Correlation between Lithium Titanium Oxide Powder Morphology and High Rate Performance in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Li4Ti5O12 Powders
2.2. X-ray Powder Diffraction and Raman Spectroscopy
2.3. Scanning Electron Microscopy and N2 Adsorption/Desorption
2.4. Electrochemistry
2.5. Reference Samples
3. Results
3.1. Structural Analysis of LTO Materials
3.2. Morphological Analysis
3.3. Electrochemistry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The Environmental Impact of Li-Ion Batteries and the Role of Key Parameters – A Review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Sethuraman, V.A.; Hardwick, L.J.; Srinivasan, V.; Kostecki, R. Surface Structural Disordering in Graphite upon Lithium Intercalation/Deintercalation. J. Power Sources 2010, 195, 3655–3660. [Google Scholar] [CrossRef] [Green Version]
- Pender, J.P.; Jha, G.; Youn, D.H.; Ziegler, J.M.; Andoni, I.; Choi, E.J.; Heller, A.; Dunn, B.S.; Weiss, P.S.; Penner, R.M.; et al. Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14, 1243–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armand, M.; Axmann, P.; Bresser, D.; Copley, M.; Edström, K.; Ekberg, C.; Guyomard, D.; Lestriez, B.; Novák, P.; Petranikova, M.; et al. Lithium-Ion Batteries – Current State of the Art and Anticipated Developments. J. Power Sources 2020, 479, 228708. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.Y.; Li, J.; Zou, Y.L.; Tang, J.J. Study of Nano-Porous Hard Carbons as Anode Materials for Lithium Ion Batteries. Mater. Chem. Phys. 2012, 135, 445–450. [Google Scholar] [CrossRef]
- Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells. J. Electrochem. Soc. 1995, 142, 1431–1435. [Google Scholar] [CrossRef]
- Panero, S.; Reale, P.; Ronci, F.; Scrosati, B.; Perfetti, P.; Rossi Albertini, V. Refined, in-Situ EDXD Structural Analysis of the Li[Li1/3Ti5/3]O4 Electrode under Lithium Insertion-Extraction. Phys. Chem. Chem. Phys. 2001, 3, 845–847. [Google Scholar] [CrossRef]
- Young, D.; Ransil, A.; Amin, R.; Li, Z.; Chiang, Y.M. Electronic Conductivity in the Li4/3Ti5/3O 4-Li7/3Ti5/3O4 System and Variation with State-of-Charge as a Li Battery Anode. Adv. Energy Mater. 2013, 3, 1125–1129. [Google Scholar] [CrossRef]
- Prosini, P.P.; Mancini, R.; Petrucci, L.; Contini, V.; Villano, P. Li4Ti5O12 as Anode in All-Solid-State, Plastic, Lithium-Ion Batteries for Low-Power Applications. Solid State Ion. 2001, 144, 185–192. [Google Scholar] [CrossRef]
- Ratynski, M.; Hamankiewicz, B.; Buchberger, D.A.; Boczar, M.; Krajewski, M.; Czerwinski, A. A New Technique for In Situ Determination of the Active Surface Area Changes of Li–Ion Battery Electrodes. Batter. Supercaps 2020, 3, 1028–1039. [Google Scholar] [CrossRef]
- Obrovac, M.N.; Krause, L.J. Reversible Cycling of Crystalline Silicon Powder. J. Electrochem. Soc. 2007, 154, A103. [Google Scholar] [CrossRef]
