A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles
Abstract
:1. Introduction
2. Vehicle Data and Data Preprocessing Methods
2.1. Real Vehicle Data Overview
2.2. Data Preprocessing
3. Capacity Estimation Using Slow-Charging Data
3.1. IC Analysis and Feature Selection
3.2. Linear Regression Model
3.3. Results
3.4. Validation by Experiments
4. Capacity Estimation Using Fast-Charging Data
4.1. Typical Fast-Charging Protocols
4.2. Feature Engineering
4.3. Neural Network Model
4.4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Axsen, J.; Plötz, P.; Wolinetz, M. Crafting Strong, Integrated Policy Mixes for Deep CO2 Mitigation in Road Transport. Nat. Clim. Chang. 2020, 10, 809–818. [Google Scholar] [CrossRef]
- Isik, M.; Dodder, R.; Kaplan, P.O. Transportation Emissions Scenarios for New York City Under Different Carbon Intensities of Electricity and Electric Vehicle Adoption Rates. Nat. Energy 2021, 6, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yu, X.; Li, H. Batteries: From China’s 13th to 14th Five-Year Plan. eTransportation 2022, 14, 100201. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A Review on the Key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Dai, H.; Jiang, B.; Hu, X.; Lin, X.; Wei, X.; Pecht, M. Advanced Battery Management Strategies for a Sustainable Energy Future: Multilayer Design Concepts and Research Trends. Renew. Sustain. Energy Rev. 2021, 138, 110480. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery Lifetime Prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Yang, S.-C.; Hua, Y.; Qiao, D.; Lian, Y.-B.; Pan, Y.-W.; He, Y.-L. A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries. Electrochimica Acta 2019, 326, 134928. [Google Scholar] [CrossRef]
- Keil, J.; Jossen, A. Electrochemical Modeling of Linear and Nonlinear Aging of Lithium-Ion Cells. J. Electrochem. Soc. 2020, 167, 110535. [Google Scholar] [CrossRef]
- Mei, W.; Zhang, L.; Sun, J.; Wang, Q. Experimental and Numerical Methods to Investigate the Overcharge Caused Lithium Plating for Lithium Ion Battery. Energy Storage Mater. 2020, 32, 91–104. [Google Scholar] [CrossRef]
- Ren, D.; Smith, K.; Guo, D.; Han, X.; Feng, X.; Lu, L.; Ouyang, M.; Li, J. Investigation of Lithium Plating-Stripping Process in Li-Ion Batteries at Low Temperature Using an Electrochemical Model. J. Electrochem. Soc. 2018, 165, A2167–A2178. [Google Scholar] [CrossRef]
- Yang, X.-G.; Leng, Y.; Zhang, G.; Ge, S.; Wang, C.-Y. Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition from Linear to Nonlinear Aging. J. Power Sources 2017, 360, 28–40. [Google Scholar] [CrossRef]
- Atalay, S.; Sheikh, M.; Mariani, A.; Merla, Y.; Bower, E.; Widanage, W.D. Theory of Battery Ageing in a Lithium-Ion Battery: Capacity Fade, Nonlinear Ageing and Lifetime Prediction. J. Power Sources 2020, 478, 229026. [Google Scholar] [CrossRef]
- Wang, S.; Wei, Y.; Han, X.; Lu, L.; Ouyang, M. A Coupled Optimization-Oriented Reduced-Order Aging Model for Graphite-LiFePO4 Li-ion Batteries under Dynamic Micorgrid Conditions. In Proceedings of the 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), Chongqing, China, 23–25 April 2021; pp. 97–102. [Google Scholar]
- Wei, Y.; Wang, S.; Han, X.; Lu, L.; Li, W.; Zhang, F.; Ouyang, M. Toward more realistic microgrid optimization: Experiment and high-efficient model of Li-ion battery degradation under dynamic conditions. eTransportation 2022, 14, 100200. [Google Scholar] [CrossRef]
- Marcicki, J.; Canova, M.; Conlisk, A.T.; Rizzoni, G. Design and Parametrization Analysis of a Reduced-Order Electrochemical Model of Graphite/LiFePO4 Cells for SOC/SOH Estimation. J. Power Sources 2013, 237, 310–324. [Google Scholar] [CrossRef]
