A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles
Abstract
1. Introduction
2. Vehicle Data and Data Preprocessing Methods
2.1. Real Vehicle Data Overview
2.2. Data Preprocessing
3. Capacity Estimation Using Slow-Charging Data
3.1. IC Analysis and Feature Selection
3.2. Linear Regression Model
3.3. Results
3.4. Validation by Experiments
4. Capacity Estimation Using Fast-Charging Data
4.1. Typical Fast-Charging Protocols
4.2. Feature Engineering
4.3. Neural Network Model
4.4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Axsen, J.; Plötz, P.; Wolinetz, M. Crafting Strong, Integrated Policy Mixes for Deep CO2 Mitigation in Road Transport. Nat. Clim. Chang. 2020, 10, 809–818. [Google Scholar] [CrossRef]
- Isik, M.; Dodder, R.; Kaplan, P.O. Transportation Emissions Scenarios for New York City Under Different Carbon Intensities of Electricity and Electric Vehicle Adoption Rates. Nat. Energy 2021, 6, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yu, X.; Li, H. Batteries: From China’s 13th to 14th Five-Year Plan. eTransportation 2022, 14, 100201. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A Review on the Key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Dai, H.; Jiang, B.; Hu, X.; Lin, X.; Wei, X.; Pecht, M. Advanced Battery Management Strategies for a Sustainable Energy Future: Multilayer Design Concepts and Research Trends. Renew. Sustain. Energy Rev. 2021, 138, 110480. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery Lifetime Prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Yang, S.-C.; Hua, Y.; Qiao, D.; Lian, Y.-B.; Pan, Y.-W.; He, Y.-L. A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries. Electrochimica Acta 2019, 326, 134928. [Google Scholar] [CrossRef]
- Keil, J.; Jossen, A. Electrochemical Modeling of Linear and Nonlinear Aging of Lithium-Ion Cells. J. Electrochem. Soc. 2020, 167, 110535. [Google Scholar] [CrossRef]
- Mei, W.; Zhang, L.; Sun, J.; Wang, Q. Experimental and Numerical Methods to Investigate the Overcharge Caused Lithium Plating for Lithium Ion Battery. Energy Storage Mater. 2020, 32, 91–104. [Google Scholar] [CrossRef]
- Ren, D.; Smith, K.; Guo, D.; Han, X.; Feng, X.; Lu, L.; Ouyang, M.; Li, J. Investigation of Lithium Plating-Stripping Process in Li-Ion Batteries at Low Temperature Using an Electrochemical Model. J. Electrochem. Soc. 2018, 165, A2167–A2178. [Google Scholar] [CrossRef]
- Yang, X.-G.; Leng, Y.; Zhang, G.; Ge, S.; Wang, C.-Y. Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition from Linear to Nonlinear Aging. J. Power Sources 2017, 360, 28–40. [Google Scholar] [CrossRef]
- Atalay, S.; Sheikh, M.; Mariani, A.; Merla, Y.; Bower, E.; Widanage, W.D. Theory of Battery Ageing in a Lithium-Ion Battery: Capacity Fade, Nonlinear Ageing and Lifetime Prediction. J. Power Sources 2020, 478, 229026. [Google Scholar] [CrossRef]
- Wang, S.; Wei, Y.; Han, X.; Lu, L.; Ouyang, M. A Coupled Optimization-Oriented Reduced-Order Aging Model for Graphite-LiFePO4 Li-ion Batteries under Dynamic Micorgrid Conditions. In Proceedings of the 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), Chongqing, China, 23–25 April 2021; pp. 97–102. [Google Scholar]
- Wei, Y.; Wang, S.; Han, X.; Lu, L.; Li, W.; Zhang, F.; Ouyang, M. Toward more realistic microgrid optimization: Experiment and high-efficient model of Li-ion battery degradation under dynamic conditions. eTransportation 2022, 14, 100200. [Google Scholar] [CrossRef]
- Marcicki, J.; Canova, M.; Conlisk, A.T.; Rizzoni, G. Design and Parametrization Analysis of a Reduced-Order Electrochemical Model of Graphite/LiFePO4 Cells for SOC/SOH Estimation. J. Power Sources 2013, 237, 310–324. [Google Scholar] [CrossRef]
