Multi-Criteria DEXi Analysis for the Selection of Crop Species for Saltwater Aquaponics
Abstract
:1. Introduction
2. Materials and Methods
- -
- Potential yield. Plants with high annual yield were selected (Table 3). For each plant species, the annual yields used for the analysis were obtained under optimal growing conditions, assuming that soilless culture and foliar application of mineral nutrients can overcome the effect of high salinity on plan mineral nutrition, thus avoiding the occurrence of nutrient deficiencies [85]. Optimal salinity levels of the species evaluated in the current work are reported in Table 3. Plants with the highest annual yield in the scenario conditions and higher resistance to salinity, scored ‘High’ in both indicators (i.e., ‘Annual yield’ and ‘Salinity tolerance and its impact on yield’).
- -
- Seed availability in Italy and surrounding countries. The supply of seeds from seed companies,, which offer high-quality seeds of different genotypes at a competitive price, was considered the best option. Therefore, a ‘High’ score was assigned to the ‘Source of seed’ indicator. Relatively cheap seeds of the crop species under evaluation are currently supplied by some seed companies (e.g., SAIS, Cesena, Italy; Enza Zaden Italia S.r.l., Tarquinia, Italy). Thus, a ‘High’ score was assigned for the lower priced seeds to the ‘Cost of seed per unit’ indicator. Moreover, most of the species evaluated are not cultivated on a large scale. For this reason, genetically selected varieties are not available for these species, and their seeds are difficult to find or sold on Internet at relatively high prices (Table 4). If certified seeds of well identified varieties are available, ‘High’ score was assigned to the 2.3 indicator (Table 2).
- -
- Level of knowledge available. Scientific literature can help to develop a proper cultivation protocol for each species. Thus, previous experience of cultivation in soilless systems were positively considered in this evaluation and a ‘High’ score was assigned to the ‘Availability of protocols for hydroponic cultivations’. The main hotspots considered were propagation and cultivation technique, crop protection strategy, and environmental and nutritional needs. If this information is available, a ‘High’ score was assigned to the ‘Availability of biological/botanical features’ indicator.
- -
- Economic importance of the species. Halophytes and salt-tolerant glycophytes are cultivated for many purposes, including food production and the extraction of active principles of medicinal or nutraceutical interest [86]. If plants are already used for food production, a ‘High’ score was assigned to the ‘Species used as human food’ indicator. For the present evaluation, plant species that have been used in modern pharmacology and have the potential for drug manufacturing, obtained a better score (Table 5 and Table 6); thus ‘High’ score was assigned to the ‘Species with pharmaceutical and cosmetic use’. Leaf vegetables can be a good source of minerals, vitamins, antioxidants, minerals, dietary fibers, and polyunsaturated fatty acids, as reviewed by Tripathy et al. [87]. As a consequence, a ‘High’ score was assigned for ‘Vitamin content’ and ‘Mineral content’ indicators. Moreover, the content of harmful compounds, e.g., nitrates and oxalates, has to be taken into account to evaluate the quality of a leafy vegetable [88]. Vegetables with higher protein and energy content scored ‘High’ for ‘Protein content and amino acid profile’ and ‘Energy content’ indicators, respectively.
