Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Material Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wang, H.; Chan, D.; Xu, Z.; Wang, K.; Ge, M.; Zhang, Y.; Chen, S.; Tang, Y. Nature-inspired materials and designs for flexible lithium-ion batteries. Carbon Energy 2022, 4, 878–900. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, W.; Weng, Y.; Lv, R.; Kang, F.; Huang, Z.-H. Steam selective etching: A strategy to effectively enhance the flexibility and suppress the volume change of carbonized paper-supported electrodes. ACS Nano 2019, 13, 5731–5741. [Google Scholar] [CrossRef] [PubMed]
- Han, D.Y.; Son, H.B.; Han, S.H.; Song, C.K.; Jung, J.; Lee, S.; Choi, S.S.; Song, W.J.; Park, S. Hierarchical 3D electrode design with high mass loading enabling high-energy-density flexible lithium-ion batteries. Small 2023, 19, 2305416. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Yang, J.; Liu, Y.; Zhang, J.; Shang, J.; Liu, B.; Li, S.; Li, W. Material choice and structure design of flexible battery electrode. Adv. Sci. 2023, 10, 2204875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guo, Z.; Liang, Q.; Lv, R.; Shen, W.; Kang, F.; Weng, Y.; Huang, Z.-H. Flexible C-Mo2C fiber film with self-fused junctions as a long cyclability anode material for sodium-ion battery. RSC Adv. 2018, 8, 16657–16662. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, Z.-Z.; Lv, W.; Lv, R.; Shen, W.; Kang, F.; Yang, Q.-H.; Weng, Y.; Huang, Z.-H. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries. Carbon 2019, 153, 625–633. [Google Scholar] [CrossRef]
- Min, X.; Sun, B.; Chen, S.; Fang, M.; Wu, X.; Liu, Y.g.; Abdelkader, A.; Huang, Z.; Liu, T.; Xi, K. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597–606. [Google Scholar] [CrossRef]
- Zhang, W.; Weng, Y.; Shen, W.; Lv, R.; Kang, F.; Huang, Z.-H. Scalable synthesis of lotus-seed-pod-like Si/SiOx@ CNF: Applications in freestanding electrode and flexible full lithium-ion batteries. Carbon 2020, 158, 163–171. [Google Scholar] [CrossRef]
- Lauro, S.N.; Burrow, J.N.; Mullins, C.B. Restructuring the lithium-ion battery: A perspective on electrode architectures. EScience 2023, 3, 100152. [Google Scholar] [CrossRef]
- Huang, A.; Ma, Y.; Peng, J.; Li, L.; Chou, S.-l.; Ramakrishna, S.; Peng, S. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. EScience 2021, 1, 141–162. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.; Liu, D.; Liu, L.; Chen, H.; Hu, Q.; Liu, X.; Zhou, A. SnO2 Quantum dots interspersed d-Ti3C2Tx MXene heterostructure with enhanced performance for lithium ion battery. J. Electrochem. Soc. 2020, 167, 116522. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Dong, Z.; Zhang, F.; Jin, J. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery. Nano Lett. 2013, 13, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Guo, X.; Ding, H.; Yu, D.; Chen, Y.; Li, N.; Zhou, H.; Zhang, S.; Wu, J.; Pang, H. Construction of ternary Sn/SnO2/nitrogen-doped carbon superstructures as anodes for advanced lithium-ion batteries. Nano Res. 2024, 17, 9721–9727. [Google Scholar] [CrossRef]