- Rechkemmer, S.K.; Zang, X.; Zhang, W.; Sawodny, O. Empirical Li-Ion Aging Model Derived from Single Particle Model. J. Energy Storage 2019, 21, 773–786. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Zhu, J.; Dai, H.; Zheng, Y.; Xu, X.; Chen, Q. A Review of Modeling, Acquisition, and Application of Lithium-Ion Battery Impedance for Onboard Battery Management. eTransportation 2021, 7, 100093. [Google Scholar] [CrossRef]
- Koleti, U.R.; Bui, T.N.M.; Dinh, T.Q.; Marco, J. The Development of Optimal Charging Protocols for Lithium-Ion Batteries to Reduce Lithium Plating. J. Energy Storage 2021, 39, 102573. [Google Scholar] [CrossRef]
- Niri, M.F.; Dinh, T.Q.; Yu, T.F.; Marco, J.; Bui, T.M.N. State of Power Prediction for Lithium-Ion Batteries in Electric Vehicles via Wavelet-Markov Load Analysis. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5833–5848. [Google Scholar] [CrossRef]
- Niri, M.F.; Bui, T.M.N.; Dinh, T.Q.; Hosseinzadeh, E.; Yu, T.F.; Marco, J. Remaining Energy Estimation for Lithium-Ion Batteries Via Gaussian Mixture and Markov Models for Future Load Prediction. J. Energy Storage 2020, 28, 101271. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, M.; Lu, L.; Li, J. A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electric Vehicle: Capacity Loss Estimation. J. Power Sources 2014, 268, 658–669. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-Life Model for Graphite-LiFePO4 cells. J. Power Sources 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Grolleau, S.; Delaille, A.; Gualous, H.; Gyan, P.; Revel, R.; Bernard, J.; Redondo-Iglesias, E.; Peter, J. Calendar Aging of Commercial Graphite/LiFePO4 cell–Predicting Capacity Fade Under Time Dependent Storage Conditions. J. Power Sources 2014, 255, 450–458. [Google Scholar] [CrossRef]
- Naumann, M.; Schimpe, M.; Keil, P.; Hesse, H.C.; Jossen, A. Analysis and Modeling of Calendar Aging of A Commercial LiFePO4/Graphite Cell. J. Energy Storage 2018, 17, 153–169. [Google Scholar] [CrossRef]
- de Hoog, J.; Timmermans, J.-M.; Ioan-Stroe, D.; Swierczynski, M.; Jaguemont, J.; Goutam, S.; Omar, N.; Van Mierlo, J.; Van Den Bossche, P. Combined Cycling and Calendar Capacity Fade Modeling of a Nickel-Manganese-Cobalt Oxide Cell with Real-Life Profile Validation. Appl. Energy 2017, 200, 47–61. [Google Scholar] [CrossRef]
- Schimpe, M.; von Kuepach, M.E.; Naumann, M.; Hesse, H.C.; Smith, K.; Jossen, A. Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries. J. Electrochem. Soc. 2018, 165, A181–A193. [Google Scholar] [CrossRef]
- Sarasketa-Zabala, E.; Martinez-Laserna, E.; Berecibar, M.; Gandiaga, I.; Rodriguez-Martinez, L.M.; Villarreal, I. Realistic Lifetime Prediction Approach for Li-Ion Batteries. Appl. Energy 2016, 162, 839–852. [Google Scholar] [CrossRef]
- Bui, T.M.N.; Sheikh, M.; Dinh, T.Q.; Gupta, A.; Widanalage, D.W.; Marco, J. A Study of Reduced Battery Degradation Through State-of-Charge Pre-Conditioning for Vehicle-to-Grid Operations. IEEE Access 2021, 9, 155871–155896. [Google Scholar] [CrossRef]
- Bui, T.M.N.; Dinh, T.Q.; Marco, J. A Study on Electric Vehicle Battery Ageing Through Smart Charge and Vehicle-to-Grid Operation. In Proceedings of the 2021 24th International Conference on Mechatronics Technology (ICMT), Singapore, 18–22 December 2021; pp. 1–7. [Google Scholar]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries–A Post-Mortem study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Hu, D.; Chen, G.; Tian, J.; Li, N.; Chen, L.; Su, Y.; Song, T.; Lu, Y.; Cao, D.; Chen, S.; et al. Unrevealing the Effects of Low Temperature on Cycling Life of 21700-Type Cylindrical Li-Ion Batteries. J. Energy Chem. 2021, 60, 104–110. [Google Scholar] [CrossRef]
