Designing Effective Drug Therapies Using a Multiobjective Spider-Wasp Optimizer
Abstract
:1. Introduction
- The development of the MOSWO algorithm, detailing its biological inspiration and mathematical framework.
- The application of MOSWO to both synthetic benchmark problems and real-world datasets related to pharmacokinetics and pharmacodynamics to enhance drug therapy design.
- The comparison of the performance of MOSWO with existing state-of-the-art multiobjective optimization algorithms, highlighting its advantages in convergence, diversity, and robustness.
2. Background
2.1. Multiobjective Optimization in Drug Design
2.2. Biological Basis of the Spider–Wasp Optimizer: Modeling Predatory Dynamics
Algorithm 1. Pseudocode of the SWO. | |
Input: Output: | Initialize population SWPop with size N, L, H, tmax The best solution |
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. | While in SWPop: Calculate the fitness function f( Perform searching stage based on random selection if (r1 > rand), select Equation (1) else select Equation (2) end if Perform the following in the escaping stage if (r2 > r3), select Equation (3), else select Equation (4) end if Update position based on the nesting behavior in Equation (5) End For Reduce the population if required: to balance exploration and exploitation in Equation (6) Save best solutions for the next iteration End While Return the best solution found |
3. Multiobjective Spider–Wasp Optimizer for Drug Design
3.1. Multiobjective Optimization of Drug Therapy Design
3.2. Pareto Front Construction in MOSWO
3.3. MOSWO with Drug Therapy Design
- Competitive dynamics: wasps can displace spiders by occupying regions of the solution space where spiders have stagnated. This promotes the discovery of unexplored areas where mating behavior is represented as the crossover operator: , where and are vectors of male spider wasps and female of spider wasps repectively; CR is the probability of a crossover rate.
- Cooperative dynamics: spiders share refined solutions with wasps, enabling them to guide exploration toward promising regions.
Algorithm 2. Pseudocode of the MOSWO for drug therapy design. | |
# Initialize population of spider wasps (solutions) | |
1. 2. | Initialize population (SWPop, N, D) # N: population size, D: number of dimensions Evaluate population (SWPop) # Evaluate the objective functions for each solution |
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23 | # Archive to store non-dominated solutions Archive = [] # Main loop for iterations for t in 1 to tmax: # tmax is the maximum number of iterations # Step 1: search phase (exploration) − female wasp searches the solution space for i = 1 to N: # Randomly select two other solutions from the population a, b = SelectRandom(SWPop) # Update solution position using the exploration equation SWi = SWi + μ1 × (SWa − SWb) # Where μ1 is the exploration factor SWi = Clip(SWi) # Clip within search space limits # Step 2: following and escaping phase (exploration and exploitation) for i = 1 to N: # Select a random solution (prey/spider) from the population SWa = SelectBestSolution(SWPop) # Update the current solution to follow the prey SW_i = SWi + C × 2 × r5 × (SWa − SWi) # Where C is a speed-controlling factor # Escape behavior: if the prey flees, switch to the exploration mode if Distance(SWi, SWa) > threshold, then: SWi = SWi + μ2 × (L + r2 × (H − L)) # Random search to avoid wrong direction # Step 3: nesting phase (exploitation) − refine solutions in the local search space for i = 1 to N: # Select a best solution (nest site) toward which to pull the spider SWstar = SelectBestSolution(SWPop) # Update the solution toward the nest using the nesting behavior equation SWi = SWstar + cos(2 × pi × l) × (SWstar − SWi) # Where l is a random number and SW_star is the best solution found SWi = Clip(SWi) # Ensure that the solution is within bounds # Step 4: evaluate the population and non-dominated sorting Evaluate