singular Hessian matrices. AIMS Math. 2023, 8, 21161–21175. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, X.; Chen, S. An improved Gray Wolf Optimization algorithm solving to functional optimization and engineering design problems. Sci. Rep. 2024, 14, 14190. [Google Scholar] [CrossRef] [PubMed]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on Genetic Algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Li, Y.; Lin, X.; Liu, J. An improved Gray Wolf Optimization algorithm to solve engineering problems. Sustainability 2021, 13, 3208. [Google Scholar] [CrossRef]
- Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved Differential Evolution algorithm and its application in optimization problem. Soft Comput. 2021, 25, 5277–5298. [Google Scholar] [CrossRef]
- Guilmeau, T.; Chouzenoux, E.; Elvira, V. Simulated annealing: A review and a new scheme. In Proceedings of the 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 11–14 July 2021. [Google Scholar]
- Cuong-Le, T.; Minh, H.-L.; Khatir, S.; Wahab, M.A.; Tran, M.T.; Mirjalili, S. A novel version of Cuckoo search algorithm for solving optimization problems. Expert Syst. Appl. 2021, 186, 115669. [Google Scholar] [CrossRef]
- Fidanova, S.; Fidanova, S. ACO for Image Edge Detection. In Ant Colony Optimization and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 101–107. [Google Scholar]
- Li, K.; Fialho, A.; Kwong, S.; Zhang, Q. Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2013, 18, 114–130. [Google Scholar] [CrossRef]
- Li, K.E.; Wang, R.; Kwong, S.A.M.; Cao, J. Evolving extreme learning machine paradigm with adaptive operator selection and parameter control. Int. J. Uncertainty Fuzziness-Knowl.-Based Syst. 2013, 21 (Suppl. 2), 143–154. [Google Scholar] [CrossRef]
- Yan, P.; Shang, S.; Zhang, C.; Yin, N.; Zhang, X.; Yang, G.; Zhang, Z.; Sun, Q. Research on the processing of coal mine water source data by optimizing BP neural network algorithm with sparrow search algorithm. IEEE Access 2021, 9, 108718–108730. [Google Scholar] [CrossRef]
- Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016, 274, 292–305. [Google Scholar] [CrossRef]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An overview of variants and advancements of PSO algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Mirsadeghi, E.; Khodayifar, S. Hybridizing Particle Swarm Optimization with simulated annealing and Differential Evolution. Cluster Comput. 2021, 24, 1135–1163. [Google Scholar] [CrossRef]
- Meng, Z.; Zhong, Y.; Yang, C. CS-DE: Cooperative strategy based Differential Evolution with population diversity enhancement. Inf. Sci. 2021, 577, 663–696. [Google Scholar] [CrossRef]
- Pan, J.-S.; Liu, N.; Chu, S.-C.; Lai, T. An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems. Inf. Sci. 2021, 561, 304–325. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Y.; Yu, Y.; He, X.; Li, H. Hybrid improved Particle Swarm Optimization-cuckoo search optimized fuzzy PID controller for micro gas turbine. Energy Rep. 2021, 7, 5446–5454. [Google Scholar] [CrossRef]
- Al-Tameemi, Z.H.A.; Lie, T.T.; Foo, G.; Blaabjerg, F. Optimal coordinated control of DC microgrid based on hybrid PSO–GWO algorithm. Electricity 2022, 3, 346–364. [Google Scholar] [CrossRef]
- Ahmad, I.; Qayum, F.; Rahman, S.U.; Srivastava, G. Using Improved Hybrid Grey Wolf Algorithm Based on Artificial Bee Colony Algorithm Onlooker and Scout Bee Operators for Solving Optimization Problems. Int. J. Comput. Intell. Syst. 2024, 17, 111. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.-C.; Hu, X.-X.; Qiu, L.; Zang, H.-F. Black-Winged Kite Algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems. Artif. Intell. Rev. 2024, 57, 98. [Google Scholar] [CrossRef]