- Rechkemmer, S.K.; Zang, X.; Zhang, W.; Sawodny, O. Empirical Li-Ion Aging Model Derived from Single Particle Model. J. Energy Storage 2019, 21, 773–786. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Zhu, J.; Dai, H.; Zheng, Y.; Xu, X.; Chen, Q. A Review of Modeling, Acquisition, and Application of Lithium-Ion Battery Impedance for Onboard Battery Management. eTransportation 2021, 7, 100093. [Google Scholar] [CrossRef]
- Koleti, U.R.; Bui, T.N.M.; Dinh, T.Q.; Marco, J. The Development of Optimal Charging Protocols for Lithium-Ion Batteries to Reduce Lithium Plating. J. Energy Storage 2021, 39, 102573. [Google Scholar] [CrossRef]
- Niri, M.F.; Dinh, T.Q.; Yu, T.F.; Marco, J.; Bui, T.M.N. State of Power Prediction for Lithium-Ion Batteries in Electric Vehicles via Wavelet-Markov Load Analysis. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5833–5848. [Google Scholar] [CrossRef]
- Niri, M.F.; Bui, T.M.N.; Dinh, T.Q.; Hosseinzadeh, E.; Yu, T.F.; Marco, J. Remaining Energy Estimation for Lithium-Ion Batteries Via Gaussian Mixture and Markov Models for Future Load Prediction. J. Energy Storage 2020, 28, 101271. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, M.; Lu, L.; Li, J. A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electric Vehicle: Capacity Loss Estimation. J. Power Sources 2014, 268, 658–669. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-Life Model for Graphite-LiFePO4 cells. J. Power Sources 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Grolleau, S.; Delaille, A.; Gualous, H.; Gyan, P.; Revel, R.; Bernard, J.; Redondo-Iglesias, E.; Peter, J. Calendar Aging of Commercial Graphite/LiFePO4 cell–Predicting Capacity Fade Under Time Dependent Storage Conditions. J. Power Sources 2014, 255, 450–458. [Google Scholar] [CrossRef]
- Naumann, M.; Schimpe, M.; Keil, P.; Hesse, H.C.; Jossen, A. Analysis and Modeling of Calendar Aging of A Commercial LiFePO4/Graphite Cell. J. Energy Storage 2018, 17, 153–169. [Google Scholar] [CrossRef]
- de Hoog, J.; Timmermans, J.-M.; Ioan-Stroe, D.; Swierczynski, M.; Jaguemont, J.; Goutam, S.; Omar, N.; Van Mierlo, J.; Van Den Bossche, P. Combined Cycling and Calendar Capacity Fade Modeling of a Nickel-Manganese-Cobalt Oxide Cell with Real-Life Profile Validation. Appl. Energy 2017, 200, 47–61. [Google Scholar] [CrossRef]
- Schimpe, M.; von Kuepach, M.E.; Naumann, M.; Hesse, H.C.; Smith, K.; Jossen, A. Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries. J. Electrochem. Soc. 2018, 165, A181–A193. [Google Scholar] [CrossRef] [Green Version]
- Sarasketa-Zabala, E.; Martinez-Laserna, E.; Berecibar, M.; Gandiaga, I.; Rodriguez-Martinez, L.M.; Villarreal, I. Realistic Lifetime Prediction Approach for Li-Ion Batteries. Appl. Energy 2016, 162, 839–852. [Google Scholar] [CrossRef]
- Bui, T.M.N.; Sheikh, M.; Dinh, T.Q.; Gupta, A.; Widanalage, D.W.; Marco, J. A Study of Reduced Battery Degradation Through State-of-Charge Pre-Conditioning for Vehicle-to-Grid Operations. IEEE Access 2021, 9, 155871–155896. [Google Scholar] [CrossRef]
- Bui, T.M.N.; Dinh, T.Q.; Marco, J. A Study on Electric Vehicle Battery Ageing Through Smart Charge and Vehicle-to-Grid Operation. In Proceedings of the 2021 24th International Conference on Mechatronics Technology (ICMT), Singapore, 18–22 December 2021; pp. 1–7. [Google Scholar]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries–A Post-Mortem study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Hu, D.; Chen, G.; Tian, J.; Li, N.; Chen, L.; Su, Y.; Song, T.; Lu, Y.; Cao, D.; Chen, S.; et al. Unrevealing the Effects of Low Temperature on Cycling Life of 21700-Type Cylindrical Li-Ion Batteries. J. Energy Chem. 2021, 60, 104–110. [Google Scholar] [CrossRef]