population (SWPop) # Evaluate solutions with respect to efficacy, safety, and cost # Non-dominated sorting and crowding distance to build Pareto front Fronts = NonDominatedSort(SWPop) # Sort population based on Pareto dominance CrowdingDistance(SWPop) # Calculate crowding distance to maintain diversity # Update the archive with the best non-dominated solutions UpdateArchive(Archive, SWPop) # Step 5: reduce population size (for convergence speed) if t % k == 0, then: # Population reduction strategy SWPop = ReducePopulation(SWPop, Archive) # Step 6: termination condition (if converged or the maximum number of iterations is reached) if Converged(Archive, tmax), then: break |
24 25. 26. | # Final Pareto front (set of optimal trade-offs for drug therapy design) ParetoFront = Archive Return ParetoFront |
4. Computational Experiments and Results
4.1. Benchmark Validation
4.2. Performance on Real-World Drug Therapy Datasets
4.2.1. Drug Therapy Datasets and Preprocessing
4.2.2. Case Study 1: Drug Rehabilitation Therapies
4.2.3. Case Study 2: Cancer Chemotherapy Optimization
4.3. Result Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos, A.M.; Fernández-Fernández, B.; Pérez-Gómez, M.V.; Carriazo Julio, S.M.; Sanchez-Niño, M.D.; Sanz, A.; Ruiz-Ortega, M.; Ortiz, A. Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opin. Drug Discov. 2020, 15, 101–115. [Google Scholar] [CrossRef]
- Williams, R.O.; Taft, D.R.; McConville, J.T. Advanced Drug Formulation Design to Optimize Therapeutic Outcomes; CRC Press: Boca Raton, FL, USA, 2007; ISBN 1420043889. [Google Scholar]
- Carels, N.; Conforte, A.J.; Lima, C.R.; da Silva, F.A.B. Challenges for the optimization of drug therapy in the treatment of cancer. In Networks in Systems Biology: Applications for Disease Modeling; Springer: Cham, Switzerland, 2020; pp. 163–198. [Google Scholar]
- Lesko, L.J.; Schmidt, S. Individualization of drug therapy: History, present state, and opportunities for the future. Clin. Pharmacol. Ther. 2012, 92, 458–466. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Dao, T.-K.; Pham, D.-T.; Duong, T.-H. Exploring the Molecular Terrain: A Survey of Analytical Methods for Biological Network Analysis. Symmetry 2024, 16, 462. [Google Scholar] [CrossRef]
- Khanam, N.; Alam, M.I.; Ali, Y.; Siddiqui, A.-R. A review on optimization of drug delivery system with experimental designs. Int. J. Appl. Pharm. 2018, 10, 7–12. [Google Scholar] [CrossRef]
- Fourie Zirkelbach, J.; Shah, M.; Vallejo, J.; Cheng, J.; Ayyoub, A.; Liu, J.; Hudson, R.; Sridhara, R.; Ison, G.; Amiri-Kordestani, L. Improving dose-optimization processes used in oncology drug development to minimize toxicity and maximize benefit to patients. J. Clin. Oncol. 2022, 40, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Ding, Y.-Z.; Ai, C.; Sun, H.; Xu, Y.-P.; Nedaei, N. Multi-objective optimization and multi-aspect analysis of an innovative geothermal-based multi-generation energy system for power, cooling, hydrogen, and freshwater production. Energy 2022, 245, 123198. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Horn, J.; Nafpliotis, N.; Goldberg, D.E. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 27–29 June 1994; Volume 1, pp. 82–87. [Google Scholar]
- Tomassini, M. A Survey of Genetic Algorithms. Annu. Rev. Comput. Phys. 1995, 3, 87–118. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1945–1950. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Wang, H.-J.; Dao, T.-K.; Pan, J.-S.; Ngo, T.-G.; Yu, J. A Scheme of Color Image Multithreshold Segmentation Based on Improved Moth-Flame Algorithm. IEEE Access 2020, 8, 174142–174159. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, Y. Differential Evolution with exponential crossover can be also competitive on numerical optimization. Appl. Soft Comput. 2023, 146, 110750. [Google Scholar] [CrossRef]