- Ma, H.; Azizan, A.; Feng, Y.; Cheng, L.; Delgoshaei, A.; Ismail, M.I.S.; Ramli, H.R. Improved Black-Winged Kite Algorithm and finite element analysis for robot parallel gripper design. Adv. Mech. Eng. 2024, 16, 16878132241288402. [Google Scholar]
- Du, C.; Zhang, J.; Fang, J. An innovative complex-valued encoding Black-Winged Kite Algorithm for global optimization. Sci. Rep. 2025, 15, 932. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, A.Q.; Inan, O. Clustering with the Blackwinged Kite Algorithm. Int. J. Comput. Sci. Commun. (IJCSC) 2024, 9, 22–33. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Yue, Y. Heuristic Optimization Algorithm of Black-Winged Kite Fused with Osprey and Its Engineering Application. Biomimetics 2024, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Zhang, X.; Xu, X.; Zhang, J.; Cheng, D.; Wang, G. Multi-strategy Integration Model Based on Black-Winged Kite Algorithm and Artificial Rabbit Optimization. In Proceedings of the International Conference on Swarm Intelligence, Shenzhen, China, 17–19 July 2024; Springer: Cham, Switzerland, 2024; pp. 197–207. [Google Scholar]
- Zhao, M.; Su, Z.; Zhao, C.; Hua, Z. Improved Black-Winged Kite Algorithm based on chaotic mapping and adversarial learning. J. Phys. Conf. Ser. 2024, 2898, 012040. [Google Scholar] [CrossRef]
- Fu, J.; Song, Z.; Meng, J.; Wu, C. Prediction of Lithium-Ion Battery State of Health Using a Deep Hybrid Kernel Extreme Learning Machine Optimized by the Improved Black-Winged Kite Algorithm. Batteries 2024, 10, 398. [Google Scholar] [CrossRef]
- Kulkarni, A.J.; Siarry, P. Handbook of AI-Based Metaheuristics; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Moustafa, G.; Tolba, M.A.; El-Rifaie, A.M.; Ginidi, A.; Shaheen, A.M.; Abid, S. A Subtraction-Average-Based Optimizer for solving engineering problems with applications on TCSC allocation in power systems. Biomimetics 2023, 8, 332. [Google Scholar] [CrossRef]
- Moustafa, G.; Alnami, H.; Hakmi, S.H.; Ginidi, A.; Shaheen, A.M.; Al-Mufadi, F.A. An advanced bio-inspired Mantis Search Algorithm for characterization of PV panel and global optimization of its model parameters. Biomimetics 2023, 8, 490. [Google Scholar] [CrossRef]
- Hakmi, S.H.; Shaheen, A.M.; Alnami, H.; Moustafa, G.; Ginidi, A. Kepler Algorithm for large-scale systems of economic dispatch with heat optimization. Biomimetics 2023, 8, 608. [Google Scholar] [CrossRef]
- Gafar, M.; Sarhan, S.; Ginidi, A.R.; Shaheen, A.M. An Improved Bio-Inspired Material Generation Algorithm for engineering optimization problems including PV source penetration in distribution systems. Appl. Sci. 2025, 15, 603. [Google Scholar] [CrossRef]
- Irawan, Y.H.; Lin, P.T. Parametric optimization technique for continuous and combinational problems based on simulated annealing algorithm. J. Energy Mech. Mater. Manuf. Eng. 2023, 8, 75–82. [Google Scholar] [CrossRef]
- Zhong, X.; Duan, M.; Cheng, P. Ranking-based hierarchical random mutation in Differential Evolution. PLoS ONE 2021, 16, e0245887. [Google Scholar] [CrossRef]
- Zaini, F.A.; Sulaima, M.F.; Razak, I.A.W.A.; Zulkafli, N.I.; Mokhlis, H. A review on the applications of PSO-based algorithm in demand side management: Challenges and opportunities. IEEE Access 2023, 11, 53373–53400. [Google Scholar] [CrossRef]