- Zhu, J.; Su, P.; Dewi Darma, M.S.; Hua, W.; Mereacre, L.; Liu-Théato, X.; Heere, M.; Sørensen, D.R.; Dai, H.; Wei, X.; et al. Multiscale Investigation of Discharge Rate Dependence of Capacity Fade For Lithium-Ion Battery. J. Power Sources 2022, 536, 231516. [Google Scholar] [CrossRef]
- Xie, W.; He, R.; Gao, X.; Li, X.; Wang, H.; Liu, X.; Yan, X.; Yang, S. Degradation Identification of LiNi0.8Co0.1Mn0.1O2/Graphite Lithium-Ion Batteries Under Fast Charging Conditions. Electrochim. Acta 2021, 392, 138979. [Google Scholar] [CrossRef]
- Li, K.; Zhou, P.; Lu, Y.; Han, X.; Li, X.; Zheng, Y. Battery Life Estimation Based on Cloud Data for Electric Vehicles. J. Power Sources 2020, 468, 228192. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Su, L.; Wu, M.; Li, Z.; Zhang, J. Cycle Life Prediction of Lithium-Ion Batteries Based on Data-Driven Methods. eTransportation 2021, 10, 100137. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Huang, Y.; Bhushan Gopaluni, R.; Cao, Y.; Heere, M.; Muhlbauer, M.J.; Mereacre, L.; Dai, H.; Liu, X.; et al. Data-Driven Capacity Estimation of Commercial Lithium-Ion Batteries From Voltage Relaxation. Nat. Commun. 2022, 13, 2261. [Google Scholar] [CrossRef]
- Thelen, A.; Lui, Y.H.; Shen, S.; Laflamme, S.; Hu, S.; Ye, H.; Hu, C. Integrating Physics-Based Modeling and Machine Learning for Degradation Diagnostics of Lithium-Ion Batteries. Energy Storage Mater. 2022, 50, 668–695. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J.; Sun, F. Flexible Battery State of Health and State of Charge Estimation Using Partial Charging Data and Deep Learning. Energy Storage Mater. 2022, 51, 372–381. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J.; Yang, X.-G. Deep Neural Network Battery Charging Curve Prediction Using 30 Points Collected in 10 Min. Joule 2021, 5, 1521–1534. [Google Scholar] [CrossRef]
- Mohtat, P.; Lee, S.; Siegel, J.B.; Stefanopoulou, A.G. Comparison of Expansion and Voltage Differential Indicators for Battery Capacity Fade. J. Power Sources 2022, 518, 230714. [Google Scholar] [CrossRef]
- Samad, N.A.; Kim, Y.; Siegel, J.B.; Stefanopoulou, A.G. Battery Capacity Fading Estimation Using a Force-Based Incremental Capacity Analysis. J. Electrochem. Soc. 2016, 163, A1584–A1594. [Google Scholar] [CrossRef]
- Zhao, J.; Ling, H.; Liu, J.; Wang, J.; Burke, A.F.; Lian, Y. Machine Learning for Predicting Battery Capacity for Electric Vehicles. eTransportation 2023, 15, 100214. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Quade, K.; Luder, D.; Gong, J.; Sauer, D.U. Battery Degradation Diagnosis with Field Data, Impedance-Based Modeling And Artificial Intelligence. Energy Storage Mater. 2022, 53, 391–403. [Google Scholar] [CrossRef]
- Zhao, J.; Burke, A.F. Electric Vehicle Batteries: Status and Perspectives of Data-Driven Diagnosis and Prognosis. Batteries 2022, 8, 142. [Google Scholar] [CrossRef]
- Sulzer, V.; Mohtat, P.; Aitio, A.; Lee, S.; Yeh, Y.T.; Steinbacher, F.; Khan, M.U.; Lee, J.W.; Siegel, J.B.; Stefanopoulou, A.G.; et al. The Challenge and Opportunity of Battery Lifetime Prediction from Field Data. Joule 2021, 5, 1934–1955. [Google Scholar] [CrossRef]
- Mądziel, M.; Campisi, T. Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database. Energies 2023, 16, 1437. [Google Scholar] [CrossRef]
