Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Anode Preparation and Characterization
3. Results and Discussion
3.1. Selection of Anode Fabrication Method
3.2. Structural and Electrochemical Performance of the Porous Anode
3.3. Electrochemical Performance of Anode with Incorporated Electrode Additive
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pei, P.; Wang, K.; Ma, Z. Technologies for Extending Zinc–Air Battery’s Cyclelife: A Review. Appl. Energy 2014, 128, 315–324. [Google Scholar] [CrossRef]
- Rahman, M.A.; Wang, X.; Wen, C. High Energy Density Metal-Air Batteries: A Review. J. Electrochem. Soc. 2013, 160, A1759–A1771. [Google Scholar] [CrossRef]
- Fu, J.; Cano, Z.P.; Park, M.G.; Yu, A.; Fowler, M.; Chen, Z. Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29, 1604685. [Google Scholar] [CrossRef]
- Harting, K.; Kunz, U.; Turek, T. Zinc-Air Batteries: Prospects and Challenges for Future Improvement. Z. Für Phys. Chem. 2012, 226, 151–166. [Google Scholar] [CrossRef]
- Gu, P.; Zheng, M.; Zhao, Q.; Xiao, X.; Xue, H.; Pang, H. Rechargeable Zinc–Air Batteries: A Promising Way to Green Energy. J. Mater. Chem. A 2017, 5, 7651–7666. [Google Scholar] [CrossRef]
- Liu, Q.; Pan, Z.; Wang, E.; An, L.; Sun, G. Aqueous Metal-Air Batteries: Fundamentals and Applications. Energy Storage Mater. 2020, 27, 478–505. [Google Scholar] [CrossRef]
- Weinrich, H.; Durmus, Y.E.; Tempel, H.; Kungl, H.; Eichel, R.-A. Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A Review. Materials 2019, 12, 2134. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Wang, Z.; Lai, Z.; Liu, Y.; Ma, T.; Geng, J.; Yuan, Z. Rechargeable Zinc–Air Batteries: Advances, Challenges, and Prospects. Small 2024, 20, 2306396. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, T.; Ali, M.; Meng, Y.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable Batteries for Grid Scale Energy Storage. Chem. Rev. 2022, 122, 16610–16751. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, J. Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? ACS Energy Lett. 2017, 2, 1370–1377. [Google Scholar] [CrossRef]
- Wang, Q.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable Zinc–Air Battery Chemistry: Advances, Challenges and Prospects. Chem. Soc. Rev. 2023, 52, 6139–6190. [Google Scholar] [CrossRef] [PubMed]
- Mainar, A.R.; Iruin, E.; Colmenares, L.C.; Kvasha, A.; De Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z.; Blazquez, J.A. An Overview of Progress in Electrolytes for Secondary Zinc-Air Batteries and Other Storage Systems Based on Zinc. J. Energy Storage 2018, 15, 304–328. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, X.; Ding, J.; Hu, W.; Zhong, C.; Lu, J. Challenges in Zinc Electrodes for Alkaline Zinc–Air Batteries: Obstacles to Commercialization. ACS Energy Lett. 2019, 4, 2259–2270. [Google Scholar] [CrossRef]
- Prakoso, B.; Mahbub, M.A.A.; Yilmaz, M.; Khoiruddin; Wenten, I.G.; Handoko, A.D.; Sumboja, A. Recent Progress in Extending the Cycle-Life of Secondary Zn-Air Batteries. ChemNanoMat 2021, 7, 354–367. [Google Scholar] [CrossRef]
- Mainar, A.R.; Colmenares, L.C.; Grande, H.-J.; Blázquez, J.A. Enhancing the Cycle Life of a Zinc–Air Battery by Means of Electrolyte Additives and Zinc Surface Protection. Batteries 2018, 4, 46. [Google Scholar] [CrossRef]
- Stamm, J. Modeling Nucleation and Growth of Zinc Oxide during Discharge of Primary Zinc-Air Batteries. J. Power Sources 2017, 360, 136–149. [Google Scholar] [CrossRef]
- Deckenbach, D.; Schneider, J.J. A 3D Hierarchically Porous Nanoscale ZnO Anode for High-Energy Rechargeable Zinc-Air Batteries. J. Power Sources 2021, 488, 229393. [Google Scholar] [CrossRef]