- Jafari, S.; Bozorg-Haddad, O.; Chu, X. Cuckoo Optimization Algorithm (COA). Advanced Optimization by Nature-Inspired Algorithms; Springer: Berlin/Heidelberg, Germany, 2018; pp. 39–49. [Google Scholar]
- Zhong, C.; Li, G.; Meng, Z. Beluga Whale Optimization: A novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 2022, 251, 109215. [Google Scholar] [CrossRef]
- Tehrani, K.F.; Xu, J.; Zhang, Y.; Shen, P.; Kner, P. Adaptive Optics stochastic optical reconstruction microscopy (AO-STORM) using a Genetic Algorithm. Opt. Express 2015, 23, 13677–13692. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z.; Li, H.; Yildiz, A.R.; Mirjalili, S. Starfish Optimization Algorithm (SFOA): A bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers. Neural Comput. Appl. 2025, 37, 3641–3683. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics: Methodology and Distribution; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–202. [Google Scholar]
- Yazdani, D.; Mavrovouniotis, M.; Li, C.; Luo, W.; Omidvar, M.N.; Gandomi, A.H.; Nguyen, T.T.; Branke, J.; Li, X.; Yang, S. Competition on Dynamic Optimization Problems Generated by Generalized Moving Peaks Benchmark (GMPB). arXiv 2021, arXiv:2106.06174. [Google Scholar]
- Alkurdi, A.A. Optimization of Welded Beam Design Problem Using Water Evaporation Optimization Algorithm. Acad. J. Nawroz Univ. 2023, 12, 499–509. [Google Scholar] [CrossRef]
- Himmelblau, D.M. Applied Nonlinear Programming; McGraw-Hill: New York, NY, USA, 2018. [Google Scholar]
- He, F.; Fu, C.; He, Y.; Huo, S.; Tang, J.; Long, X. Improved dwarf mongoose optimization algorithm based on hybrid strategy for global optimization and engineering problems. J. Supercomput. 2025, 81, 483. [Google Scholar] [CrossRef]
- Rahimbaeva, E.; Mezina, A.; Belova, Y. Comparative study of the heuristic bioinspired algorithms effectiveness in the optimization of multi-extremal functions. AIP Conf. Proc. 2023, 2507, 050007. [Google Scholar]
- Yi, L.; Lee, S.G. Performance Improvement of Dimmable VLC System with Variable Pulse Amplitude and Position Modulation Control Scheme. In Proceedings of the 2014 International Conference on Wireless Communication and Sensor Network, Wuhan, China, 13–14 December 2014; pp. 81–85. [Google Scholar]
- Luckyarno, Y.F.; Cherntanomwong, P.; Wijaya, R. Posturometry data transmission using visible light communication. In Proceedings of the 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016; pp. 1–4. [Google Scholar]
- Jia, C.; Yang, T.; Wang, C.; Sun, M. High-accuracy 3D indoor visible light positioning method based on the improved adaptive cuckoo search algorithm. Arab. J. Sci. Eng. 2022, 47, 2479–2498. [Google Scholar]
- Wang, X. An intensified northern goshawk optimization algorithm for solving optimization problems. Eng. Res. Express 2024, 6, 045267. [Google Scholar] [CrossRef]
- Li, K.; Chen, R.; Fu, G.; Yao, X. Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Trans. Evol. Comput. 2018, 23, 303–315. [Google Scholar] [CrossRef]
- Wang, S.; Li, K. Constrained Bayesian optimization under partial observations: Balanced improvements and provable convergence. Proc. Aaai Conf. Artif. Intell. 2024, 38, 15607–15615. [Google Scholar] [CrossRef]
Func. | BKAPI | BKA | PSO | GA | COA | BWO | AO | SFOA |
---|---|---|---|---|---|---|---|---|
F1 | 5.0464 × 103 | 1.5145 × 108 | 1.2790 × 107 | 1.6664 × 107 | 3.8116 × 109 | 4.4097 × 109 | 1.1448 × 108 | 1.8762 × 105 |
F3 | 3.7433 × 10−11 | 1.6003 × 103 | 3.9216 × 101 | 2.1379 × 104 | 2.8050 × 103 | 2.9759 × 103 | 1.3958 × 103 | 1.1623 × 101 |