3. Results and Discussion
3.1. Evaluated Characteristics of Plant Species and Its Overall Score
3.2. Sensitivity Analysis
3.3. General Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAO The State of World Fisheries and Aquaculture 2022–Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.-S.; Ehrlich, P.R.; et al. Does Aquaculture Add Resilience to the Global Food System? Proc. Natl. Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef] [PubMed]
- Custódio, M.; Villasante, S.; Cremades, J.; Calado, R.; Lillebø, A.I. Unravelling the Potential of Halophytes for Marine Integrated Multi-Trophic Aquaculture (IMTA)-A Perspective on Performance, Opportunities and Challenges. Aquac. Environ. Interact. 2017, 9, 445–460. [Google Scholar] [CrossRef]
- Baganz, G.F.M.; Junge, R.; Portella, M.C.; Goddek, S.; Keesman, K.J.; Baganz, D.; Staaks, G.; Shaw, C.; Lohrberg, F.; Kloas, W. The Aquaponic Principle—It Is All about Coupling. Rev. Aquac. 2022, 14, 252–264. [Google Scholar] [CrossRef]
- Kotzen, B.; Emerenciano, M.G.C.; Moheimani, N.; Burnell, G.M. Aquaponics: Alternative Types and Approaches. In Aquaponics Food Production Systems; Springer Nature: Cham, Switzerland, 2019; pp. 301–330. ISBN 9783030159436. [Google Scholar]
- Rossi, L.; Bibbiani, C.; Fierro-Sañudo, J.F.; Maibam, C.; Incrocci, L.; Pardossi, A.; Fronte, B. Selection of Marine Fish for Integrated Multi-Trophic Aquaponic Production in the Mediterranean Area Using DEXi Multi-Criteria Analysis. Aquaculture 2021, 535, 736402. [Google Scholar] [CrossRef]
- Edwards, S.L.; Marshall, W.S. Principles and Patterns of Osmoregulation and Euryhalinity in Fishes. Fish Physiol. 2012, 32, 1–44. [Google Scholar] [CrossRef]
- Greenway, H.; Munns, R. Mechanisms of Salt Tolerance in Nonhalophytes. Annu. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; van Os, E.; Anseeuw, D.; Van Havermaet, R.; Junge, R.; Van Os, E.; Anseeuw, D.; Van Havermaet, R.; Junge, R. Hydroponic Technologies. In Aquaponics food production systems; Springer: Cham, Switzerland, 2019; pp. 77–110. [Google Scholar]
- Féon, S.L.; Dubois, T.; Jaeger, C.; Wilfart, A.; Akkal-Corfini, N.; Bacenetti, J.; Costantini, M.; Aubin, J. DEXiAqua, a Model to Assess the Sustainability of Aquaculture Systems: Methodological Development and Application to a French Salmon Farm. Sustainability 2021, 13, 7779. [Google Scholar] [CrossRef]
- Cegan, J.C.; Filion, A.M.; Keisler, J.M.; Linkov, I. Trends and Applications of Multi-Criteria Decision Analysis in Environmental Sciences: Literature Review. Environ. Syst. Decis. 2017, 37, 123–133. [Google Scholar] [CrossRef]
- Bohanec, M.; Žnidaržič, M.; Rajkovič, V.; Bratko, I.; Zupan, B. DEX Methodology: Three Decades of Qualitative Multi-Attribute Modeling. Informatica 2013, 37, 49–54. [Google Scholar]
- Craheix, D.; Bergez, J.E.; Angevin, F.; Bockstaller, C.; Bohanec, M.; Colomb, B.; Doré, T.; Fortino, G.; Guichard, L.; Pelzer, E.; et al. Guidelines to Design Models Assessing Agricultural Sustainability, Based upon Feedbacks from the DEXi Decision Support System. Agron. Sustain. Dev. 2015, 35, 1431–1447. [Google Scholar] [CrossRef]
- Pavlovic, M.; Cerenak, A.; Pavlovic, V.; Rozman, C.; Pazek, K.; Bohanec, M. Development of DEX-HOP Multi-Attribute Decision Model for Preliminary Hop Hybrids Assessment. Comput. Electron. Agric. 2011, 75, 181–189. [Google Scholar] [CrossRef]
- Pelzer, E.; Fortino, G.; Bockstaller, C.; Angevin, F.; Lamine, C.; Moonen, C.; Vasileiadis, V.; Guérin, D.; Guichard, L.; Reau, R.; et al. Assessing Innovative Cropping Systems with DEXiPM, a Qualitative Multi-Criteria Assessment Tool Derived from DEXi. Ecol. Ind. 2012, 18, 171–182. [Google Scholar] [CrossRef]