- Lei, L.; Sun, Y.; Wang, X.; Jiang, Y.; Li, J. Strategies to Enhance Corrosion Resistance of Zn Electrodes for Next Generation Batteries. Front. Mater. 2020, 7, 96. [Google Scholar] [CrossRef]
- Mainar, A.R.; Colmenares, L.C.; Blázquez, J.A.; Urdampilleta, I. A Brief Overview of Secondary Zinc Anode Development: The Key of Improving Zinc-Based Energy Storage Systems. Int. J. Energy Res. 2018, 42, 903–918. [Google Scholar] [CrossRef]
- Minakshi, M.; Appadoo, D.; Martin, D.E. The Anodic Behavior of Planar and Porous Zinc Electrodes in Alkaline Electrolyte. Electrochem. Solid-State Lett. 2010, 13, A77. [Google Scholar] [CrossRef]
- Li, L.; Tsang, Y.C.A.; Xiao, D.; Zhu, G.; Zhi, C.; Chen, Q. Phase-Transition Tailored Nanoporous Zinc Metal Electrodes for Rechargeable Alkaline Zinc-Nickel Oxide Hydroxide and Zinc-Air Batteries. Nat. Commun. 2022, 13, 2870. [Google Scholar] [CrossRef]
- Yang, D.; Li, J.; Liu, C.; Xing, W.; Zhu, J. Design Strategy and Comprehensive Performance Assessment towards Zn Anode for Alkaline Rechargeable Batteries. J. Energy Chem. 2023, 82, 122–138. [Google Scholar] [CrossRef]
- Liu, P.; Ling, X.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Porous Zinc Anode Design for Zn-Air Chemistry. Front. Chem. 2019, 7, 656. [Google Scholar] [CrossRef]
- Chamoun, M.; Hertzberg, B.J.; Gupta, T.; Davies, D.; Bhadra, S.; Van Tassell, B.; Erdonmez, C.; Steingart, D.A. Hyper-Dendritic Nanoporous Zinc Foam Anodes. NPG Asia Mater. 2015, 7, e178. [Google Scholar] [CrossRef]
- Qu, S.; Liu, B.; Fan, X.; Liu, X.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. 3D Foam Anode and Hydrogel Electrolyte for High-Performance and Stable Flexible Zinc–Air Battery. ChemistrySelect 2020, 5, 8305–8310. [Google Scholar] [CrossRef]
- Parker, J.F.; Chervin, C.N.; Nelson, E.S.; Rolison, D.R.; Long, J.W. Wiring Zinc in Three Dimensions Re-Writes Battery Performance—Dendrite-Free Cycling. Energy Env. Sci. 2014, 7, 1117–1124. [Google Scholar] [CrossRef]
- Parker, J.F.; Nelson, E.S.; Wattendorf, M.D.; Chervin, C.N.; Long, J.W.; Rolison, D.R. Retaining the 3D Framework of Zinc Sponge Anodes upon Deep Discharge in Zn–Air Cells. ACS Appl. Mater. Interfaces 2014, 6, 19471–19476. [Google Scholar] [CrossRef]
- Park, D.-J.; Aremu, E.O.; Ryu, K.-S. Bismuth Oxide as an Excellent Anode Additive for Inhibiting Dendrite Formation in Zinc-Air Secondary Batteries. Appl. Surf. Sci. 2018, 456, 507–514. [Google Scholar] [CrossRef]
- Qu, D.; Wang, L.; Zheng, D.; Xiao, L.; Deng, B.; Qu, D. An Asymmetric Supercapacitor with Highly Dispersed Nano-Bi2O3 and Active Carbon Electrodes. J. Power Sources 2014, 269, 129–135. [Google Scholar] [CrossRef]
- Park, J.H.; Schneider, N.M.; Steingart, D.A.; Deligianni, H.; Kodambaka, S.; Ross, F.M. Control of Growth Front Evolution by Bi Additives during ZnAu Electrodeposition. Nano Lett. 2018, 18, 1093–1098. [Google Scholar] [CrossRef]
- Aremu, E.O.; Park, D.-J.; Ryu, K.-S. The Effects of Anode Additives towards Suppressing Dendrite Growth and Hydrogen Gas Evolution Reaction in Zn-Air Secondary Batteries. Ionics 2019, 25, 4197–4207. [Google Scholar] [CrossRef]
- Da, Y.; Zhao, F.; Shi, J.; Zhang, Z. Effects of Ultrafine Bismuth Powder on the Properties of Zinc Electrodes in Zinc-Air Batteries. J. Electron. Mater. 2020, 49, 2479–2490. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ryu, K.-S. Effects of Aluminum and Silicon as Additive Materials for the Zinc Anode in Zn-Air Batteries. J. Korean Electrochem. Soc. 2018, 21, 12–20. [Google Scholar] [CrossRef]
- Stock, D.; Dongmo, S.; Miyazaki, K.; Abe, T.; Janek, J.; Schröder, D. Towards Zinc-Oxygen Batteries with Enhanced Cycling Stability: The Benefit of Anion-Exchange Ionomer for Zinc Sponge Anodes. J. Power Sources 2018, 395, 195–204. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, E.; Jiang, L.; Sun, G. Superior Cycling Stability and High Rate Capability of Three-Dimensional Zn/Cu Foam Electrodes for Zinc-Based Alkaline Batteries. RSC Adv. 2015, 5, 83781–83787. [Google Scholar] [CrossRef]