- Cao, C.; Abate, I.I.; Sivonxay, E.; Shyam, B.; Jia, C.; Moritz, B.; Devereaux, T.P.; Persson, K.A.; Steinrück, H.G.; Toney, M.F. Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries. Joule 2019, 3, 762–781. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, M.; Michalska, M.; Hamankiewicz, B.; Ziolkowska, D.; Korona, K.P.; Jasinski, J.B.; Kaminska, M.; Lipinska, L.; Czerwinski, A. Li4Ti5O12 Modified with Ag Nanoparticles as an Advanced Anode Material in Lithium-Ion Batteries. J. Power Sources 2014, 245, 764–771. [Google Scholar] [CrossRef]
- Shu, J. Electrochemical Behavior and Stability of Li 4Ti 5O 12 in a Broad Voltage Window. J. Solid State Electrochem. 2009, 13, 1535–1539. [Google Scholar] [CrossRef]
- Yuan, T.; Tan, Z.; Ma, C.; Yang, J.; Ma, Z.F.; Zheng, S. Challenges of Spinel Li4Ti5O12 for Lithium-Ion Battery Industrial Applications. Adv. Energy Mater. 2017, 7. [Google Scholar] [CrossRef]
- Gauthier, N.; Courrèges, C.; Demeaux, J.; Tessier, C.; Martinez, H. Probing the In-Depth Distribution of Organic/Inorganic Molecular Species within the SEI of LTO/NMC and LTO/LMO Batteries: A Complementary ToF-SIMS and XPS Study. Appl. Surf. Sci. 2020, 501, 144266. [Google Scholar] [CrossRef]
- Gauthier, N.; Courrèges, C.; Goubault, L.; Demeaux, J.; Tessier, C.; Martinez, H. Influence of the Positive Electrode on Li 4 Ti 5 O 12 (LTO) Electrode/Electrolyte Interfaces in Li-Ion Batteries. J. Electrochem. Soc. 2018, 165, A2925–A2934. [Google Scholar] [CrossRef]
- Myung, S.T.; Hitoshi, Y.; Sun, Y.K. Electrochemical Behavior and Passivation of Current Collectors in Lithium-Ion Batteries. J. Mater. Chem. 2011, 21, 9891–9911. [Google Scholar] [CrossRef]
- Ali, B.; Muhammad, R.; Anang, D.A.; Cho, M.K.; Kim, J.Y.; Nam, K.W. Ge-Doped Li4Ti5-XGexO12 (x = 0.05) as a Fast-Charging, Long-Life Bi-Functional Anode Material for Lithium- and Sodium-Ion Batteries. Ceram. Int. 2020, 46, 16556–16563. [Google Scholar] [CrossRef]
- Tsai, P.C.; Nasara, R.N.; Shen, Y.C.; Liang, C.C.; Chang, Y.W.; Hsu, W.D.; Thuy Tran, N.T.; Lin, S. kang Ab Initio Phase Stability and Electronic Conductivity of the Doped-Li4Ti5O12 Anode for Li-Ion Batteries. Acta Mater. 2019, 175, 196–205. [Google Scholar] [CrossRef]
- Zou, S.; Wang, G.; Zhang, Y.; Xue, C.; Chen, H.; Yang, G.; Nan, H.; Wei, H.; Lin, H. Nano-Structure and Characterization of Carbon Composite with Al3+ and Mn4+ Co-Doped Li4Ti5O12 as Anodes for Li-Ion Batteries. J. Alloys Compd. 2020, 816, 152609. [Google Scholar] [CrossRef]
- An, D.; Shen, L.; Lei, D.; Wang, L.; Ye, H.; Li, B.; Kang, F.; He, Y.B. An Ultrathin and Continuous Li 4 Ti 5 O 12 Coated Carbon Nanofiber Interlayer for High Rate Lithium Sulfur Battery. J. Energy Chem. 2019, 31, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, P.; Kanagaraj, A.B.; al Nahyan, M.S.; al Shibli, H.; Ashoor, A.A.; Fadaq, H.; al Dahmani, S.; Choi, D.S. Electrical and Electrochemical Properties of Carbon Nanotube-Based Free Standing LTO Electrodes for Current Collector-Free Li-Ion Batteries. Curr. Appl. Phys. 2019, 19, 1150–1155. [Google Scholar] [CrossRef]
- Chung, Y.; Shin, Y.; Liu, Y.; Park, J.S.; Margez, C.L.; Greszler, T.A. Synergetic Effect of Carbon and AlF 3 Coatings on the Lithium Titanium Oxide Anode Material for High Power Lithium-Ion Batteries. J. Electroanal. Chem. 2019, 837, 240–245. [Google Scholar] [CrossRef]