F4 | 2.8080 × 101 | 7.6158 × 101 | 2.2099 × 101 | 5.5817 × 101 | 5.5150 × 102 | 6.1985 × 102 | 3.6989 × 101 | 9.4219 |
F5 | 7.3213 | 1.6916 × 101 | 1.3267 × 101 | 1.6580 × 101 | 2.3751 × 101 | 1.6905 × 101 | 9.1983 | 7.1405 |
F6 | 2.1839 × 10−1 | 1.0964 × 101 | 7.7139 | 1.5626 × 101 | 8.7581 | 6.5523 | 6.5114 | 1.4954 |
F7 | 6.1033 | 2.1250 × 101 | 1.0046 × 101 | 3.8370 × 101 | 2.4738 × 101 | 1.4120 × 101 | 1.2983 × 101 | 1.4490 × 101 |
F8 | 7.3601 | 9.2051 | 1.0148 × 101 | 1.2611 × 101 | 8.6554 | 6.7476 | 8.9182 | 8.5151 |
F9 | 4.7548 | 1.2694 × 102 | 6.3308 × 101 | 2.2671 × 102 | 1.8608 × 102 | 2.1063 × 102 | 1.0356 × 102 | 2.6600 × 101 |
F10 | 3.2500 × 102 | 1.8461 × 102 | 3.1883 × 102 | 2.8035 × 102 | 1.7675 × 102 | 2.1546 × 102 | 3.3261 × 102 | 3.3115 × 102 |
F11 | 4.8805 × 101 | 4.2515 × 101 | 3.7330 × 101 | 8.3714 × 103 | 1.2837 × 103 | 5.9459 × 103 | 4.0757 × 102 | 6.3904 |
F12 | 1.7226 × 106 | 7.0995 × 105 | 1.4927 × 106 | 5.1580 × 106 | 2.0073 × 108 | 4.8231 × 108 | 4.2216 × 106 | 1.2198 × 104 |
F13 | 8.9421 × 103 | 1.3062 × 103 | 7.4830 × 103 | 1.0243 × 104 | 1.0985 × 104 | 3.5018 × 107 | 1.2377 × 104 | 2.3808 × 102 |
F14 | 1.3225 × 102 | 4.2050 × 101 | 4.3146 × 103 | 7.8841 × 103 | 2.9085 × 101 | 3.4428 × 102 | 1.6960 × 103 | 4.9984 |
F15 | 1.8812 × 103 | 8.3161 × 101 | 5.8859 × 103 | 8.8665 × 103 | 3.6689 × 103 | 2.3477 × 103 | 5.6589 × 103 | 2.6217 × 101 |
F16 | 1.1473 × 102 | 9.8940 × 101 | 1.4577 × 102 | 1.3478 × 102 | 1.4880 × 102 | 1.1463 × 102 | 1.3996 × 102 | 5.8275 × 101 |
F17 | 5.4768 × 101 | 2.1348 × 101 | 6.0177 × 101 | 3.5123 × 101 | 3.5999 × 101 | 3.4504 × 101 | 2.0671 × 101 | 1.5171 × 101 |
F18 | 1.6189 × 104 | 4.5761 × 103 | 1.3511 × 104 | 1.0191 × 104 | 1.3792 × 106 | 6.1287 × 108 | 1.1925 × 105 | 6.9965 × 101 |
F19 | 7.6337 × 103 | 2.6306 × 103 | 8.4864 × 103 | 1.1906 × 104 | 1.8340 × 104 | 1.0652 × 107 | 6.5601 × 104 | 5.5813 |
F20 | 4.6099 × 101 | 5.0520 × 101 | 9.0633 × 101 | 6.7195 × 101 | 5.8024 × 101 | 4.1409 × 101 | 5.7978 × 101 | 1.3454 × 101 |
F21 | 3.4899 × 101 | 7.1972 × 101 | 5.2179 × 101 | 3.2437 × 101 | 3.9614 × 101 | 6.9485 × 101 | 2.7548 × 101 | 6.5936 × 101 |
F22 | 2.3855 × 101 | 4.6529 × 101 | 2.1309 × 102 | 2.6350 × 102 | 4.3237 × 102 | 4.3150 × 102 | 8.2597 | 1.8371 × 101 |
F23 | 9.8477 | 1.8153 × 101 | 1.9001 × 101 | 2.3358 × 101 | 3.2453 × 101 | 3.3027 × 101 | 1.3969 × 101 | 7.9853 |
F24 | 8.9663 × 101 | 7.8188 × 101 | 1.0152 × 102 | 4.6834 × 101 | 6.1779 × 101 | 1.1091 × 102 | 7.5869 × 101 | 8.4826 × 101 |
F25 | 2.6453 × 101 | 5.8833 × 101 | 2.6868 × 101 | 5.9959 × 101 | 2.4807 × 102 | 3.0698 × 102 | 2.8520 × 101 | 2.4668 × 101 |
F26 | 3.0883 × 102 | 3.8933 × 102 | 4.1253 × 102 | 5.3401 × 102 | 3.7620 × 102 | 1.9171 × 102 | 1.6743 × 102 | 8.5319 × 101 |
F27 | 2.4819 × 101 | 2.3157 × 101 | 4.5813 × 101 | 5.1675 × 101 | 5.3861 × 101 | 5.7689 × 101 | 6.4917 | 1.1351 × 101 |
F28 | 1.5188 × 102 | 1.7391 × 102 | 1.1196 × 102 | 2.3199 × 102 | 1.3939 × 102 | 1.0777 × 102 | 9.8828 × 101 | 1.4011 × 102 |
F29 | 5.2242 × 101 | 5.6719 × 101 | 7.4825 × 101 | 6.9211 × 101 | 8.7135 × 101 | 9.4258 × 101 | 4.4585 × 101 | 4.7423 × 101 |
F30 | 1.4232 × 106 | 1.0522 × 106 | 4.9450 × 105 | 3.5079 × 106 | 5.7574 × 106 | 1.3829 × 107 | 2.0131 × 106 | 4.2247 × 105 |
Func. | BKAPI | BKA | PSO | GA | COA | BWO | AO | SFOA |
---|---|---|---|---|---|---|---|---|
F1 | 5.7144 × 103 | 2.7818 × 107 | 2.3374 × 106 | 8.4230 × 106 | 1.0105 × 1010 | 1.6695 × 1010 | 1.5082 × 108 | 2.2207 × 105 |