- Lu, Z.; Kong, Z.; Jing, L.; Wang, T.; Liu, X.; Fu, A.; Guo, P.; Guo, Y.-G.; Li, H. Porous SnO2/graphene composites as anode materials for lithium-ion batteries: Morphology control and performance improvement. Energy & Fuels 2020, 34, 13126–13136. [Google Scholar]
- Jung, S.M.; Kim, D.W.; Jung, H.Y. Unconventional capacity increase kinetics of a chemically engineered SnO2 aerogel anode for long-term stable lithium-ion batteries. J. Mater. Chem. A 2020, 8, 8244–8254. [Google Scholar] [CrossRef]
- Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L. Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. J. Power Sources 2017, 362, 20–26. [Google Scholar] [CrossRef]
- Xie, W.; Gu, L.; Xia, F.; Liu, B.; Hou, X.; Wang, Q.; Liu, D.; He, D. Fabrication of voids-involved SnO2@C nanofibers electrodes with highly reversible Sn/SnO2 conversion and much enhanced coulombic efficiency for lithium-ion batteries. J. Power Sources 2016, 327, 21–28. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, Z.; Wang, P.; Jensen, L.R.; Zhang, Y.; Yue, Y. Optimized assembling of MOF/SnO2/Graphene leads to superior anode for lithium ion batteries. Nano Energy 2020, 74, 104868. [Google Scholar] [CrossRef]
- Hu, R.; Chen, D.; Waller, G.; Ouyang, Y.; Chen, Y.; Zhao, B.; Rainwater, B.; Yang, C.; Zhu, M.; Liu, M. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: The effect of nanostructure on high initial reversible capacity. Energ. Environ. Sci. 2016, 9, 595–603. [Google Scholar] [CrossRef]
- Gervillié, C.; Boisard, A.; Labbé, J.; Guérin, K.; Berthon-Fabry, S. Relationship between tin environment of SnO2 nanoparticles and their electrochemical behaviour in a lithium ion battery. Mater. Chem. Phys. 2021, 257, 123461. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, S.; Zhou, L.; Chang, L.; Liu, W.; Yin, D.; Yi, Z.; Wang, L. SnO2 quantum dots: Rational design to achieve highly reversible conversion reaction and stable capacities for lithium and sodium storage. Small 2020, 16, 2000681. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; El-Khodary, S.A.; Li, S.; Zou, B.; Kang, R.; Li, G.; Ng, D.H.; Liu, X.; Qiu, J.; Zhao, Y. Roselle-like Zn2Ti3O8/rGO nanocomposite as anode for lithium ion capacitor. Chem. Eng. J. 2020, 385, 123881. [Google Scholar] [CrossRef]
- Wu, K.; Shi, B.; Qi, L.; Mi, Y.; Zhao, B.; Yang, C.; Wang, Q.; Tang, H.; Lu, J.; Liu, W. SnO2 quantum dots@3D sulfur-doped reduced graphene oxides as active and durable anode for lithium ion batteries. Electrochim. Acta 2018, 291, 24–30. [Google Scholar] [CrossRef]
- Liao, S.-Y.; Chen, J.; Cui, S.-F.; Shang, J.-Q.; Li, Y.-Z.; Cheng, W.-X.; Liu, Y.-D.; Cui, T.-T.; Shu, X.-G.; Min, Y.-G. CoS2 enhanced SnO2@rGO heterostructure quantum dots for advanced lithium-ion battery anode. J. Power Sources 2023, 553, 232265. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, L.; Xia, R.; Dong, Y.; Xu, W.; Niu, C.; He, L.; Yan, M.; Qu, L.; Mai, L. SnO2 Quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. small 2016, 12, 588–594. [Google Scholar] [CrossRef]
- Gao, L.; Wu, G.; Ma, J.; Jiang, T.; Chang, B.; Huang, Y.; Han, S. SnO2 quantum dots@graphene framework as a high-performance flexible anode electrode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 12982–12989. [Google Scholar] [CrossRef]
- Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J.; Wu, H.; Li, Q.; Fan, S.; Wang, J. Progress and challenges of flexible lithium ion batteries. J. Power Sources 2020, 454, 227932. [Google Scholar] [CrossRef]
- Qian, G.; Liao, X.; Zhu, Y.; Pan, F.; Chen, X.; Yang, Y. Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 2019, 4, 690–701. [Google Scholar] [CrossRef]
- Liu, R.; Su, W.; He, P.; Shen, C.; Zhang, C.; Su, F.; Wang, C.-A. Synthesis of SnO2/Sn hybrid hollow spheres as high performance anode materials for lithium ion battery. J. Alloys Compd. 2016, 688, 908–913. [Google Scholar] [CrossRef]
- Li, Z.; Tan, Y.; Huang, X.; Zhang, W.; Gao, Y.; Tang, B. Three-dimensionally ordered macroporous SnO2 as anode materials for lithium ion batteries. Ceram. Int. 2016, 42, 18887–18893. [Google Scholar] [CrossRef]
- Gurunathan, P.; Ette, P.M.; Ramesha, K. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders. ACS Appl. Mater. Interfaces 2014, 6, 16556–16564. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Du, P.; Liu, D.; Wang, H.; Liu, P. Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries. J. Colloid Interf. Sci. 2017, 503, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guo, J.; Liu, T.; Zhang, J.; Jia, Z.; Zhang, C. Mechanical simulation informed rational design of a soft-and-hard double-jacketed SnO2 flexible electrode for high performance lithium-ion battery. Energy Storage Mater. 2021, 35, 520–529. [Google Scholar] [CrossRef]
- Yanfeng, D.; Zongbin, Z.; Zhiyu, W.; Yang, L.; Xuzhen, W.; Jieshan, Q. Dually Fixed SnO2 Nanoparticles on Graphene Nanosheets by Polyaniline Coating for Superior Lithium Storage. ACS Appl. Mater. Interfaces 2015, 7, 2444–2451. [Google Scholar]
- Yuan, J.; Chen, C.; Hao, Y.; Zhang, X.; Zou, B.; Agrawal, R.; Wang, C.; Yu, H.; Zhu, X.; Yu, Y. SnO2/polypyrrole hollow spheres with improved cycle stability as lithium-ion battery anodes. J. Alloys Compd. 2017, 691, 34–39. [Google Scholar] [CrossRef]
- Li, B.; Bi, R.; Yang, M.; Gao, W.; Wang, J. Coating conductive polypyrrole layers on multiple shells of hierarchical SnO2 spheres and their enhanced cycling stability as lithium-ion battery anode. Appl. Surf. Sci. 2022, 586, 152836. [Google Scholar] [CrossRef]
- Yi, L.; Liu, L.; Guo, G.; Chen, X.; Zhang, Y.; Yu, S.; Wang, X. Expanded graphite@SnO2@polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim. Acta 2017, 240, 63–71. [Google Scholar] [CrossRef]
- Ming, L.; Zhang, B.; Zhang, J.-F.; Wang, X.-W.; Li, H.; Wang, C.-H. SnO2@C/expanded graphite nanosheets as high performance anode materials for lithium ion batteries. J. Alloys Compd. 2018, 752, 93–98. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.; Tian, Q.; Zhang, W.; Sui, Z.; Chen, J. Enabling improved cycling stability of hollow SnO2/C composite anode for lithium-ion battery by constructing a built-in porous carbon support. Appl. Surf. Sci. 2021, 537, 148052. [Google Scholar] [CrossRef]
- Cao, B.; Liu, Z.; Xu, C.; Huang, J.; Fang, H.; Chen, Y. High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries. J. Power Sources 2019, 414, 233–241. [Google Scholar] [CrossRef]
- Liang, J.; Yu, X.Y.; Zhou, H.; Wu, H.B.; Ding, S.; Lou, X.W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. 2014, 126, 13017–13021. [Google Scholar] [CrossRef]