- Zhu, J.; Su, P.; Dewi Darma, M.S.; Hua, W.; Mereacre, L.; Liu-Théato, X.; Heere, M.; Sørensen, D.R.; Dai, H.; Wei, X.; et al. Multiscale Investigation of Discharge Rate Dependence of Capacity Fade For Lithium-Ion Battery. J. Power Sources 2022, 536, 231516. [Google Scholar] [CrossRef]
- Xie, W.; He, R.; Gao, X.; Li, X.; Wang, H.; Liu, X.; Yan, X.; Yang, S. Degradation Identification of LiNi0.8Co0.1Mn0.1O2/Graphite Lithium-Ion Batteries Under Fast Charging Conditions. Electrochim. Acta 2021, 392, 138979. [Google Scholar] [CrossRef]
- Li, K.; Zhou, P.; Lu, Y.; Han, X.; Li, X.; Zheng, Y. Battery Life Estimation Based on Cloud Data for Electric Vehicles. J. Power Sources 2020, 468, 228192. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Wu, M.; Li, Z.; Zhang, J. Cycle Life Prediction of Lithium-Ion Batteries Based on Data-Driven Methods. eTransportation 2021, 10, 100137. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Huang, Y.; Bhushan Gopaluni, R.; Cao, Y.; Heere, M.; Muhlbauer, M.J.; Mereacre, L.; Dai, H.; Liu, X.; et al. Data-Driven Capacity Estimation of Commercial Lithium-Ion Batteries From Voltage Relaxation. Nat. Commun. 2022, 13, 2261. [Google Scholar] [CrossRef]
- Thelen, A.; Lui, Y.H.; Shen, S.; Laflamme, S.; Hu, S.; Ye, H.; Hu, C. Integrating Physics-Based Modeling and Machine Learning for Degradation Diagnostics of Lithium-Ion Batteries. Energy Storage Mater. 2022, 50, 668–695. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J.; Sun, F. Flexible Battery State of Health and State of Charge Estimation Using Partial Charging Data and Deep Learning. Energy Storage Mater. 2022, 51, 372–381. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J.; Yang, X.-G. Deep Neural Network Battery Charging Curve Prediction Using 30 Points Collected in 10 Min. Joule 2021, 5, 1521–1534. [Google Scholar] [CrossRef]
- Mohtat, P.; Lee, S.; Siegel, J.B.; Stefanopoulou, A.G. Comparison of Expansion and Voltage Differential Indicators for Battery Capacity Fade. J. Power Sources 2022, 518, 230714. [Google Scholar] [CrossRef]
- Samad, N.A.; Kim, Y.; Siegel, J.B.; Stefanopoulou, A.G. Battery Capacity Fading Estimation Using a Force-Based Incremental Capacity Analysis. J. Electrochem. Soc. 2016, 163, A1584–A1594. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ling, H.; Liu, J.; Wang, J.; Burke, A.F.; Lian, Y. Machine Learning for Predicting Battery Capacity for Electric Vehicles. eTransportation 2023, 15, 100214. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Quade, K.; Luder, D.; Gong, J.; Sauer, D.U. Battery Degradation Diagnosis with Field Data, Impedance-Based Modeling And Artificial Intelligence. Energy Storage Mater. 2022, 53, 391–403. [Google Scholar] [CrossRef]
- Zhao, J.; Burke, A.F. Electric Vehicle Batteries: Status and Perspectives of Data-Driven Diagnosis and Prognosis. Batteries 2022, 8, 142. [Google Scholar] [CrossRef]
- Sulzer, V.; Mohtat, P.; Aitio, A.; Lee, S.; Yeh, Y.T.; Steinbacher, F.; Khan, M.U.; Lee, J.W.; Siegel, J.B.; Stefanopoulou, A.G.; et al. The Challenge and Opportunity of Battery Lifetime Prediction from Field Data. Joule 2021, 5, 1934–1955. [Google Scholar] [CrossRef]
- Mądziel, M.; Campisi, T. Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database. Energies 2023, 16, 1437. [Google Scholar] [CrossRef]