- Dao, T.K.; Pan, T.S.; Nguyen, T.T.; Pan, J.S. Parallel bat algorithm for optimizing makespan in job shop scheduling problems. J. Intell. Manuf. 2018, 29, 451–462. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Jameel, M.; Abouhawwash, M. Spider wasp optimizer: A novel meta-heuristic optimization algorithm. Artif. Intell. Rev. 2023, 56, 11675–11738. [Google Scholar]
- Das, H.; Das, S.; Gourisaria, M.K.; Khan, S.B.; Almusharraf, A.; Alharbi, A.I.; Mahesh, T.R. Enhancing Software Fault Prediction Through Feature Selection With Spider Wasp Optimization Algorithm. IEEE Access 2024, 12, 105309–105325. [Google Scholar]
- Sui, J.; Tian, Z.; Wang, Z. Multiple strategies improved spider wasp optimization for engineering optimization problem solving. Sci. Rep. 2024, 14, 29048. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Braik, M.S.; Al-Betar, M.A.; Awadallah, M.A. Boosted Spider Wasp Optimizer for High-dimensional Feature Selection. J. Bionic Eng. 2024, 21, 2424–2459. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar]
- Pandey, P.K.; Likhariya, M.; Bhadoria, J.; Vinchurkar, K.; Jain, P. Role of Artificial Intelligence in Drug Product Design and Optimization of Process Parameters. In AI Innovations in Drug Delivery and Pharmaceutical Sciences; Advancing Therapy Through Technology; Bentham Science Publishers: Sharjah, United Arab Emirates, 2024; pp. 163–198. [Google Scholar]
- Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021, 601, 120571. [Google Scholar] [PubMed]
- Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International Conference on Parallel Problem Solving from Nature PPSN VI.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar] [CrossRef]
- Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Reyes-Sierra, M.; Coello, C.C. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. Int. J. Comput. Intell. Res. 2006, 2, 287–308. [Google Scholar] [CrossRef]
- Fathy, A. An efficient spider wasp optimizer-based tracker for enhancing the harvested power from thermoelectric generation sources. Case Stud. Therm. Eng. 2024, 61, 104878. [Google Scholar]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable test problems for evolutionary multiobjective optimization. In Evolutionary Multiobjective Optimization: Theoretical Advances and Applications; Springer: Berlin/Heidelberg, Germany, 2005; pp. 105–145. [Google Scholar]
- Schmidt, M.; Schmidt, S.A.J.; Adelborg, K.; Sundbøll, J.; Laugesen, K.; Ehrenstein, V.; Sørensen, H.T. The Danish health care system and epidemiological research: From health care contacts to database records. Clin. Epidemiol. 2019, 11, 563–591. [Google Scholar]
- Rosario, M.C.; Jacqmin, P.; Dorr, P.; van der Ryst, E.; Hitchcock, C. A pharmacokinetic-pharmacodynamic disease model to predict in vivo antiviral activity of maraviroc. Clin. Pharmacol. Ther. 2005, 78, 508–519. [Google Scholar]
- Asín-Prieto, E.; Rodríguez-Gascón, A.; Isla, A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 2015, 21, 319–329. [Google Scholar] [PubMed]
- ManchesterPBPK Software of PBPKedu. 2020. Available online: https://github.com/NicolaMelillo/ManchesterPBPK (accessed on 11 October 2022).
- Rodríguez-Gascón, A.; Solinís, M.Á.; Isla, A. The role of PK/PD analysis in the development and evaluation of antimicrobials. Pharmaceutics 2021, 13, 833. [Google Scholar] [CrossRef] [PubMed]
- Deborah, A.Z.; Tse, T.; Williams, R.J.; Califf, R.M.; Ide, N.C. The ClinicalTrials.gov Results Database—Update and Key Issues. New Engl. J. Med. 2011, 364, 852–860. [Google Scholar] [CrossRef]
- Grzegorzewski, J.; Brandhorst, J.; Green, K.; Eleftheriadou, D.; Duport, Y.; Barthorscht, F.; Köller, A.; Ke, D.Y.J.; De Angelis, S.; König, M. PK-DB: Pharmacokinetics database for individualized and stratified computational modeling. Nucleic Acids Res. 2021, 49, D1358–D1364. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668–D672. [Google Scholar] [CrossRef]
- PubChem. A Public Repository for Chemical Information, Including Bioactivity Data and Molecular Properties. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 11 October 2022).