- Li, D.; Liu, Y.; Zhao, W.; Gao, Y.; Cao, L.; Liu, Y.; Wang, W.; Yi, L.; Qi, T. Synthesis of Ce Modified Li4Ti5O12 Using Biomass as Carbon Source. J. Electroanal. Chem. 2019, 851, 113441. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Chai, F.; Fan, Y.; Hou, A. One-Step Synthesis of Carbon Nanotubes-Modified and Carbon-Coated Li4Ti5O12 and Its Application to Li Half Cell and LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12 Full Cell. J. Electron. Mater. 2020, 49, 2529–2538. [Google Scholar] [CrossRef]
- Liu, H.P.; Wen, G.W.; Bi, S.F.; Wang, C.Y.; Hao, J.M.; Gao, P. High Rate Cycling Performance of Nanosized Li4Ti5O12/Graphene Composites for Lithium Ion Batteries. Electrochim. Acta 2016, 192, 38–44. [Google Scholar] [CrossRef]
- Odziomek, M.; Chaput, F.; Lerouge, F.; Rutkowska, A.; Świerczek, K.; Carlier, D.; Sitarz, M.; Parola, S. Impact of the Synthesis Parameters on the Microstructure of Nano-Structured LTO Prepared by Glycothermal Routes and 7Li NMR Structural Investigations. J. Sol-Gel Sci. Technol. 2019, 89, 225–233. [Google Scholar] [CrossRef]
- Tang, L.; He, Y.-B.; Wang, C.; Wang, S.; Wagemaker, M.; Li, B.; Yang, Q.-H.; Kang, F. High-Density Microporous Li4 Ti 5 O 12 Microbars with Superior Rate Performance for Lithium-Ion Batteries. Adv. Sci. 2017, 4, 1600311. [Google Scholar] [CrossRef] [Green Version]
- Michalska, M.; Krajewski, M.; Ziolkowska, D.; Hamankiewicz, B.; Andrzejczuk, M.; Lipinska, L.; Korona, K.P.; Czerwinski, A. Influence of Milling Time in Solid-State Synthesis on Structure, Morphology and Electrochemical Properties of Li4Ti5O12 of Spinel Structure. Powder Technol. 2014, 266, 372–377. [Google Scholar] [CrossRef]
- Takami, N.; Hoshina, K.; Inagaki, H. Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction. J. Electrochem. Soc. 2011, 158, A725. [Google Scholar] [CrossRef]
- Lin, C.; Fan, X.; Xin, Y.; Cheng, F.; Lai, M.O.; Zhou, H.; Lu, L. Monodispersed Mesoporous Li4Ti5O12 Submicrospheres as Anode Materials for Lithium-Ion Batteries: Morphology and Electrochemical Performances. Nanoscale 2014, 6, 6651–6660. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Li, M.; Li, X.; Bai, Z.; Yang, J.; Xiong, D.; Li, D. Novel Understanding of Carbothermal Reduction Enhancing Electronic and Ionic Conductivity of Li4Ti5O12 Anode. J. Mater. Chem. A Mater. 2015, 3, 11773–11781. [Google Scholar] [CrossRef]
- Krajewski, M.; Hamankiewicz, B.; Czerwiński, A. Voltammetric and Impedance Characterization of Li4Ti5O12/n-Ag Composite for Lithium-Ion Batteries. Electrochim. Acta 2016, 219, 277–283. [Google Scholar] [CrossRef]
- Krajewski, M.; Hamankiewicz, B.; Michalska, M.; Andrzejczuk, M.; Lipinska, L.; Czerwinski, A. Electrochemical Properties of Lithium-Titanium Oxide, Modified with Ag-Cu Particles, as a Negative Electrode for Lithium-Ion Batteries. RSC Adv. 2017, 7, 52151–52164. [Google Scholar] [CrossRef] [Green Version]