- Janowitz, K.; Woltering, P.; Beckmann, R.; Steinmetz, T.; Kiefer, R.; Dulle, K.-H.; Funck, F.; Kohnke, H.-J. Method for Producing Gas Diffusion Electrodes. EP 1402587B1, 16 March 2004. [Google Scholar]
- Erol, M.; Ertugrul, O. HIPed TiO2 Dense Pellets with Improved Photocatalytic Performance. Ceram. Int. 2018, 44, 2991–2999. [Google Scholar] [CrossRef]
- Westphal, E.; Seitz, H. Porosity and Density Measurement of Additively Manufactured Components: A Comparative Analysis of Measurement Methods across Processes and Materials. Mater. Sci. Addit. Manuf. 2025, 4, 025090010. [Google Scholar] [CrossRef]
- Klobes, P.; Meyer, K.; Munro, R.G. Porosity and Specific Surface Area Measurements for Solid Materials; NIST Recommended Practice Guide; NIST: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Martínez, C.; Guerra, C.; Silva, D.; Cubillos, M.; Briones, F.; Muñoz, L.; Páez, M.A.; Aguilar, C.; Sancy, M. Effect of Porosity on Mechanical and Electrochemical Properties of Ti–6Al–4V Alloy. Electrochim. Acta 2020, 338, 135858. [Google Scholar] [CrossRef]
- Ko, J.S.; Bishop, K.; Seitzman, N.; Chen, B.-R.; Toney, M.F.; Nelson Weker, J. Highly Reversible Plating/Stripping of Porous Zinc Anodes for Multivalent Zinc Batteries. J. Electrochem. Soc. 2020, 167, 140520. [Google Scholar] [CrossRef]
- Hopkins, B.J.; Sassin, M.B.; Parker, J.F.; Long, J.W.; Rolison, D.R. Zinc-Sponge Battery Electrodes That Suppress Dendrites. J. Vis. Exp. 2020, 163, 61770. [Google Scholar] [CrossRef]
- Cai, M.; Park, S. Spectroelectrochemical Studies on Dissolution and Passivation of Zinc Electrodes in Alkaline Solutions. J. Electrochem. Soc. 1996, 143, 2125–2131. [Google Scholar] [CrossRef]
- Zhang, X.G. Corrosion and Electrochemistry of Zinc; Springer: Boston, MA, USA, 1996; ISBN 978-1-4757-9879-1. [Google Scholar]
- Hwang, B.; Oh, E.-S.; Kim, K. Observation of Electrochemical Reactions at Zn Electrodes in Zn-Air Secondary Batteries. Electrochim. Acta 2016, 216, 484–489. [Google Scholar] [CrossRef]
- Lim, M.B.; Lambert, T.N.; Ruiz, E.I. Effect of ZnO-Saturated Electrolyte on Rechargeable Alkaline Zinc Batteries at Increased Depth-of-Discharge. J. Electrochem. Soc. 2020, 167, 060508. [Google Scholar] [CrossRef]
- Turney, D.E.; Gallaway, J.W.; Yadav, G.G.; Ramirez, R.; Nyce, M.; Banerjee, S.; Chen-Wiegart, Y.K.; Wang, J.; D’Ambrose, M.J.; Kolhekar, S.; et al. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage. Chem. Mater. 2017, 29, 4819–4832. [Google Scholar] [CrossRef]
- Khezri, R.; Jirasattayaporn, K.; Abbasi, A.; Maiyalagan, T.; Mohamad, A.A.; Kheawhom, S. Three-Dimensional Fibrous Iron as Anode Current Collector for Rechargeable Zinc–Air Batteries. Energies 2020, 13, 1429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutta, S.; Durmus, Y.E.; Im, E.; Kungl, H.; Tempel, H.; Eichel, R.-A. Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries. Batteries 2025, 11, 359. https://doi.org/10.3390/batteries11100359
Dutta S, Durmus YE, Im E, Kungl H, Tempel H, Eichel R-A. Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries. Batteries. 2025; 11(10):359. https://doi.org/10.3390/batteries11100359
Chicago/Turabian StyleDutta, Sarmila, Yasin Emre Durmus, Eunmi Im, Hans Kungl, Hermann Tempel, and Rüdiger-A. Eichel. 2025. "Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries" Batteries 11, no. 10: 359. https://doi.org/10.3390/batteries11100359
APA StyleDutta, S., Durmus, Y. E., Im, E., Kungl, H., Tempel, H., & Eichel, R.-A. (2025). Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries. Batteries, 11(10), 359. https://doi.org/10.3390/batteries11100359