- Bonino, C.A.; Ji, L.; Lin, Z.; Toprakci, O.; Zhang, X.; Khan, S.A. Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl. Mater. Interfaces 2011, 3, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, L.; Liu, J.; Li, S.; Fang, L.; Lu, Y.; Yang, H.; Liu, S.; Lei, M. Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. J. Power Sources 2016, 324, 780–787. [Google Scholar] [CrossRef]
- Wang, X.; Sun, N.; Dong, X.; Huang, H.; Qi, M. Electrospun layers by layers orderly stacked SnO2@ aligned carbon nanofibers as high conductivity, long cycle life self-standing anode for reversible lithium ions batteries. Surf. Interfaces 2022, 29, 101814. [Google Scholar] [CrossRef]
- Yang, L.; Dai, T.; Wang, Y.; Xie, D.; Narayan, R.L.; Li, J.; Ning, X. Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties. Nano Energy 2016, 30, 885–891. [Google Scholar] [CrossRef]
- Habibi, A.; Mousavi, M.R.; Yasoubi, M.; Sanaee, Z.; Ghasemi, S. Plasma-enhanced chemical vapor deposition for fabrication of yolk-shell SnO2@ Void@ C nanowires, as an efficient carbon coating technique for improving lithium-ion battery performance. Mat. Sci. Semicon. Proc. 2022, 149, 106901. [Google Scholar] [CrossRef]
- Han, S.; Pu, X.; Li, X.; Liu, M.; Li, M.; Feng, N.; Dou, S.; Hu, W. High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochim. Acta 2017, 241, 406–413. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Luo, L.; Li, H.; He, J.; Zu, H.; Liu, L.; Liu, H.; Wang, F.; Song, J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 2205–2213. [Google Scholar] [CrossRef]
- Li, X.; Meng, X.; Liu, J.; Geng, D.; Zhang, Y.; Banis, M.N.; Li, Y.; Yang, J.; Li, R.; Sun, X. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 2012, 22, 1647–1654. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Xiang, C.; Ruan, G.; Yan, Z.; Natelson, D.; Tour, J.M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006. [Google Scholar] [CrossRef] [PubMed]
- Di Lupo, F.; Gerbaldi, C.; Meligrana, G.; Bodoardo, S.; Penazzi, N. Novel SnO2/mesoporous carbon spheres composite anode for Li-ion batteries. Int. J. Electrochem. Sc. 2011, 6, 3580–3593. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, P.K. Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Energy 2015, 13, 563–572. [Google Scholar] [CrossRef]
- Liu, Q.; Dou, Y.; Ruan, B.; Sun, Z.; Chou, S.L.; Dou, S.X. Carbon-coated hierarchical SnO2 hollow spheres for lithium ion batteries. Chem-Eur. J. 2016, 22, 5853–5857. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Huang, J.; Li, J.; Xu, Z.; Cao, L.; Ouyang, H.; Yan, J.; Qi, H. SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance. J. Alloys Compd. 2016, 658, 234–240. [Google Scholar] [CrossRef]
- Saikia, D.; Deka, J.R.; Chou, C.-J.; Kao, H.-M.; Yang, Y.-C. 3D interpenetrating cubic mesoporous carbon supported nanosized SnO2 as an efficient anode for high performance lithium-ion batteries. J. Alloys Compd. 2019, 791, 892–904. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, G.; Yu, X.; Li, Q.; Lu, B.; Xu, Z. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries. Nano Energy 2014, 3, 80–87. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Li, Z.; Zhong, W.; Liao, H.; Li, Z. Rapid preparation of SnO2/C nanospheres by using organotin as building blocks and their application in lithium-ion batteries. RSC Adv. 2017, 7, 34442–34447. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Zhang, X.; Xia, L.; Zhong, B.; Zhang, T.; Wen, G. Cotton/rGO/carbon-coated SnO2 nanoparticle-composites as superior anode for Lithium ion battery. Mater. Design 2017, 114, 234–242. [Google Scholar] [CrossRef]