- Bohanec, M.; Messéan, A.; Scatasta, S.; Angevin, F.; Griffiths, B.; Krogh, P.H.; Žnidaršič, M.; Džeroski, S. A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops. Ecol. Modell. 2008, 215, 247–261. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Ball, B.C.; Daniell, T.J.; Hallett, P.D.; Neilson, R.; Wheatley, R.E.; Osler, G.; Bohanec, M. Integrating Soil Quality Changes to Arable Agricultural Systems Following Organic Matter Addition, or Adoption of a Ley-Arable Rotation. Appl. Soil Ecol. 2010, 46, 43–53. [Google Scholar] [CrossRef]
- Montemurro, F.; Persiani, A.; Diacono, M. Environmental Sustainability Assessment of Horticultural Systems: A Multi-Criteria Evaluation Approach Applied in a Case Study in Mediterranean Conditions. Agronomy 2018, 8, 98. [Google Scholar] [CrossRef]
- Prevolsek, B.; Rozman, C.; Pazek, K.; Maksimovic, A.; Potocniktopler, J. Development of Family Tourism Businesses in Rural Areas: Multi Criteria Assessment of Businesses in Easter Slovenia. Podravina 2017, 16, 136–149. [Google Scholar]
- Ohunakin, O.S.; Saracoglu, B.O. A Comparative Study of Selected Multi-Criteria Decision-Making Methodologies for Location Selection of Very Large Concentrated Solar Power Plants in Nigeria. Afr. J. Sci. Technol. Innov. Dev. 2018, 10, 551–567. [Google Scholar] [CrossRef]
- Karleuša, B.; Hajdinger, A.; Tadić, L. The Application of Multi-Criteria Analysis Methods for the Determination of Priorities in the Implementation of Irrigation Plans. Water 2019, 11, 501. [Google Scholar] [CrossRef]
- Bercu, R.; Fǎgǎraş, M.; Broascǎ, L. Anatomical Features of Aster tripolium L. (Asteraceae) to Saline Environments. Ann. Rom. Soc. Cell Biol. 2012, 17, 271–277. [Google Scholar]
- Wilson, C.; Lesch, S.M.; Grieve, C.M. Growth Stage Modulates Salinity Tolerance of New Zealand Spinach (Tetragonia tetragonioides, Pall.) and Red Orach (Atriplex hortensis L.). Ann. Bot. 2000, 85, 501–509. [Google Scholar] [CrossRef]
- Mwazi, F.N.; Amoonga, S.; Mubiana, F.S. Evaluation of the Effects of Salinity on Spinach (Beta vulgaris Var. Cicla) Grown in a Hydroponic System along the Coast of Namibia. Agricola 2010, 20, 14–17. [Google Scholar]
- Rana, M.K.; Sagwal, K. Sea Beet; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315116204. [Google Scholar]
- Pegtel, D.M. Effect of Ploidy Level on Fruit Morphology, Seed Germination and Juvenile Growth in Scurvy Grass (Cochlearia officinalis L. s.l., Brassicaceae). Plant Species Biol. 1999, 14, 201–215. [Google Scholar] [CrossRef]
- Renna, M. Reviewing the Prospects of Sea Fennel (Crithmum maritimum L.) as Emerging Vegetable Crop. Plants 2018, 7, 92. [Google Scholar]
- Nicoletti, R.; Raimo, F.; Miccio, G. Diplotaxis tenuifolia: Biology, Production and Properties. Eur. J. Plant Sci. Biotechnol. 2007, 1, 36–43. [Google Scholar]
- Zurayk, R.A.; Baalbaki, R. Inula crithmoides: A Candidate Plant for Saline Agriculture. Arid. Soil Res. Rehabil. 1996, 10, 213–223. [Google Scholar] [CrossRef]
- Yazici, I.; Türkan, I.; Sekmen, A.H.; Demiral, T. Salinity Tolerance of Purslane (Portulaca oleracea L.) Is Achieved by Enhanced Antioxidative System, Lower Level of Lipid Peroxidation and Proline Accumulation. Environ. Exp. Bot. 2007, 61, 49–57. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, M.; Wang, S.; Cai, J.; Zhou, X.; Zhu, C. Nutritional Characterization and Changes in Quality of Salicornia bigelovii Torr. during Storage. LWT-Food Sci. Technol. 2010, 43, 519–524. [Google Scholar] [CrossRef]
- Gunning, D. Cultivating Salicornia Europaea (Marsh Samphire); Irish Sea Fisheries Board: Dublin, Ireland, 2016; Volume 4, pp. 1–95. [Google Scholar]
- Fern, K. Sarcocornia fruticosa-Useful Temperate Plants. Available online: http://temperate.theferns.info/plant/Sarcocornia+fruticosa (accessed on 24 September 2020).