- Pohjalainen, E.; Rauhala, T.; Valkeapää, M.; Kallioinen, J.; Kallio, T. Effect of Li4Ti5O12 Particle Size on the Performance of Lithium Ion Battery Electrodes at High C-Rates and Low Temperatures. J. Phys. Chem. C 2015, 119, 2277–2283. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.C.; Lin, J.Y. One-Pot Sol-Gel Synthesis of Li4Ti5O12/C Anode Materials for High-Performance Li-Ion Batteries. Electrochim. Acta 2014, 142, 43–50. [Google Scholar] [CrossRef]
- Gaberscek, M.; Dominko, R.; Jamnik, J. Is Small Particle Size More Important than Carbon Coating? An Example Study on LiFePO4 Cathodes. Electrochem. Commun. 2007, 9, 2778–2783. [Google Scholar] [CrossRef]
- Chen, Z.; Belharouak, I.; Sun, Y.K.; Amine, K. Titanium-Based Anode Materials for Safe Lithium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 959–969. [Google Scholar] [CrossRef]
- Kashkooli, A.G.; Lui, G.; Farhad, S.; Lee, D.U.; Feng, K.; Yu, A.; Chen, Z. Nano-Particle Size Effect on the Performance of Li4Ti5O12 Spinel. Electrochim. Acta 2016, 196, 33–40. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Peng, H.T.; Xiao, Y.; Lin, J.Y. Effect of Starting Materials on Electrochemical Performance of Sol-Gel-Synthesized Li4Ti5O12 Anode Materials for Lithium-Ion Batteries. J. Solid State Electrochem. 2016, 20, 1625–1631. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Huang, S.; Yu, G.; Gao, L.; Liu, H.; Yu, Y. Nano-Sized Li4Ti5O12 Anode Material with Excellent Performance Prepared by Solid State Reaction: The Effect of Precursor Size and Morphology. Electrochim. Acta 2013, 112, 356–363. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Wang, Q.; Xie, X.; Lou, Y.; Xia, B. The Effects of Li2CO3 Particle Size on the Properties of Lithium Titanate as Anode Material for Lithium-Ion Batteries. Ionics (Kiel) 2014, 20, 1553–1560. [Google Scholar] [CrossRef]
- Chen, X.; Guan, X.; Li, L.; Li, G. Defective Mesoporous Li 4Ti 5O 12-y: An Advanced Anode Material with Anomalous Capacity and Cycling Stability at a High Rate of 20 C. J. Power Sources 2012, 210, 297–302. [Google Scholar] [CrossRef]
- Ge, H.; Hao, T.; Zhang, B.; Chen, L.; Cui, L.; Song, X.M. Nanoparticles-Constructed Spinel Li4Ti5O12 with Extra Surface Lithium Storage Capability towards Advanced Lithium-Ion Batteries. Electrochim. Acta 2016, 211, 119–125. [Google Scholar] [CrossRef]
- Nugroho, A.; Kim, S.J.; Chang, W.; Chung, K.Y.; Kim, J. Facile Synthesis of Hierarchical Mesoporous Li4Ti5O12 Microspheres in Supercritical Methanol. J. Power Sources 2013, 244, 164–169. [Google Scholar] [CrossRef]
- Lin, Y.S.; Duh, J.G. Facile Synthesis of Mesoporous Lithium Titanate Spheres for High Rate Lithium-Ion Batteries. J. Power Sources 2011, 196, 10698–10703. [Google Scholar] [CrossRef]
- Mu, D.; Chen, Y.; Wu, B.; Huang, R.; Jiang, Y.; Li, L.; Wu, F. Nano-Sized Li4Ti5O12/C Anode Material with Ultrafast Charge/Discharge Capability for Lithium Ion Batteries. J. Alloys Compd. 2016, 671, 157–163. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Tang, L.; He, Y.B.; Gan, L.; Li, J.; Du, H.; Li, B.; Lin, Z.; Kang, F. A Robust Strategy for Crafting Monodisperse Li4Ti5O12 Nanospheres as Superior Rate Anode for Lithium Ion Batteries. Nano Energy 2016, 21, 133–144. [Google Scholar] [CrossRef]