- Wang, M.-S.; Wang, Z.-Q.; Yang, Z.-L.; Huang, Y.; Zheng, J.; Li, X. Carbon nanotube-graphene nanosheet conductive framework supported SnO2 aerogel as a high performance anode for lithium ion battery. Electrochim. Acta 2017, 240, 7–15. [Google Scholar] [CrossRef]
- Tian, R.; Zhang, Y.; Chen, Z.; Duan, H.; Xu, B.; Guo, Y.; Kang, H.; Li, H.; Liu, H. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode. Sci. Rep. 2016, 6, 19195. [Google Scholar] [CrossRef] [PubMed]
Sample | Rf (Ω) | Rct (Ω) | σ (Ω cm2 s−1/2) | DLi+ (cm2 s−1) |
---|---|---|---|---|
carbon fiber/SnO2@rGO | 228.6 | 100.9 | 172 | 2.7 × 10−14 |
carbon fiber/SnO2 | 321.4 | 464 | 187.5 | 2.2 × 10−14 |
Electrodes | Capacity Retention | Rate Capability | References |
---|---|---|---|
carbon fiber/SnO2@rGO | 88% (1000 cycles at 2 A g−1) | 453 mAh g−1 (0.05 A g−1); | this work |
393 mAh g−1 (0.2 A g−1); | |||
290 mAh g−1 (1 A g−1); | |||
234 mAh g−1 (2 A g−1); | |||
125 mAh g−1 (5 A g−1) | |||
SnO2@graphene@graphene | 60% (120 cycles at 0.08 A g−1) | 658.2 mAh g−1 (0.16 A g−1); | [57] |
466.5 mAh g−1 (0.4 A g−1); | |||
308.2 mAh g−1 (0.8 A g−1); | |||
212.8 mAh g−1 (4 A g−1) | |||
SnO2/C | 84.5% (1000 cycles at 1 A g−1) | 705 mAh g−1 (0.2 A g−1); | [58] |
213 mAh g−1 (5 A g−1) | |||
CGN/SnO2-C | 71% (200 cycles at 0.1 A g−1) | 686.5 mAh g−1 (0.05 A g−1); | [59] |
361.1 mAh g−1 (0.4 A g−1); | |||
270.2 mAh g−1 (0.8 A g−1) | |||
SnO2/CNT-GN | 87% (100 cycles at 0.2 A g−1) | 1033 mAh g−1 (0.5 A g−1); | [60] |
887 mAh g−1 (2 A g−1); | |||
787 mAh g−1 (5 A g−1) | |||
SnO2@OSA-CNFs | 75% (100 cycles at 0.1 A g−1) | 601 mAh g−1 (0.5 A g−1); | [45] |
505 mAh g−1 (1 A g−1); | |||
470 mAh g−1 (2 A g−1); | |||
208 mAh g−1 (5 A g−1) | |||
3D SnO2/graphene | 73.9% (50 cycles at 0.2 A g−1) | 770.5 mAh g−1 (0.2 A g−1); | [61] |
582.8 mAh g−1 (1.5 A g−1); | |||
480.3 mAh g−1 (3 A g−1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Liu, Y.; Qin, Z.; Yu, L.; Lian, J.; Tao, Z.; Huang, Z.-H. Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries. Batteries 2024, 10, 412. https://doi.org/10.3390/batteries10120412
Zhang W, Liu Y, Qin Z, Yu L, Lian J, Tao Z, Huang Z-H. Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries. Batteries. 2024; 10(12):412. https://doi.org/10.3390/batteries10120412
Chicago/Turabian StyleZhang, Wenjie, Yongqi Liu, Zhouyang Qin, Lingxiao Yu, Jiabiao Lian, Zhanliang Tao, and Zheng-Hong Huang. 2024. "Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries" Batteries 10, no. 12: 412. https://doi.org/10.3390/batteries10120412
APA StyleZhang, W., Liu, Y., Qin, Z., Yu, L., Lian, J., Tao, Z., & Huang, Z.-H. (2024). Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries. Batteries, 10(12), 412. https://doi.org/10.3390/batteries10120412