- Li, W.; Rentemeister, M.; Badeda, J.; Jöst, D.; Schulte, D.; Sauer, D.U. Digital twin for Battery Systems: Cloud Battery Management System with Online State-Of-Charge and State-Of-Health Estimation. J. Energy Storage 2020, 30, 101557. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, R.; Zhou, C.; Kang, X.; Chen, Z. Digital Twin and Cloud-Side-End Collaboration for Intelligent Battery Management System. J. Manuf. Syst. 2022, 62, 124–134. [Google Scholar] [CrossRef]
- Yang, S.; He, R.; Zhang, Z.; Cao, Y.; Gao, X.; Liu, X. CHAIN: Cyber Hierarchy and Interactional Network Enabling Digital Solution for Battery Full-Lifespan Management. Matter 2020, 3, 27–41. [Google Scholar] [CrossRef]
- Zheng, Y.; Cui, Y.; Han, X.; Ouyang, M. A Capacity Prediction Framework for Lithium-Ion Batteries Using Fusion Prediction of Empirical Model and Data-Driven Method. Energy 2021, 237, 121556. [Google Scholar] [CrossRef]
- Raj, T.; Wang, A.A.; Monroe, C.W.; Howey, D.A. Investigation of Path-Dependent Degradation in Lithium-Ion Batteries. Batter. Supercaps 2020, 3, 1377–1385. [Google Scholar] [CrossRef]
- Busà, C.; Belekoukia, M.; Loveridge, M.J. The Effects of Ambient Storage Conditions on the Structural and Electrochemical Properties of NMC-811 Cathodes for Li-Ion Batteries. Electrochim. Acta 2021, 366, 137358. [Google Scholar] [CrossRef]
- Diao, W.; Kim, J.; Azarian, M.H.; Pecht, M. Degradation Modes and Mechanisms Analysis of Lithium-Ion Batteries with Knee Points. Electrochim. Acta 2022, 431, 141143. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electrical Vehicle: Aging Mechanism Identification. J. Power Sources 2014, 251, 38–54. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize Battery Degradation Modes via a Diagnostic and Prognostic Model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Dubarry, M.; Berecibar, M.; Devie, A.; Anseán, D.; Omar, N.; Villarreal, I. State of Health Battery Estimator Enabling Degradation Diagnosis: Model and Algorithm Description. J. Power Sources 2017, 360, 59–69. [Google Scholar] [CrossRef]
- Feng, X.; Merla, Y.; Weng, C.; Ouyang, M.; He, X.; Liaw, B.Y.; Santhanagopalan, S.; Li, X.; Liu, P.; Lu, L.; et al. A Reliable Approach of Differentiating Discrete Sampled-Data for Battery Diagnosis. eTransportation 2020, 3, 100051. [Google Scholar] [CrossRef]
- Qin, P.; Sun, J.; Yang, X.; Wang, Q. Battery Thermal Management System Based on the Forced-Air Convection: A Review. eTransportation 2021, 7, 100097. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.-G.; Ge, S.; Leng, Y.; Wang, C.-Y. Ultrafast Charging of Energy-Dense Lithium-Ion Batteries for Urban Air Mobility. eTransportation 2021, 7, 100103. [Google Scholar] [CrossRef]
Item | Specification |
---|---|
Cathode material | LiFePO4 |
Anode material | Graphite |
Nominal capacity | 135 Ah |
Charging cutoff voltage | 3.8 V |
Discharging cutoff voltage | 2.0 V |
Parameters or Status | Description | Note or Comment |
---|---|---|
Timestamps | Datetime of every measurement. | |
Voltage | Voltage of each single cell. | |
SOC | SOC value of battery packs. | Missing frequently or incorrect. |
Discharge/Charge C-rate | Discharge or charge current rate for cells. | Positive number means discharging, while negative number means charging. |
Temperature | Temperatures measured at 12 different locations in the batteries. | The average of these values is used in further analysis. |
Charging status | Four charging states including charging finished, charging when parking, charging when driving, and uncharged. | |
Vehicle status | Two vehicle states including power on and power off. |