- Zhang, L.; Xie, H.; Wang, Y.; Wang, H.; Hu, J.; Zhang, G. Pharmacodynamic parameters of pharmacokinetic/pharmacodynamic (PK/PD) integration models. Front. Vet. Sci. 2022, 9, 860472. [Google Scholar]
- Dao, T.K.; Chu, S.C.; Nguyen, T.T.; Nguyen, T.D.; Nguyen, V.T. An Optimal WSN Node Coverage Based on Enhanced Archimedes Optimization Algorithm. Entropy 2022, 24, 1018. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, C. Two-stage differential evolution with novel parameter control. Inf. Sci. 2022, 596, 321–342. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Dao, T.-K.; Nguyen, T.-T.-T.; Nguyen, T.-D. An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm. IEEE Access 2022, 10, 67940–67957. [Google Scholar] [CrossRef]
Function | MOSWO | NSGA-II | MOEA/D | MOGWO | MOPSO |
---|---|---|---|---|---|
ZDT1 | 4.05 × 10−3 | 4.79 × 10−3 | 5.22 × 10−3 | 5.11 × 10−3 | 3.35 × 102 |
ZDT2 | 3.99 × 10−3 | 4.92 × 10−3 | 5.28 × 10−3 | 1.20 × 10−2 | 1.86 × 10−2 |
ZDT3 | 5.52 × 10−3 | 5.47 × 10−3 | 8.02 × 10−3 | 5.46 × 10−2 | 1.01 × 10−1 |
ZDT4 | 4.22 × 10−3 | 4.57 × 10−3 | 5.42 × 10−3 | 1.60 × 10−2 | 2.67 × 10−2 |
ZDT6 | 3.40 × 10−3 | 3.69 × 10−3 | 4.22 × 10−3 | 4.34 × 10−3 | 4.46 × 10−3 |
Function | MOSWO | NSGA-II | MOEA/D | MOGWO | MOPSO |
---|---|---|---|---|---|
ZDT1 | 8.73 × 10−1 | 7.20 × 10−1 | 7.19 × 10−1 | 7.03 × 10−1 | 6.86 × 10−1 |
ZDT2 | 5.39 × 10−1 | 4.45 × 10−1 | 4.44 × 10−1 | 4.40 × 10−1 | 4.37 × 10−1 |
ZDT3 | 1.02 × 10+0 | 6.00 × 10−1 | 5.98 × 10−1 | 5.83 × 10−1 | 5.68 × 10−1 |
ZDT4 | 8.73 × 10−1 | 7.21 × 10−1 | 7.19 × 10−1 | 7.06 × 10−1 | 6.93 × 10−1 |
ZDT6 | 4.34 × 10−1 | 3.89 × 10−1 | 3.88 × 10−1 | 3.88 × 10−1 | 3.89 × 10−1 |
Function | MOSWO | NSGA-II | MOEA/D | MOGWO | MOPSO |
---|---|---|---|---|---|
ZDT1 | 1.67 × 10−1 | 4.05 × 10−1 | 5.89 × 10−1 | 9.34 × 10−1 | 1.46 × 10+0 |
ZDT2 | 1.71 × 10−1 | 4.30 × 10−1 | 6.41 × 10−1 | 8.06 × 10−1 | 1.18 × 10+0 |
ZDT3 | 3.57 × 10−1 | 4.31 × 10−1 | 8.86 × 10−1 | 1.10 × 10+0 | 1.77 × 10+0 |
ZDT4 | 2.56 × 10−1 | 4.47 × 10−1 | 4.96 × 10−1 | 9.35 × 10−1 | 1.42 × 10+0 |
ZDT6 | 4.74 × 10−1 | 4.17 × 10−1 | 6.72 × 10−1 | 4.54 × 10−1 | 4.92 × 10−1 |
Function | MOSWO | NSGA-II | MOEA/D | MOGWO | MOPSO |
---|---|---|---|---|---|
DTLZ1 | 1.85 × 10−1 | 2.69 × 10−2 | 6.91 × 10−2 | 4.85 × 10−2 | 2.78 × 10−2 |
DTLZ2 | 7.41 × 10−2 | 6.79 × 10−2 | 5.62 × 10−2 | 6.34 × 10−2 | 7.07 × 10−2 |