F3 | 3.0000 × 102 | 1.0821 × 103 | 3.0976 × 102 | 5.4669 × 104 | 1.2046 × 104 | 1.1962 × 104 | 4.5568 × 103 | 3.1345 × 102 |
F4 | 4.1266 × 102 | 4.3410 × 102 | 4.1483 × 102 | 4.8501 × 102 | 1.2231 × 103 | 1.8883 × 103 | 4.4643 × 102 | 4.0651 × 102 |
F5 | 5.1496 × 102 | 5.3467 × 102 | 5.3177 × 102 | 5.8888 × 102 | 5.8187 × 102 | 6.2033 × 102 | 5.3820 × 102 | 5.4020 × 102 |
F6 | 6.0008 × 102 | 6.2945 × 102 | 6.0824 × 102 | 6.6285 × 102 | 6.4253 × 102 | 6.6256 × 102 | 6.2424 × 102 | 6.0373 × 102 |
F7 | 7.2183 × 102 | 7.6051 × 102 | 7.3049 × 102 | 8.3445 × 102 | 8.0451 × 102 | 8.3673 × 102 | 7.6521 × 102 | 7.5763 × 102 |
F8 | 8.1329 × 102 | 8.2237 × 102 | 8.2086 × 102 | 8.8030 × 102 | 8.5356 × 102 | 8.6124 × 102 | 8.2507 × 102 | 8.4099 × 102 |
F9 | 9.0150 × 102 | 1.2102 × 103 | 9.3258 × 102 | 1.0153 × 103 | 1.4100 × 103 | 1.9390 × 103 | 1.1077 × 103 | 9.2572 × 102 |
F10 | 1.6796 × 103 | 1.8682 × 103 | 1.8948 × 103 | 2.5509 × 103 | 2.5722 × 103 | 2.6004 × 103 | 2.1646 × 103 | 2.1071 × 103 |
F11 | 1.1408 × 103 | 1.1551 × 103 | 1.1496 × 103 | 7.4309 × 103 | 2.3615 × 103 | 1.0362 × 104 | 1.4203 × 103 | 1.1190 × 103 |
F12 | 4.5173 × 105 | 2.0441 × 105 | 2.8908 × 105 | 5.2373 × 106 | 2.5052 × 108 | 6.8974 × 108 | 3.3312 × 106 | 8.8845 × 103 |
F13 | 9.7457 × 103 | 2.9486 × 103 | 9.3106 × 103 | 1.6640 × 104 | 1.5246 × 104 | 2.2063 × 107 | 2.2634 × 104 | 1.4287 × 103 |
F14 | 1.5448 × 103 | 1.4879 × 103 | 5.2661 × 103 | 8.7232 × 103 | 1.5219 × 103 | 1.8836 × 103 | 2.8204 × 103 | 1.4326 × 103 |
F15 | 2.5258 × 103 | 1.6583 × 103 | 6.0420 × 103 | 1.2770 × 104 | 5.8516 × 103 | 9.3150 × 103 | 9.3386 × 103 | 1.5379 × 103 |
F16 | 1.7225 × 103 | 1.7884 × 103 | 1.8611 × 103 | 1.9016 × 103 | 2.0390 × 103 | 2.2674 × 103 | 1.8753 × 103 | 1.6741 × 103 |
F17 | 1.7760 × 103 | 1.7665 × 103 | 1.7908 × 103 | 1.7836 × 103 | 1.8113 × 103 | 1.8570 × 103 | 1.7809 × 103 | 1.7668 × 103 |
F18 | 2.1646 × 104 | 4.5652 × 103 | 1.9866 × 104 | 1.6269 × 104 | 2.7169 × 105 | 5.6907 × 108 | 5.7860 × 104 | 1.8861 × 103 |
F19 | 6.3909 × 103 | 2.5461 × 103 | 9.1281 × 103 | 1.2543 × 104 | 1.2310 × 104 | 6.3083 × 106 | 4.6974 × 104 | 1.9095 × 103 |
F20 | 2.0629 × 103 | 2.1130 × 103 | 2.1265 × 103 | 2.2195 × 103 | 2.1859 × 103 | 2.2717 × 103 | 2.1485 × 103 | 2.0620 × 103 |
F21 | 2.3032 × 103 | 2.2793 × 103 | 2.3011 × 103 | 2.3849 × 103 | 2.3593 × 103 | 2.3560 × 103 | 2.3276 × 103 | 2.2963 × 103 |
F22 | 2.3006 × 103 | 2.3218 × 103 | 2.3363 × 103 | 2.5283 × 103 | 3.1260 × 103 | 3.1485 × 103 | 2.3212 × 103 | 2.3015 × 103 |
F23 | 2.6236 × 103 | 2.6356 × 103 | 2.6525 × 103 | 2.7017 × 103 | 2.7057 × 103 | 2.7371 × 103 | 2.6479 × 103 | 2.6287 × 103 |
F24 | 2.7236 × 103 | 2.7463 × 103 | 2.7341 × 103 | 2.8666 × 103 | 2.8774 × 103 | 2.9097 × 103 | 2.7520 × 103 | 2.7271 × 103 |
F25 | 2.9232 × 103 | 2.9500 × 103 | 2.9307 × 103 | 3.0512 × 103 | 3.4507 × 103 | 3.9118 × 103 | 2.9521 × 103 | 2.9216 × 103 |
F26 | 3.0634 × 103 | 3.1413 × 103 | 3.1233 × 103 | 3.8855 × 103 | 4.2061 × 103 | 3.8658 × 103 | 3.0937 × 103 | 2.9269 × 103 |
F27 | 3.1103 × 103 | 3.1082 × 103 | 3.1444 × 103 | 3.2222 × 103 | 3.1913 × 103 | 3.2002 × 103 | 3.1088 × 103 | 3.0951 × 103 |
F28 | 3.3710 × 103 | 3.2789 × 103 | 3.3290 × 103 | 3.5458 × 103 | 3.7234 × 103 | 3.8608 × 103 | 3.4782 × 103 | 3.2701 × 103 |
F29 | 3.2029 × 103 | 3.2439 × 103 | 3.2724 × 103 | 3.3550 × 103 | 3.3977 × 103 | 3.5537 × 103 | 3.2916 × 103 | 3.2194 × 103 |
F30 | 8.7553 × 105 | 6.9174 × 105 | 2.9351 × 105 | 3.3497 × 106 | 5.1961 × 106 | 1.5161 × 107 | 1.7869 × 106 | 2.4944 × 105 |