- Li, W.; Rentemeister, M.; Badeda, J.; Jöst, D.; Schulte, D.; Sauer, D.U. Digital twin for Battery Systems: Cloud Battery Management System with Online State-Of-Charge and State-Of-Health Estimation. J. Energy Storage 2020, 30, 101557. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, R.; Zhou, C.; Kang, X.; Chen, Z. Digital Twin and Cloud-Side-End Collaboration for Intelligent Battery Management System. J. Manuf. Syst. 2022, 62, 124–134. [Google Scholar] [CrossRef]
- Yang, S.; He, R.; Zhang, Z.; Cao, Y.; Gao, X.; Liu, X. CHAIN: Cyber Hierarchy and Interactional Network Enabling Digital Solution for Battery Full-Lifespan Management. Matter 2020, 3, 27–41. [Google Scholar] [CrossRef]
- Zheng, Y.; Cui, Y.; Han, X.; Ouyang, M. A Capacity Prediction Framework for Lithium-Ion Batteries Using Fusion Prediction of Empirical Model and Data-Driven Method. Energy 2021, 237, 121556. [Google Scholar] [CrossRef]
- Raj, T.; Wang, A.A.; Monroe, C.W.; Howey, D.A. Investigation of Path-Dependent Degradation in Lithium-Ion Batteries. Batter. Supercaps 2020, 3, 1377–1385. [Google Scholar] [CrossRef]
- Busà, C.; Belekoukia, M.; Loveridge, M.J. The Effects of Ambient Storage Conditions on the Structural and Electrochemical Properties of NMC-811 Cathodes for Li-Ion Batteries. Electrochim. Acta 2021, 366, 137358. [Google Scholar] [CrossRef]
- Diao, W.; Kim, J.; Azarian, M.H.; Pecht, M. Degradation Modes and Mechanisms Analysis of Lithium-Ion Batteries with Knee Points. Electrochim. Acta 2022, 431, 141143. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electrical Vehicle: Aging Mechanism Identification. J. Power Sources 2014, 251, 38–54. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize Battery Degradation Modes via a Diagnostic and Prognostic Model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Dubarry, M.; Berecibar, M.; Devie, A.; Anseán, D.; Omar, N.; Villarreal, I. State of Health Battery Estimator Enabling Degradation Diagnosis: Model and Algorithm Description. J. Power Sources 2017, 360, 59–69. [Google Scholar] [CrossRef]
- Feng, X.; Merla, Y.; Weng, C.; Ouyang, M.; He, X.; Liaw, B.Y.; Santhanagopalan, S.; Li, X.; Liu, P.; Lu, L.; et al. A Reliable Approach of Differentiating Discrete Sampled-Data for Battery Diagnosis. eTransportation 2020, 3, 100051. [Google Scholar] [CrossRef]
- Qin, P.; Sun, J.; Yang, X.; Wang, Q. Battery Thermal Management System Based on the Forced-Air Convection: A Review. eTransportation 2021, 7, 100097. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.-G.; Ge, S.; Leng, Y.; Wang, C.-Y. Ultrafast Charging of Energy-Dense Lithium-Ion Batteries for Urban Air Mobility. eTransportation 2021, 7, 100103. [Google Scholar] [CrossRef]
Item | Specification |
---|---|
Cathode material | LiFePO4 |
Anode material | Graphite |
Nominal capacity | 135 Ah |
Charging cutoff voltage | 3.8 V |
Discharging cutoff voltage | 2.0 V |
Parameters or Status | Description | Note or Comment |
---|---|---|
Timestamps | Datetime of every measurement. | |
Voltage | Voltage of each single cell. | |
SOC | SOC value of battery packs. | Missing frequently or incorrect. |
Discharge/Charge C-rate | Discharge or charge current rate for cells. | Positive number means discharging, while negative number means charging. |
Temperature | Temperatures measured at 12 different locations in the batteries. | The average of these values is used in further analysis. |
Charging status | Four charging states including charging finished, charging when parking, charging when driving, and uncharged. | |
Vehicle status | Two vehicle states including power on and power off. |