DTLZ3 | 2.05 × 10+1 | 6.80 × 10−2 | 2.17 × 10−1 | 1.44 × 10−1 | 7.11 × 10−2 |
DTLZ4 | 7.12 × 10−2 | 1.36 × 10−1 | 5.69 × 10−2 | 6.39 × 10−2 | 7.10 × 10−2 |
DTLZ5 | 4.81 × 10−3 | 5.68 × 10−3 | 3.19 × 10−2 | 1.92 × 10−2 | 6.46 × 10−3 |
DTLZ6 | 4.44 × 10−3 | 5.88 × 10−3 | 3.77 × 10−2 | 2.21 × 10−2 | 6.62 × 10−3 |
DTLZ7 | 1.00 × 10−1 | 1.09 × 10−1 | 9.40 × 10−2 | 8.86 × 10−2 | 8.31 × 10−2 |
Function | MOSWO | NSGA-II | MOEA/D | MOGWO | MOPSO |
---|---|---|---|---|---|
DTLZ1 | 4.63 × 10−1 | 8.18 × 10−1 | 7.25 × 10−1 | 7.68 × 10−1 | 8.11 × 10−1 |
DTLZ2 | 6.77 × 10−1 | 5.30 × 10−1 | 5.53 × 10−1 | 5.40 × 10−1 | 5.28 × 10−1 |
DTLZ3 | 5.93 × 10−2 | 5.33 × 10−1 | 4.20 × 10−1 | 4.76 × 10−1 | 5.32 × 10−1 |
DTLZ4 | 6.96 × 10−1 | 4.95 × 10−1 | 5.52 × 10−1 | 5.40 × 10−1 | 5.29 × 10−1 |
DTLZ5 | 1.32 × 10−1 | 1.97 × 10−1 | 1.82 × 10−1 | 1.89 × 10−1 | 1.97 × 10−1 |
DTLZ6 | 1.32 × 10−1 | 1.97 × 10−1 | 1.80 × 10−1 | 1.88 × 10−1 | 1.97 × 10−1 |
DTLZ7 | 5.71 × 10−1 | 2.63 × 10−1 | 2.67 × 10−1 | 2.66 × 10−1 | 2.65 × 10−1 |
Function | MOSWO | NSGA-II | MOEA/D | MOGWO | MOPSO |
---|---|---|---|---|---|
DTLZ1 | 7.16 × 10−1 | 5.03 × 10−1 | 1.30 × 10+1 | 8.83 × 10−1 | 4.69 × 10−1 |
DTLZ2 | 4.48 × 10−1 | 5.05 × 10−1 | 2.80 × 10−1 | 3.82 × 10−1 | 4.83 × 10−1 |
DTLZ3 | 1.03 × 10+1 | 6.68 × 10−1 | 1.58 × 10+1 | 1.04 × 10+1 | 4.98 × 10−1 |
DTLZ4 | 4.47 × 10−1 | 5.16 × 10−1 | 3.23 × 10−1 | 3.96 × 10−1 | 4.70 × 10−1 |
DTLZ5 | 2.06 × 10−1 | 4.64 × 10−1 | 1.67 × 10−1 | 3.25 × 10−1 | 4.82 × 10−1 |
DTLZ6 | 2.20 × 10−1 | 7.10 × 10−1 | 1.73 × 10−1 | 4.22 × 10−1 | 6.71 × 10−1 |
DTLZ7 | 5.70 × 10−1 | 4.92 × 10−1 | 1.31 × 10+1 | 9.25 × 10−1 | 5.44 × 10−1 |
Patient ID | Drug A Dose (mg) | Drug B Dose (mg) | Cmax (ng/mL) | Tmax (h) | AUC (ng·h/mL) | Therapeutic Effect (%) | Toxicity Level (Grade) | Therapeutic Index (TI) |
---|---|---|---|---|---|---|---|---|
001 | 100 | 50 | 150 | 2 | 1200 | 85 | 1 | 1200 |
002 | 150 | 75 | 200 | 1.5 | 1500 | 90 | 2 | 750 |
003 | 200 | 100 | 250 | 2.5 | 1800 | 95 | 3 | 600 |
004 | 100 | 100 | 180 | 2 | 1300 | 80 | 1 | 1300 |
005 | 150 | 50 | 160 | 1.8 | 1400 | 88 | 2 | 700 |
006 | 200 | 75 | 220 | 2.2 | 1600 | 92 | 3 | 533 |
007 | 100 | 150 | 170 | 1.7 | 1250 | 82 | 1 | 1250 |
008 | 150 | 100 | 210 | 2.0 | 1550 | 89 | 2 | 775 |
009 | 200 | 50 | 190 | 2.3 | 1450 | 86 | 3 | 483 |
010 | 100 | 75 | 175 | 1.9 | 1350 | 84 | 1 | 1350 |