Func. | BKA | PSO | GA | COA | BWO | AO | SFOA |
---|---|---|---|---|---|---|---|
F1 | 3.0198 × 10−11 | 1.2467 × 10−2 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 |
F3 | 2.9376 × 10−11 | 2.9376 × 10−11 | 2.9376 × 10−11 | 2.9376 × 10−11 | 2.9376 × 10−11 | 2.9376 × 10−11 | 2.9376 × 10−11 |
F4 | 3.0058 × 10−4 | 4.8066 × 10−4 | 1.5580 × 10−8 | 3.0198 × 10−11 | 3.0198 × 10−11 | 8.8410 × 10−7 | 2.6805 × 10−4 |
F5 | 9.4903 × 10−7 | 3.5541 × 10−6 | 2.9953 × 10−11 | 2.9953 × 10−11 | 2.9953 × 10−11 | 1.0852 × 10−10 | 6.6430 × 10−11 |
F6 | 3.0198 × 10−11 | 7.3890 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 |
F7 | 4.9751 × 10−11 | 9.2112 × 10−5 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.6897 × 10−11 | 6.6955 × 10−11 |
F8 | 1.1683 × 10−4 | 3.0906 × 10−3 | 2.9728 × 10−11 | 2.9728 × 10−11 | 2.9728 × 10−11 | 4.0862 × 10−6 | 8.0313 × 10−11 |
F9 | 2.4918 × 10−11 | 9.1737 × 10−5 | 3.0497 × 10−11 | 2.4918 × 10−11 | 2.4918 × 10−11 | 2.4918 × 10−11 | 4.2850 × 10−10 |
F10 | 1.0762 × 10−2 | 1.3271 × 10−2 | 2.3714 × 10−10 | 6.6955 × 10−11 | 1.6132 × 10−10 | 3.3241 × 10−6 | 1.8681 × 10−5 |
F11 | 5.8281 × 10−3 | 2.9205 × 10−2 | 1.9567 × 10−10 | 3.0198 × 10−11 | 3.0198 × 10−11 | 8.4847 × 10−9 | 9.7051 × 10−1 |
F12 | 1.0314 × 10−2 | 8.1874 × 10−1 | 1.6947 × 10−9 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.4971 × 10−9 | 9.0687 × 10−3 |
F13 | 3.1820 × 10−4 | 9.9410 × 10−1 | 4.6371 × 10−3 | 1.0314 × 10−2 | 3.0198 × 10−11 | 8.8828 × 10−6 | 1.4643 × 10−10 |
F14 | 1.5797 × 10−1 | 5.5999 × 10−7 | 6.6955 × 10−11 | 1.2235 × 10−1 | 6.0103 × 10−8 | 2.4386 × 10−9 | 5.4940 × 10−11 |
F15 | 2.8388 × 10−4 | 5.9705 × 10−5 | 4.9979 × 10−9 | 1.1077 × 10−6 | 3.8201 × 10−10 | 3.8248 × 10−9 | 3.8201 × 10−10 |
F16 | 5.8281 × 10−3 | 7.6972 × 10−4 | 4.4204 × 10−6 | 2.6694 × 10−9 | 3.6897 × 10−11 | 2.7725 × 10−5 | 6.2040 × 10−1 |
F17 | 3.4028 × 10−1 | 8.4999 × 10−2 | 5.0120 × 10−2 | 2.1264 × 10−4 | 7.5991 × 10−7 | 3.5136 × 10−2 | 2.3985 × 10−1 |
F18 | 3.8052 × 10−7 | 7.2826 × 10−1 | 4.5529 × 10−1 | 7.1718 × 10−1 | 3.0198 × 10−11 | 1.2732 × 10−2 | 3.0198 × 10−11 |
F19 | 3.0102 × 10−7 | 2.9205 × 10−2 | 4.0329 × 10−3 | 6.6688 × 10−3 | 3.6897 × 10−11 | 2.8789 × 10−6 | 3.0198 × 10−11 |
F20 | 2.4327 × 10−5 | 4.6371 × 10−3 | 2.8715 × 10−10 | 3.4971 × 10−9 | 3.0198 × 10−11 | 1.4733 × 10−7 | 2.3243 × 10−2 |
F21 | 4.8251 × 10−1 | 3.3874 × 10−2 | 1.1737 × 10−9 | 3.8349 × 10−6 | 2.4156 × 10−2 | 4.3106 × 10−8 | 9.8834 × 10−3 |
F22 | 5.4620 × 10−6 | 1.1198 × 10−1 | 7.6949 × 10−8 | 3.0198 × 10−11 | 3.0198 × 10−11 | 1.3111 × 10−8 | 6.5486 × 10−4 |
F23 | 4.6365 × 10−3 | 1.2017 × 10−8 | 3.0179 × 10−11 | 3.0179 × 10−11 | 3.0179 × 10−11 | 5.9644 × 10−9 | 1.2730 × 10−2 |
F24 | 2.6069 × 10−2 | 6.3743 × 10−3 | 1.4608 × 10−10 | 3.8116 × 10−10 | 5.4511 × 10−9 | 9.7829 × 10−5 | 2.8119 × 10−2 |
F25 | 2.5188 × 10−1 | 2.2823 × 10−1 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 1.5291 × 10−5 | 8.7663 × 10−1 |
F26 | 7.1715 × 10−1 | 6.7345 × 10−1 | 2.9068 × 10−9 | 2.5950 × 10−10 | 3.8059 × 10−9 | 1.2719 × 10−2 | 3.7755 × 10−2 |
F27 | 6.7349 × 10−1 | 1.0184 × 10−5 | 2.6083 × 10−10 | 3.8229 × 10−9 | 2.4373 × 10−9 | 2.2358 × 10−2 | 2.3160 × 10−6 |
F28 | 2.3065 × 10−2 | 2.2964 × 10−1 | 9.7882 × 10−3 | 1.9388 × 10−9 | 4.6986 × 10−11 | 3.7430 × 10−5 | 3.8025 × 10−3 |
F29 | 2.1566 × 10−3 | 6.2828 × 10−6 | 3.1967 × 10−9 | 6.1210 × 10−10 | 4.5043 × 10−11 | 4.1127 × 10−7 | 4.8413 × 10−2 |
F30 | 7.2825 × 10−1 | 5.3948 × 10−1 | 1.6809 × 10−4 | 5.1819 × 10−7 | 2.2261 × 10−9 | 2.0520 × 10−3 | 2.5300 × 10−4 |