- Mahmoud, A.; Amarilla, J.M.; Lasri, K.; Saadoune, I. Influence of the Synthesis Method on the Electrochemical Properties of the Li4Ti5O12 Spinel in Li-Half and Li-Ion Full-Cells. A Systematic Comparison. Electrochim. Acta 2013, 93, 163–172. [Google Scholar] [CrossRef]
- Prakash, A.S.; Manikandan, P.; Ramesha, K.; Sathiya, M.; Tarascon, J.M.; Shukla, A.K. Solution-Combustion Synthesized Nanocrystalline Li4Ti 5O12 as High-Rate Performance Li-Ion Battery Anode. Chem. Mater. 2010, 22, 2857–2863. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Wang, Q.; Xie, X.; Lou, Y.; Han, X.; Xia, B. Microsized TiO2 Activated by High-Energy Ball Milling as Starting Material for the Preparation of Li4Ti5O12 Anode Material. Powder Technol. 2013, 247, 204–210. [Google Scholar] [CrossRef]
- Ge, H.; Chen, L.; Yuan, W.; Zhang, Y.; Fan, Q.; Osgood, H.; Matera, D.; Song, X.M.; Wu, G. Unique Mesoporous Spinel Li4Ti5O12 Nanosheets as Anode Materials for Lithium-Ion Batteries. J. Power Sources 2015, 297, 436–441. [Google Scholar] [CrossRef]
- Zhao, S.; Ka, O.; Xian, X.; Sun, L.; Wang, J. Effect of Primary Crystallite Size on the High-Rate Performance of Li4Ti5O12 Microspheres. Electrochim. Acta 2016, 206, 17–25. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, L.; Fang, S.; Qiu, Z. Li4Ti5O12 Hollow Microspheres Assembled by Nanosheets as an Anode Material for High-Rate Lithium Ion Batteries. Electrochim. Acta 2009, 54, 6244–6249. [Google Scholar] [CrossRef]
- Liu, W.; Shao, D.; Luo, G.; Gao, Q.; Yan, G.; He, J.; Chen, D.; Yu, X.; Fang, Y. Mesoporous Spinel Li4ti5o12 Nanoparticles for High Rate Lithium-Ion Battery Anodes. Electrochim. Acta 2014, 133, 578–582. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Guan, Y.; Jin, Y.; Zhu, W.; Guo, X.; Qiu, X. Nano-Li4Ti5O12 with High Rate Performance Synthesized by a Glycerol Assisted Hydrothermal Method. J. Power Sources 2013, 243, 661–667. [Google Scholar] [CrossRef]
- Han, S.W.; Ryu, J.H.; Jeong, J.; Yoon, D.H. Solid-State Synthesis of Li4Ti5O12 for High Power Lithium Ion Battery Applications. J. Alloys Compd. 2013, 570, 144–149. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Fang, S.; Tang, Y. Synthesis of Sawtooth-like Li4Ti5O12 Nanosheets as Anode Materials for Li-Ion Batteries. Electrochim. Acta 2010, 55, 6596–6600. [Google Scholar] [CrossRef]
- He, Y.B.; Liu, M.; Huang, Z.D.; Zhang, B.; Yu, Y.; Li, B.; Kang, F.; Kim, J.K. Effect of Solid Electrolyte Interface (SEI) Film on Cyclic Performance of Li4Ti5O12 Anodes for Li Ion Batteries. J. Power Sources 2013, 239, 269–276. [Google Scholar] [CrossRef]
- Nugroho, A.; Kim, S.J.; Chung, K.Y.; Cho, B.W.; Lee, Y.W.; Kim, J. Facile Synthesis of Nanosized Li4Ti5O12 in Supercritical Water. Electrochem. Commun. 2011, 13, 650–653. [Google Scholar] [CrossRef]
- Hui, Y.; Cao, L.; Xu, Z.; Huang, J.; Ouyang, H.; Li, J. Mesoporous Li4Ti5O12 Nanoparticles Synthesized by a Microwave-Assisted Hydrothermal Method for High Rate Lithium-Ion Batteries. J. Electroanal. Chem. 2016, 763, 45–50. [Google Scholar] [CrossRef]
- Lin, Y.S.; Tsai, M.C.; Duh, J.G. Self-Assembled Synthesis of Nanoflower-like Li 4Ti 5O 12 for Ultrahigh Rate Lithium-Ion Batteries. J. Power Sources 2012, 214, 314–318. [Google Scholar] [CrossRef]