Feature | Pearson Coefficient |
---|---|
Total ampere-hour throughput | −0.88 |
Cycle number | −0.78 |
average temperature | −0.12 |
average current | 0.02 |
calendar life | −0.74 |
Vehicle Index | R2 | MSE | Pearson Coefficient | p-Value |
---|---|---|---|---|
Vin8 | 0.8658 | 0.2406 | −0.93 | |
Vin29 | 0.8857 | 0.4694 | −0.94 | |
Vin35 | 0.8144 | 0.3683 | −0.90 | |
Vin36 | 0.8038 | 0.4745 | −0.90 | |
Vin49 | 0.7807 | 0.3045 | −0.88 | |
Vin56 | 0.8847 | 0.8847 | −0.94 |
Step | Operation | Current (A) | Termination Condition | Temperature (°C) |
---|---|---|---|---|
1 | Rest | - | 1 h | 35 |
2 | CC discharging | 202.5 | End voltage: 2.0 V | 35 |
3 | Rest | - | 30 min | 35 |
4 | CC-CV charging | 135 | End voltage: 3.8 V Cutoff current: 1/20 C | 35 |
5 | Rest | - | 30 min | 35 |
6 | CC discharging | 202.5 | End voltage: 2.0 V | 35 |
7 | Cycle the step from 3 to 6 | - | Cycle 100 times | 35 |
8 | Rest | - | 1 h | 25 |
9 | CC discharging | 135 | End voltage: 2.0 V | 25 |
10 | Rest | - | 30 min | 25 |
11 | CC-CV charging | 135 | End voltage: 3.8 V Cutoff current: 1/20 C | 25 |
12 | Rest | - | 30 min | 25 |
13 | CC discharging | 135 | End voltage: 2.0 V | 25 |
14 | Cycle the step from 10 to 13 | - | Cycle twice | 25 |
15 | Rest | - | 1 h | 25 |
16 | CC discharging | 10.5 | End voltage: 2.0 V | 25 |
17 | Rest | 30 min | 25 | |
18 | CC-CV charging | 10.5 | End voltage: 3.8 V Cutoff current: 1/20 C | 25 |
19 | Rest | - | 30 min | 25 |
20 | CC discharging | 10.5 | End voltage: 2.0 V | 25 |
21 | Cycle the step from 17 to 20 | - | Cycle twice | 25 |
Feature | Definition |
---|---|
R0 | Internal resistance calculated based on voltage and current changes at beginning of charging. |
R1 | Internal resistance calculated based on voltage and current changes at stage switch point between Stage 1 and Stage 2. |
R2 | Internal resistance calculated based on voltage and current changes at stage switch point between Stage 2 and Stage 3. |
Temperature rise rate | Temperature rise rate during Stage 1 calculated based on linear regression method. |
T1 | Duration of Stage 1. |
T2 | Duration of Stage 2. |
T3 | Duration of Stage 3. |
Charge number | Number of charges from beginning of life. |
V_mean | Mean value of voltage series. |
V_variance | Variance of voltage series. |
V_skewness | Skewness of voltage series. |
V_kurtosis | Kurtosis of voltage series. |
Hyperparameter | Search Range |
---|---|
Number of neurons (first hidden layer) | 50, 100, 200, 400 |
Number of neurons (second hidden layer) | 50, 100, 200, 400 |
Number of epochs | 200, 300, 400, 500 |
Batch size | 16, 32, 64 |
Dataset | RMSE of the Dataset (Ah) | RMSE of the Dataset (Full Equivalent Cycles) |
---|---|---|
Training set | 1731 | 12.82 |
Testing set | 1986 | 14.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Han, X.; Wang, Y.; Lu, L.; Ouyang, M. A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles. Batteries 2023, 9, 181. https://doi.org/10.3390/batteries9030181
Zhou X, Han X, Wang Y, Lu L, Ouyang M. A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles. Batteries. 2023; 9(3):181. https://doi.org/10.3390/batteries9030181
Chicago/Turabian StyleZhou, Xingyu, Xuebing Han, Yanan Wang, Languang Lu, and Minggao Ouyang. 2023. "A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles" Batteries 9, no. 3: 181. https://doi.org/10.3390/batteries9030181
APA StyleZhou, X., Han, X., Wang, Y., Lu, L., & Ouyang, M. (2023). A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles. Batteries, 9(3), 181. https://doi.org/10.3390/batteries9030181