Func. | Type | BKAPI | BKA | PSO | GA | COA | BWO | AO | SFOA |
---|---|---|---|---|---|---|---|---|---|
F1 | std | 0.00 | 1377.83 | 5.35 | 14,486.18 | 1750.42 | 40,282.57 | 2857.41 | 18.73 |
avg | 300.00 | 710.61 | 301.60 | 36,199.35 | 8169.68 | 41,983.55 | 6257.44 | 316.96 | |
F2 | std | 22.10 | 28.72 | 27.25 | 26.88 | 683.43 | 918.34 | 53.28 | 2.12 |
avg | 416.88 | 417.01 | 422.02 | 470.32 | 1426.23 | 2387.02 | 460.50 | 406.93 | |
F3 | std | 0.44 | 10.59 | 6.00 | 13.92 | 10.10 | 8.34 | 8.52 | 2.50 |
avg | 600.19 | 632.08 | 605.22 | 664.35 | 644.91 | 663.13 | 624.78 | 603.93 | |
F4 | std | 6.39 | 7.05 | 9.79 | 14.36 | 7.83 | 7.02 | 9.28 | 9.51 |
avg | 814.36 | 819.65 | 821.36 | 879.23 | 848.49 | 856.05 | 826.26 | 841.56 | |
F5 | std | 1.48 | 115.74 | 41.83 | 32.73 | 158.33 | 172.12 | 145.76 | 75.53 |
avg | 900.78 | 1115.52 | 922.27 | 948.07 | 1383.78 | 1785.92 | 1129.73 | 951.38 | |
F6 | std | 2451.28 | 1525.48 | 2164.75 | 3962.44 | 5,256,162.17 | 983,998,623 | 153,581.98 | 1116.90 |
avg | 5129.50 | 3110.97 | 3638.71 | 5141.80 | 2,669,099.83 | 1,214,747,876.1 | 130,314.12 | 2166.58 | |
F7 | std | 5.67 | 28.93 | 17.20 | 30.20 | 14.77 | 19.88 | 20.75 | 7.28 |
avg | 2021.87 | 2052.37 | 2036.44 | 2099.17 | 2088.07 | 2132.00 | 2063.63 | 2034.02 | |
F8 | std | 5.33 | 36.48 | 51.46 | 42.72 | 5.20 | 25.72 | 5.23 | 3.74 |
avg | 2219.80 | 2239.15 | 2249.11 | 2264.19 | 2232.27 | 2273.82 | 2232.02 | 2227.02 | |
F9 | std | 24.80 | 35.30 | 44.65 | 53.86 | 35.11 | 43.29 | 36.44 | 0.00 |
avg | 2535.82 | 2544.67 | 2545.49 | 2691.61 | 2731.18 | 2787.40 | 2632.55 | 2529.28 | |
F10 | std | 61.34 | 87.38 | 102.63 | 364.52 | 187.92 | 156.79 | 65.17 | 45.79 |
avg | 2556.42 | 2571.02 | 2590.35 | 2698.17 | 2722.48 | 2749.22 | 2569.72 | 2518.29 | |
F11 | std | 33.47 | 256.42 | 57.02 | 474.68 | 488.69 | 477.34 | 75.51 | 99.96 |
avg | 2898.77 | 2866.19 | 2912.42 | 3595.09 | 3926.81 | 3565.78 | 2774.76 | 2712.29 | |
F12 | std | 13.24 | 15.90 | 11.97 | 59.66 | 44.06 | 80.73 | 6.56 | 1.65 |
avg | 2872.03 | 2872.60 | 2875.13 | 2984.69 | 2961.55 | 2985.14 | 2871.84 | 2861.14 |
Func. | BKA | PSO | GA | COA | BWO | AO | SFOA |
---|---|---|---|---|---|---|---|
F1 | 2.8358 × 10−11 | 2.8358 × 10−11 | 2.8358 × 10−11 | 2.8358 × 10−11 | 2.8358 × 10−11 | 2.8358 × 10−11 | 2.8358 × 10−11 |
F2 | 1.8264 × 10−2 | 6.5526 × 10−1 | 1.5130 × 10−8 | 2.9008 × 10−11 | 2.9008 × 10−11 | 2.1422 × 10−7 | 4.5489 × 10−1 |
F3 | 3.0198 × 10−11 | 4.5725 × 10−9 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 5.4940 × 10−11 |
F4 | 7.6868 × 10−4 | 2.7447 × 10−3 | 3.0047 × 10−11 | 3.3217 × 10−11 | 3.0047 × 10−11 | 9.5068 × 10−7 | 1.7686 × 10−10 |
F5 | 2.9247 × 10−11 | 2.1075 × 10−6 | 2.9247 × 10−11 | 2.9247 × 10−11 | 2.9247 × 10−11 | 2.9247 × 10−11 | 4.3648 × 10−11 |
F6 | 1.1142 × 10−3 | 1.8367 × 10−2 | 6.3087 × 10−1 | 2.0152 × 10−8 | 3.0198 × 10−11 | 2.6098 × 10−10 | 1.6979 × 10−8 |
F7 | 2.1947 × 10−8 | 2.9589 × 10−5 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 3.6897 × 10−11 | 2.6694 × 10−9 |
F8 | 1.4733 × 10−7 | 6.7868 × 10−2 | 3.0198 × 10−11 | 4.0771 × 10−11 | 3.0198 × 10−11 | 3.0198 × 10−11 | 1.0104 × 10−8 |
F9 | 4.3711 × 10−9 | 5.9482 × 10−2 | 3.9348 × 10−12 | 3.1578 × 10−12 | 3.1578 × 10−12 | 3.3715 × 10−11 | 2.4772 × 10−8 |
F10 | 3.5136 × 10−2 | 4.5143 × 10−2 | 6.6688 × 10−3 | 1.1674 × 10−5 | 1.8608 × 10−6 | 3.0339 × 10−3 | 8.0727 × 10−1 |
F11 | 7.8782 × 10−2 | 2.1155 × 10−9 | 4.5329 × 10−7 | 8.7486 × 10−12 | 8.7486 × 10−12 | 1.8630 × 10−7 | 5.7769 × 10−8 |
F12 | 4.3760 × 10−1 | 1.6271 × 10−2 | 3.6782 × 10−11 | 1.2014 × 10−10 | 1.2014 × 10−10 | 1.7142 × 10−1 | 4.1880 × 10−10 |