- He, Y.; Muhetaer, A.; Li, J.; Wang, F.; Liu, C.; Li, Q.; Xu, D. Ultrathin Li4Ti5O12 Nanosheet Based Hierarchical Microspheres for High-Rate and Long-Cycle Life Li-Ion Batteries. Adv. Energy Mater. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Haridas, A.K.; Sharma, C.S.; Rao, T.N. Donut-Shaped Li4Ti5O12 Structures as a High Performance Anode Material for Lithium Ion Batteries. Small 2015, 11, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.L.; Wang, J.Z.; Liu, H.K.; Dou, S.X. Rapid Synthesis of Li4Ti5O12 Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery. J. Phys. Chem. C 2011, 115, 16220–16227. [Google Scholar] [CrossRef]
- Liu, G.Y.; Wang, H.Y.; Liu, G.Q.; Yang, Z.Z.; Jin, B.; Jiang, Q.C. Facile Synthesis of Nanocrystalline Li 4Ti 5O 12 by Microemulsion and Its Application as Anode Material for Li-Ion Batteries. J. Power Sources 2012, 220, 84–88. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Wen, Y.; Xie, J.; Xia, Q.; Zhang, T.; Zeng, Z.; Du, X. High Performance Li4Ti5O12 Material as Anode for Lithium-Ion Batteries. Electrochim. Acta 2013, 113, 679–685. [Google Scholar] [CrossRef]
- Yuan, T.; Cai, R.; Wang, K.; Ran, R.; Liu, S.; Shao, Z. Combustion Synthesis of High-Performance Li4Ti5O12 for Secondary Li-Ion Battery. Ceram. Int. 2009, 35, 1757–1768. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Z.; Yang, T.; Liao, C.; Wang, Z.; Sun, K. Facile Preparation of Nanocrystalline Li4Ti5O 12 and Its High Electrochemical Performance as Anode Material for Lithium-Ion Batteries. Electrochem. Commun. 2011, 13, 654–656. [Google Scholar] [CrossRef]
- Qiao, Y.; Hu, X.; Liu, Y.; Huang, Y. Li 4Ti 5O 12 Nanocrystallites for High-Rate Lithium-Ion Batteries Synthesized by a Rapid Microwave-Assisted Solid-State Process. Electrochim. Acta 2012, 63, 118–123. [Google Scholar] [CrossRef]
- Yin, S.Y.; Song, L.; Wang, X.Y.; Zhang, M.F.; Zhang, K.L.; Zhang, Y.X. Synthesis of Spinel Li4Ti5O12 Anode Material by a Modified Rheological Phase Reaction. Electrochim. Acta 2009, 54, 5629–5633. [Google Scholar] [CrossRef]
- Lai, C.; Dou, Y.Y.; Li, X.; Gao, X.P. Improvement of the High Rate Capability of Hierarchical Structured Li4Ti5O12 Induced by the Pseudocapacitive Effect. J. Power Sources 2010, 195, 3676–3679. [Google Scholar] [CrossRef]
- Tang, Y.F.; Yang, L.; Qiu, Z.; Huang, J.S. Preparation and Electrochemical Lithium Storage of Flower-like Spinel Li4Ti5O12 Consisting of Nanosheets. Electrochem. Commun. 2008, 10, 1513–1516. [Google Scholar] [CrossRef]
- Julien, C.M.; Zaghib, K. Electrochemistry and Local Structure of Nano-Sized Li4/3Me 5/3O4 (Me=Mn, Ti) Spinels. Electrochim. Acta 2004, 50, 411–416. [Google Scholar] [CrossRef]
- Nakazawa, T.; Grismanovs, V.; Yamaki, D.; Katano, Y.; Aruga, T. Disordering in Li2TiO3 Irradiated with High Energy Ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 206, 166–170. [Google Scholar] [CrossRef]
- Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J.C.; Tirado, J.L.; Corredor, J.I.; Pe, C. Chemical and Electrochemical Li-Insertion into the Li 4 Ti 5 O 12 Spinel. Methods 2004, 5721–5725. [Google Scholar]