- Isca, V.M.S.V.; Seca, A.A.M.L.; Pinto, D.D.C.G.A.; Silva, H.; Silva, A.M.S. Chemistry. Food Chem. 2014, 165, 330–336. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, R.; Bañuelos, G.; Centofanti, T. Feasibility of Growing Halophyte “Agretti” (Salsola soda) as an Alternative Boron-Tolerant Food Crop in Unproductive Boron-Laden Regions. Plant Soil 2019, 445, 323–334. [Google Scholar] [CrossRef]
- Ventura, Y.; Myrzabayeva, M.; Alikulov, Z.; Cohen, S.; Shemer, Z.; Sagi, M. The Importance of Iron Supply during Repetitive Harvesting of Aster tripolium. Funct. Plant Biol. 2013, 40, 968–976. [Google Scholar] [CrossRef]
- Kachout, S.S. The Effect of Salinity on the Growth of the Halophyte Atriplex hortensis (Chenopodiaceae). Appl. Ecol. Environ. Res. 2009, 7, 319–332. [Google Scholar] [CrossRef]
- Puccinelli, M.; Carmassi, G.; Botrini, L.; Bindi, A.; Rossi, L.; Fierro-Sañudo, J.F.; Pardossi, A.; Incrocci, L. Growth and Mineral Relations of Beta vulgaris var. cicla and Beta vulgaris ssp. maritima Cultivated Hydroponically with Diluted Seawater and Low Nitrogen Level in the Nutrient Solution. Horticulturae 2022, 8, 638. [Google Scholar] [CrossRef]
- Rozema, J.; Cornelisse, D.; Zhang, Y.; Li, H.; Bruning, B.; Katschnig, D.; Broekman, R.; Ji, B.; van Bodegom, P. Comparing Salt Tolerance of Beet Cultivars and Their Halophytic Ancestor: Consequences of Domestication and Breeding Programmes. AoB Plants 2014, 7, 1–12. [Google Scholar] [CrossRef]
- Koyro, H.W.; Daoud, S.; Harrouni, C.; Huchzermeyer, B. Strategies of a Potential Cash Crop Halophyte (Beta vulgaris ssp. maritima) to Avoid Salt Injury. Trop. Ecol. 2006, 47, 191–200. [Google Scholar]
- de Vos, A.C.; Broekman, R.; de Almeida Guerra, C.C.; van Rijsselberghe, M.; Rozema, J. Developing and Testing New Halophyte Crops: A Case Study of Salt Tolerance of Two Species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ. Exp. Bot. 2013, 92, 154–164. [Google Scholar] [CrossRef]
- ben Hamed, K.; Castagna, A.; Salem, E.; Ranieri, A.; Abdelly, C. Sea Fennel (Crithmum maritimum L.) under Salinity Conditions: A Comparison of Leaf and Root Antioxidant Responses. Plant Growth Regul. 2007, 53, 185–194. [Google Scholar] [CrossRef]
- Ngosong, C.; Halpern, M.T.; Whalen, J.K.; Smith, D.L. Purslane (Portulaca oleracea L.) Has Potential for Desalinizing Greenhouse Recirculation Water. Can. J. Plant Sci. 2013, 93, 961–964. [Google Scholar] [CrossRef]
- Franco, J.A.; Cros, V.; Vicente, M.J.; Martínez-Sánchez, J.J. Effects of Salinity on the Germination, Growth, and Nitrate Contents of Purslane (Portulaca oleracea L.) Cultivated under Different Climatic Conditions. J. Hortic. Sci. Biotechnol. 2011, 86, 1–6. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Potential of Producing Salicornia bigelovii Hydroponically as a Vegetable at Moderate NaCl Salinity. HortScience 2014, 49, 1154–1157. [Google Scholar] [CrossRef]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of Seawater Concentration on the Productivity and Nutritional Value of Annual Salicornia and Perennial Sarcocornia Halophytes as Leafy Vegetable Crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Silva, H.; Caldeira, G.; Freitas, H. Salicornia ramosissima Population Dynamics and Tolerance of Salinity. Ecol. Res. 2007, 22, 125–134. [Google Scholar] [CrossRef]
- Karakaş, S.; Çullu, M.A.; Dikilitaş, M. Comparison of Two Halophyte Species (Salsola soda and Portulaca oleracea) for Salt Removal Potential under Different Soil Salinity Conditions. Turk. J. Agric. For. 2017, 41, 183–190. [Google Scholar] [CrossRef]
- Kim, S.-K.; Kim, I.-K.; Lee, G.-J.; Kim, S.-K.; Kim, I.-K.; Lee, G.-J. Growth Responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to Different Soil Texture and Salinity. Korean J. Agric. Sci. 2011, 38, 631–639. [Google Scholar]
- Boyd, C.E.C.E. Standardize Terminology for Low-Salinity Shrimp Culture. Glob. Aquac. Advocate 2002, 5, 58–59. [Google Scholar]
- Alsagarden Jardinerie En Ligne Alsagarden: Plantes Rares & Variétés Anciennes. Available online: https://www.alsagarden.com/ (accessed on 16 July 2020).