Algorithm | Optimal Value | Worst Value | Standard Deviation | Average Value | Median Value | Average Time |
---|---|---|---|---|---|---|
BKAPI | 1.6702 | 1.7817 | 0.0537 | 1.6883 | 1.6751 | 2.9511 |
BKA | 1.6709 | 1.7012 | 0.6598 | 1.6781 | 1.6739 | 0.6954 |
PSO | 1.6728 | 2.5874 | 0.2812 | 1.8164 | 1.7052 | 0.3050 |
GA | 1.8322 | 2.5977 | 0.2272 | 2.0912 | 2.0320 | 0.5071 |
COA | 1.8455 | 2.2295 | 0.1180 | 2.1363 | 2.1934 | 0.7834 |
BWO | 2.3636 | 4.0189 | 0.6031 | 3.2940 | 3.4059 | 2.8143 |
AO | 1.8143 | 2.4377 | 0.2363 | 2.0917 | 2.0713 | 0.6454 |
SFOA | 1.6706 | 1.6742 | 0.0711 | 1.6722 | 1.6719 | 0.2899 |
Algorithm | Optimal Values for Variables | Optimal Cost | |||
---|---|---|---|---|---|
h | l | t | b | ||
BKAPI | 0.1988 | 3.3374 | 9.1920 | 0.1988 | 1.6702 |
BKA | 0.1983 | 3.3487 | 9.1920 | 0.1988 | 1.6709 |
PSO | 0.1985 | 3.3436 | 9.2032 | 0.1989 | 1.6728 |
GA | 0.1592 | 4.6256 | 9.0043 | 0.2110 | 1.8322 |
COA | 0.1473 | 5.1905 | 9.4258 | 0.1978 | 1.8455 |
BWO | 0.3657 | 2.4001 | 6.6664 | 0.3819 | 2.3636 |
AO | 0.1669 | 4.2151 | 8.9001 | 0.2160 | 1.8143 |
SFOA | 0.1988 | 3.3390 | 9.1942 | 0.1988 | 1.6706 |
Algorithm | Optimal Values for Variables | Optimal Cost | ||||
---|---|---|---|---|---|---|
BKAPI | 78.0000 | 33.0000 | 29.9953 | 45.0000 | 36.7758 | −30,665 |
BKA | 78.0000 | 33.0000 | 29.9953 | 45.0000 | 36.7759 | −30,665 |
PSO | 78.0000 | 33.0000 | 29.9953 | 45.0000 | 36.7758 | −30,665 |
GA | 80.8815 | 35.6805 | 32.0422 | 37.5918 | 34.4031 | −29,802 |
COA | 78.0000 | 33.0000 | 30.0108 | 44.9387 | 36.7616 | −30,623 |
BWO | 78.0000 | 33.0000 | 31.7258 | 42.1734 | 35.1803 | −30,266 |
AO | 78.5773 | 33.2768 | 30.4269 | 44.2749 | 35.9693 | −30,544 |
SFOA | 78.0000 | 33.0000 | 29.9953 | 45.0000 | 36.7757 | −30,665 |
Algorithm | Optimal Value | Worse Value | Standard Deviation | Average Value | Median Value | Average Time |
---|---|---|---|---|---|---|
BKAPI | −30,665 | −30,186 | 151 | −30,617 | −30,665 | 3.68 |
BKA | −30,665 | −30,186 | 150 | −30,615 | −30,662 | 0.68 |
PSO | −30,665 | −30,662 | 1 | −30,665 | −30,665 | 0.29 |
GA | −29,802 | −28,895 | 259 | −29,445 | −29,421 | 0.53 |
COA | −30,623 | −29,690 | 323 | −30,160 | −30,142 | 0.75 |
BWO | −30,266 | −29,594 | 187 | −30,028 | −30,069 | 3.91 |
AO | −30,544 | −29,753 | 235 | −30,240 | −30,258 | 0.69 |
SFOA | −30,665 | −30,424 | 76 | −30,640 | −30,663 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zhang, J.; Jia, C.; Liu, Y.; Fu, M. A Hybrid Black-Winged Kite Algorithm with PSO and Differential Mutation for Superior Global Optimization and Engineering Applications. Biomimetics 2025, 10, 236. https://doi.org/10.3390/biomimetics10040236
Zhu X, Zhang J, Jia C, Liu Y, Fu M. A Hybrid Black-Winged Kite Algorithm with PSO and Differential Mutation for Superior Global Optimization and Engineering Applications. Biomimetics. 2025; 10(4):236. https://doi.org/10.3390/biomimetics10040236
Chicago/Turabian StyleZhu, Xuemei, Jinsi Zhang, Chaochuan Jia, Yu Liu, and Maosheng Fu. 2025. "A Hybrid Black-Winged Kite Algorithm with PSO and Differential Mutation for Superior Global Optimization and Engineering Applications" Biomimetics 10, no. 4: 236. https://doi.org/10.3390/biomimetics10040236
APA StyleZhu, X., Zhang, J., Jia, C., Liu, Y., & Fu, M. (2025). A Hybrid Black-Winged Kite Algorithm with PSO and Differential Mutation for Superior Global Optimization and Engineering Applications. Biomimetics, 10(4), 236. https://doi.org/10.3390/biomimetics10040236