- Kavan, L.; Prochaázka, J.; Spitler, T.M.; Kalbaácč, M.; Zukalovaá, M.; Drezen, T.; Graätzel, M. Li Insertion into Li4 Ti5 O12 (Spinel): Charge Capability vs. Particle Size in Thin-Film Electrodes. J. Electrochem. Soc. 2003, 150, A1000. [Google Scholar] [CrossRef]
Sample | Average Crystal Size (nm) | % LTO (Spinel) | % TiO2 | % LiTiO2 | Lattice Parameter a (Å) |
---|---|---|---|---|---|
S1 | 148 ± 5 | 100 | - | - | 8.358 ± 0.001 |
S2 | 144 ± 5 | 100 | - | - | 8.358 ± 0.001 |
S3 | 148 ± 5 | 100 | - | - | 8.358 ± 0.001 |
S4 | 141 ± 5 | 98.3 | 1.7 (R) | - | 8.358 ± 0.001 |
Com | 313 ± 5 | 97.7 | 0.6 (R) | 1.7 | 8.359 ± 0.001 |
Sample | BET Area (m2 g−1) | Dominant Pores (nm) | Pore Volume (1.7–300 nm) (cm3 g−1) | Particle Size (nm) |
---|---|---|---|---|
S1 | 8.23 ± 0.02 | 2–3; | 0.0252 | 208 |
S2 | 12.58 ± 0.04 | 2–3; | 0.0345 | 136 |
S3 | 11.14 ± 0.06 | 2–3; | 0.0288 | 154 |
S4 | 10.97 ± 0.08 | 2–3; | 0.0310 | 156 |
Com | 4.43 ± 0.03 | 2–3; | 0.0124 | 387 |
Sample | Electrode Loading (mg cm−2) | 1 C 1st Dis. Cap. (mAh g−1) | 2 C 1st Dis. Cap. (mAh g−1) | 5 C 1st Dis. Cap. (mAh g−1) | 10 C 1st Dis. Cap. (mAh g−1) | Capacity Retained at 10 C (%) |
---|---|---|---|---|---|---|
S1 | 1.60 ± 0.19 | 168.1 ± 3.4 | 161.1 ± 4.0 | 144.2 ± 5.4 | 118.3 ± 5.5 | 70.4 ± 3.6% |
S2 | 1.68 ± 0.50 | 169.2 ± 2.2 | 167.4 ± 2.1 | 164.3 ± 2.0 | 157.3 ± 2.5 | 93.0 ± 1.9% |
S3 | 1.47 ± 0.47 | 166.0 ± 4.2 | 162.9 ± 4.2 | 158.5 ± 3.8 | 151.4 ± 3.3 | 91.2 ± 3.0% |
S4 | 1.78 ± 0.09 | 167.0 ± 5.0 | 160.4 ± 6.6 | 149.9 ± 9.0 | 132.0 ± 9.0 | 79.0 ± 5.9% |
Com | 1.48 ± 0.19 | 162.2 ± 5.7 | 152.7 ± 7.2 | 129.8 ± 8.6 | 99.2 ± 9.7 | 61.2 ± 6.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llaín-Jiménez, H.A.; Buchberger, D.A.; Winkowska-Struzik, M.; Ratyński, M.; Krajewski, M.; Boczar, M.; Hamankiewicz, B.; Czerwiński, A. Correlation between Lithium Titanium Oxide Powder Morphology and High Rate Performance in Lithium-Ion Batteries. Batteries 2022, 8, 168. https://doi.org/10.3390/batteries8100168
Llaín-Jiménez HA, Buchberger DA, Winkowska-Struzik M, Ratyński M, Krajewski M, Boczar M, Hamankiewicz B, Czerwiński A. Correlation between Lithium Titanium Oxide Powder Morphology and High Rate Performance in Lithium-Ion Batteries. Batteries. 2022; 8(10):168. https://doi.org/10.3390/batteries8100168
Chicago/Turabian StyleLlaín-Jiménez, Hermes A., Dominika A. Buchberger, Magdalena Winkowska-Struzik, Maciej Ratyński, Michał Krajewski, Maciej Boczar, Bartosz Hamankiewicz, and Andrzej Czerwiński. 2022. "Correlation between Lithium Titanium Oxide Powder Morphology and High Rate Performance in Lithium-Ion Batteries" Batteries 8, no. 10: 168. https://doi.org/10.3390/batteries8100168
APA StyleLlaín-Jiménez, H. A., Buchberger, D. A., Winkowska-Struzik, M., Ratyński, M., Krajewski, M., Boczar, M., Hamankiewicz, B., & Czerwiński, A. (2022). Correlation between Lithium Titanium Oxide Powder Morphology and High Rate Performance in Lithium-Ion Batteries. Batteries, 8(10), 168. https://doi.org/10.3390/batteries8100168