- Pennard Plants Pennard Plants, Heritage Vegetable and Flower Seeds, Edible Plants and Agapanthus. Available online: https://www.pennardplants.com (accessed on 16 July 2020).
- SAIS LISTINO PREZZI Sementi per l’orticoltura Professionale. 2020. Available online: https://it.readkong.com/page/2020-listino-prezzi-sementi-per-l-orticoltura-1506028/ (accessed on 19 May 2020).
- Catalogo Semencoop. 2018. Available online: http://www.lortolano.com/upload/catalogo/categorie/cataloghi/CATALOGO_SEMENCOOP_2018/mobile/index.html#p=12 (accessed on 29 September 2020).
- B and T World Seeds B and T World Seeds, Seeds from over 35,000 Different Plants. Available online: https://b-and-t-world-seeds.com/ (accessed on 25 May 2020).
- RB Sementi Bertolino Sementi Shop-RBsementi-Vendita Sementi-Semenze e Giardinaggio Online. Available online: https://rbsementi.com/shop/ (accessed on 16 July 2020).
- Enza Zaden Enza Zaden-Vegetable-Breeding Company. Available online: https://www.enzazaden.com/ (accessed on 16 July 2020).
- Daoud, S.; Koyro, H.W.; Harrouni, M.C. Salt Response of Halophytes with Potential Interest in Food Crops and Reclamation of Saline Soils: Growth, Water Relations, Mineral Content and Anatomical Adaptations. In Developments in Soil Salinity Assessment and Reclamation: Innovative Thinking and Use of Marginal Soil and Water Resources in Irrigated Agriculture; Springer: Dordrecht, The Netherlands, 2013; pp. 543–560. ISBN 9789400756847. [Google Scholar]
- López Donate, J.A.; Fernández García, J.; Fajardo Rodríguez, J.; Verde López, A. El Armuelle (Atriplex hortensis L.), Un Intento Para La Recuperación Del Cultivo de Una Verdura Tradicional. Agricultura 2005, 879, 796–804. [Google Scholar]
- Ninfali, P.; Angelino, D. Nutritional and Functional Potential of Beta Vulgaris Cicla and Rubra. Fitoterapia 2013, 89, 188–199. [Google Scholar] [CrossRef]
- Boscaiu, M.; Vicente, O. Halophytic Crops for a Salinising World. Bull. UASVM Hortic. 2013, 70, 1–9. [Google Scholar] [CrossRef]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte Agriculture: Success Stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Omezzine, F.; Ladhari, A.; Rinez, A.; Haouala, R. Potent Herbicidal Activity of Inula crithmoïdes L. Sci. Hortic. 2011, 130, 853–861. [Google Scholar] [CrossRef]
- Teixeira, M.; Carvalho, I.S. Effects of Salt Stress on Purslane (Portulaca oleracea) Nutrition. Ann. Appl. Biol. 2009, 154, 77–86. [Google Scholar] [CrossRef]
- Centofanti, T.; Bañuelos, G. Evaluation of the Halophyte Salsola soda as an Alternative Crop for Saline Soils High in Selenium and Boron. J. Environ. Manag. 2015, 157, 96–102. [Google Scholar] [CrossRef]
- Summers, R.W.; Atkins, C. Selection by Brent Geese Branta Bernicla for Different Leaf Lengths of Aster tripolium on Saltmarsh. Wildfowl 1991, 42, 33–36. [Google Scholar]
- Rinchen, T.; Singh, N. Exploring Nutritional Potential of Atriplex hortensis. Indian Hortic. 2015, 60, 16–17. [Google Scholar]
- INRAN Dietetica-Tabelle-Composizione-Alimenti. Available online: https://www.clitt.it/contents/scienze-files/6160_rodato_quaderno-files/6160_TabelleComposAlim.pdf (accessed on 20 May 2020).
- Guerrero, J.L.G.G.; Madrid, P.C.; Isasa, M.E.T.T. Mineral Elements Determination in Wild Edible Plants. Ecol. Food Nutr. 1999, 38, 209–222. [Google Scholar] [CrossRef]
- Mercatenerife.com Berros. Available online: http://mercatenerife.com/wp-content/uploads/2018/03/Berros-2018-Nueva.pdf (accessed on 1 October 2020).