Feature | Pearson Coefficient |
---|---|
Total ampere-hour throughput | −0.88 |
Cycle number | −0.78 |
average temperature | −0.12 |
average current | 0.02 |
calendar life | −0.74 |
Vehicle Index | R2 | MSE | Pearson Coefficient | p-Value |
---|---|---|---|---|
Vin8 | 0.8658 | 0.2406 | −0.93 | |
Vin29 | 0.8857 | 0.4694 | −0.94 | |
Vin35 | 0.8144 | 0.3683 | −0.90 | |
Vin36 | 0.8038 | 0.4745 | −0.90 | |
Vin49 | 0.7807 | 0.3045 | −0.88 | |
Vin56 | 0.8847 | 0.8847 | −0.94 |
Step | Operation | Current (A) | Termination Condition | Temperature (°C) |
---|---|---|---|---|
1 | Rest | - | 1 h | 35 |
2 | CC discharging | 202.5 | End voltage: 2.0 V | 35 |
3 | Rest | - | 30 min | 35 |
4 | CC-CV charging | 135 | End voltage: 3.8 V Cutoff current: 1/20 C | 35 |
5 | Rest | - | 30 min | 35 |
6 | CC discharging | 202.5 | End voltage: 2.0 V | 35 |
7 | Cycle the step from 3 to 6 | - | Cycle 100 times | 35 |
8 | Rest | - | 1 h | 25 |
9 | CC discharging | 135 | End voltage: 2.0 V | 25 |
10 | Rest | - | 30 min | 25 |
11 | CC-CV charging | 135 | End voltage: 3.8 V Cutoff current: 1/20 C | 25 |
12 | Rest | - | 30 min | 25 |
13 | CC discharging | 135 | End voltage: 2.0 V | 25 |
14 | Cycle the step from 10 to 13 | - | Cycle twice | 25 |
15 | Rest | - | 1 h | 25 |
16 | CC discharging | 10.5 | End voltage: 2.0 V | 25 |
17 | Rest | 30 min | 25 | |
18 | CC-CV charging | 10.5 | End voltage: 3.8 V Cutoff current: 1/20 C | 25 |
19 | Rest | - | 30 min | 25 |
20 | CC discharging | 10.5 | End voltage: 2.0 V | 25 |
21 | Cycle the step from 17 to 20 | - | Cycle twice | 25 |
Feature | Definition |
---|---|
R0 | Internal resistance calculated based on voltage and current changes at beginning of charging. |
R1 | Internal resistance calculated based on voltage and current changes at stage switch point between Stage 1 and Stage 2. |
R2 | Internal resistance calculated based on voltage and current changes at stage switch point between Stage 2 and Stage 3. |
Temperature rise rate | Temperature rise rate during Stage 1 calculated based on linear regression method. |
T1 | Duration of Stage 1. |
T2 | Duration of Stage 2. |
T3 | Duration of Stage 3. |
Charge number | Number of charges from beginning of life. |
V_mean | Mean value of voltage series. |
V_variance | Variance of voltage series. |
V_skewness | Skewness of voltage series. |
V_kurtosis | Kurtosis of voltage series. |
Hyperparameter | Search Range |
---|---|
Number of neurons (first hidden layer) | 50, 100, 200, 400 |
Number of neurons (second hidden layer) | 50, 100, 200, 400 |
Number of epochs | 200, 300, 400, 500 |
Batch size | 16, 32, 64 |
Dataset | RMSE of the Dataset (Ah) | RMSE of the Dataset (Full Equivalent Cycles) |
---|---|---|
Training set | 1731 | 12.82 |
Testing set | 1986 | 14.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Han, X.; Wang, Y.; Lu, L.; Ouyang, M. A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles. Batteries 2023, 9, 181. https://doi.org/10.3390/batteries9030181
Zhou X, Han X, Wang Y, Lu L, Ouyang M. A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles. Batteries. 2023; 9(3):181. https://doi.org/10.3390/batteries9030181
Chicago/Turabian StyleZhou, Xingyu, Xuebing Han, Yanan Wang, Languang Lu, and Minggao Ouyang. 2023. "A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles" Batteries 9, no. 3: 181. https://doi.org/10.3390/batteries9030181
APA StyleZhou, X., Han, X., Wang, Y., Lu, L., & Ouyang, M. (2023). A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles. Batteries, 9(3), 181. https://doi.org/10.3390/batteries9030181