.. | .. | … | … | .. | …. | … | … | .. |
xxx | 100 | 85 | 180 | 1.9 | 1550 | 81 | 1 | 1360 |
Algorithm | Dataset Size (n) | Pareto Front Coverage (%) | Hypervolume (103) | Convergence (↓) | Diversity (↑) | Execution Time (s) |
---|---|---|---|---|---|---|
MOSWO | 10,000 | 86.7 | 3.94 | 0.012 | 0.88 | 50.0 |
NSGA-II | 10,000 | 85.2 | 3.75 | 0.015 | 0.85 | 45.0 |
MOEA/D | 10,000 | 82.3 | 3.65 | 0.018 | 0.83 | 60.0 |
MOGWO | 10,000 | 78.5 | 3.20 | 0.020 | 0.78 | 50.0 |
MOPSO | 10,000 | 79.2 | 3.25 | 0.021 | 0.80 | 65.0 |
Algorithm | Dataset Size (n) | Pareto Front Coverage (%) | Hypervolume (103) | Convergence (↓) | Diversity (↑) | Execution Time (s) |
---|---|---|---|---|---|---|
MOWSO | 1000 | 92.1 | 8.75 | 0.032 | 0.876 | 187 |
NSGA-II | 1000 | 85.3 | 7.92 | 0.045 | 0.831 | 215 |
MOEA/D | 1000 | 87.6 | 8.31 | 0.039 | 0.812 | 193 |
MOGWO | 1000 | 89.2 | 8.47 | 0.035 | 0.845 | 204 |
MOPSO | 1000 | 82.7 | 7.64 | 0.048 | 0.793 | 176 |
Metric | MOSWO | NSGA-II | MOEA/D | MOGWO | MOPSO |
---|---|---|---|---|---|
Therapeutic index (TI) | 1.29 (Improved by 29%) | 1.05 | 1.10 | 1.17 | 1.15 |
Toxicity level | 0.25 (Reduced by 20%) | 0.30 | 0.28 | 0.31 | 0.29 |
Cost efficiency | 0.11 (Reduced by 9%) | 0.23 | 0.29 | 0.26 | 0.31 |
Convergence rate (IGD) | 0.0025 | 0.0030 | 0.0035 | 0.0035 | 0.0040 |
Hypervolume (HV) | 0.83 | 0.75 | 0.78 | 0.78 | 0.76 |
Spread | 0.15 | 0.20 | 0.18 | 9.21 | 0.25 |
Execution time (s) | 125 | 150 | 140 | 150 | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-T.; Dao, T.-K.; Nguyen, V.-T.; Pham, D.-T. Designing Effective Drug Therapies Using a Multiobjective Spider-Wasp Optimizer. Biomimetics 2025, 10, 219. https://doi.org/10.3390/biomimetics10040219
Nguyen T-T, Dao T-K, Nguyen V-T, Pham D-T. Designing Effective Drug Therapies Using a Multiobjective Spider-Wasp Optimizer. Biomimetics. 2025; 10(4):219. https://doi.org/10.3390/biomimetics10040219
Chicago/Turabian StyleNguyen, Trong-The, Thi-Kien Dao, Van-Thien Nguyen, and Duc-Tinh Pham. 2025. "Designing Effective Drug Therapies Using a Multiobjective Spider-Wasp Optimizer" Biomimetics 10, no. 4: 219. https://doi.org/10.3390/biomimetics10040219
APA StyleNguyen, T.-T., Dao, T.-K., Nguyen, V.-T., & Pham, D.-T. (2025). Designing Effective Drug Therapies Using a Multiobjective Spider-Wasp Optimizer. Biomimetics, 10(4), 219. https://doi.org/10.3390/biomimetics10040219