- Acar, R.; Coşkun, B.; Özköse, A.; Musa Özcan, M.; Özcan, C.; Koç, N. The Importance and Agricutural Usage of Wild Rocked (Diplotaxis tenuifolia (L.) DC). In Proceedings of the International Conference on Sustainable Agriculture and Enviroment, Konya, Turkey, September 30–October 3 2015; pp. 829–833. [Google Scholar]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Barros, L.; Ferreira, I.C. Nutritional Value, Chemical Composition and Cytotoxic Properties of Common Purslane (Portulaca oleracea L.) in Relation to Harvesting Stage and Plant Part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Foodnutritiontable.com Nutritions Samphire, Fresh, Raw per 100 g. Available online: http://www.foodnutritiontable.com/nutritions/nutrient/?id=1301 (accessed on 28 September 2020).
- Lopes, M.; Cavaleiro, C.; Ramos, F. Sodium Reduction in Bread: A Role for Glasswort (Salicornia ramosissima J. Woods). Compr. Rev. Food Sci. Food Saf. 2017, 16, 1056–1071. [Google Scholar] [CrossRef]
- Araújo de Azevedo, F.L.A. Valor Nutricional, Capacidade Antioxidante e Utilizaçao de Folhas de Espinafre (Tetragonia tetragonoides) Em Pó Como Ingrediente de Pao de Forma. Ph.D. Thesis, Universidade Federal da Paraíba, João Pessoa, Brazil, 4 September 2012. [Google Scholar]
- champvieux.e-monsite.com/Prix-Legumes-Aude. Available online: http://champvieux.e-monsite.com/medias/files/prix-legumes-aude-2017.pdf (accessed on 1 October 2020).
- Camera di Commercio di Firenze Listino Settimanale Dei Prezzi All’ingrosso Sulla Piazza Di Vercelli. 2020. Available online: https://www.fi.camcom.gov.it/regolazione-del-mercato/tutela-di-consumatori-e-imprese/prezzi/listini-settimanali-dei-prezzi-allingrosso/listini-prezzi-settimanali-2020 (accessed on 20 June 2020).
- La Flor del Pirineo, S.L. SCURVYGRASS (Cochlearia officinalis). Available online: http://www.laflordelpirineo.com/en/loose-medical-herbs/139-scurvygrass-cochlearia-officinalis.html (accessed on 1 October 2020).
- FrescoMarket Rucola Bio Confezione 100 G. Available online: https://www.frescomarketonline.it/online/product/rucola-bio-confezione-100-g?productId=8440&generalid=100020&generaltype=subcategory (accessed on 20 June 2022).
- Agroprice. net Purslane Market Prices. Available online: https://www.agroprice.net/1_168_0_1/purslane-market-prices (accessed on 29 September 2020).
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G.M. Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer Nature: Berlin, Germany, 2019; ISBN 978-3-030-15943-6. [Google Scholar]
- Ingegnoli Spinacio-Della Nuova Zelanda-(Spinacio Perenne). Available online: https://www.ingegnoli.it/ita/spinacio-della-nuova-zelanda-spinacio-perenne.html (accessed on 23 September 2020).
- Roosta, H.R.; Mohsenian, Y. Alleviation of Alkalinity-Induced Fe Deficiency in Eggplant (Solanum melongena L.) by Foliar Application of Different Fe Sources in Recirculating System. J. Plant Nutr. 2015, 38, 1768–1786. [Google Scholar] [CrossRef]
- Tundis, R.; Menichini, F.F.; Conforti, F.; Loizzo, M.R.; Bonesi, M.; Statti, G.; Menichini, F.F. A Potential Role of Alkaloid Extracts from Salsola Species (Chenopodiaceae) in the Treatment of Alzheimer’s Disease. J. Enzyme Inhib. Med. Chem. 2009, 24, 818–824. [Google Scholar] [CrossRef]
- Tripathy, B.; Rout, S.; Mishra, U.N.; Sahoo, G. Vegetables: A Potential Source of Nutraceuticals. Ann. Rom. Soc. Cell Biol. 2021, 25, 17921–17941. [Google Scholar]
- Santamaria, P.; Elia, A.; Serio, F.; Todaro, E. A Survey of Nitrate and Oxalate Content in Fresh Vegetables. J. Sci. Food Agric. 1999, 79, 1882–1888. [Google Scholar] [CrossRef]
- Waller, U.; Buhmann, A.K.; Ernst, A.; Hanke, V.; Kulakowski, A.; Wecker, B.; Orellana, J.; Papenbrock, J. Integrated Multi-Trophic Aquaculture in a Zero-Exchange Recirculation Aquaculture System for Marine Fish and Hydroponic Halophyte Production. Aquac. Int. 2015, 23, 1473–1489. [Google Scholar] [CrossRef]
- Quintã, R.; Santos, R.; Thomas, D.N.; le Vay, L. Growth and Nitrogen Uptake by Salicornia europaea and Aster tripolium in Nutrient Conditions Typical of Aquaculture Wastewater. Chemosphere 2015, 120, 414–421. [Google Scholar] [CrossRef]
- Takagi, H.; Yamada, S. Roles of Enzymes in Anti-Oxidative Response System on Three Species of Chenopodiaceous Halophytes under NaCl-Stress Condition. Soil Sci. Plant Nutr. 2013, 59, 603–611. [Google Scholar] [CrossRef]
- Nozzi, V.; Parisi, G.; di Crescenzo, D.; Giordano, M.; Carnevali, O. Evaluation of Dicentrarchus labrax Meats and the Vegetable Quality of Beta vulgaris var. Cicla Farmed in Freshwater and Saltwater Aquaponic Systems. Water 2016, 8, 423. [Google Scholar] [CrossRef]
- Liu, L.; Ueda, A.; Saneoka, H. Physiological Responses of White Swiss Chard (Beta vulgaris L. Subsp. Cicla) to Saline and Alkaline Stresses. Aust. J. Crop Sci. 2013, 7, 1046–1052. [Google Scholar]
- Bor, M.; Özdemir, F.; Türkan, I. The Effect of Salt Stress on Lipid Peroxidation and Antioxidants in Leaves of Sugar Beet Beta vulgaris L. and Wild Beet Beta maritima L. Plant Sci. 2003, 164, 77–84. [Google Scholar] [CrossRef]
- Vlahos, N.; Levizou, E.; Stathopoulou, P.; Berillis, P.; Antonopoulou, E.; Bekiari, V.; Krigas, N.; Kormas, K.; Mente, E. An Experimental Brackish Aquaponic System Using Juvenile Gilthead Sea Bream (Sparus aurata) and Rock Samphire (Crithmum maritimum). Sustainability. 2019, 11, 4820. [Google Scholar] [CrossRef]
- Abdallah, A.; Zouhaier, B. Environmental Eco-Physiology and Economical Potential of the Halophyte Crithmum maritimum L. (Apiaceae). J. Med. Plant Res. 2011, 5, 3564–3571. [Google Scholar]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; Dauvergne, X.; Bruno, M.; Benelli, G. Efficacy of Sea Fennel (Crithmum maritimum L., Apiaceae) Essential Oils against Culex Quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind. Crops Prod. 2017, 109, 603–610. [Google Scholar] [CrossRef]
- Chan, K.; Islam, M.W.; Kamil, M.; Radhakrishnan, R.; Zakaria, M.N.M.; Habibullah, M.; Attas, A. The Analgesic and Anti-Inflammatory Effects of Portulaca oleracea L. Subsp. Sativa (Haw.) Celak. J. Ethnopharmacol. 2000, 73, 445–451. [Google Scholar] [CrossRef]
- Ventura, Y.; Wuddineh, W.A.; Shpigel, M.; Samocha, T.M.; Klim, B.C.; Cohen, S.; Shemer, Z.; Santos, R.; Sagi, M. Effects of Day Length on Flowering and Yield Production of Salicornia and Sarcocornia Species. Sci. Hortic. 2011, 130, 510–516. [Google Scholar] [CrossRef]
- Ushakova, S.A.; Kovaleva, N.P.; Tikhomirova, N.A.; Gribovskaya, I.v.; Kolmakova, A.A. Effect of Photosynthetically Active Radiation, Salinization, and Type of Nitrogen Nutrition on Growth of Salicornia europaea Plants. Russ. J. Plant Physiol. 2006, 53, 785–792. [Google Scholar] [CrossRef]
- Algharib, A.M.; Örçen, N.; Nazarian, G.R. Effect of Salt Stress on Plant Growth and Physiological Parameters of Common Glasswort (Salicornia europaea). Int. J. Biosci. (IJB) 2016, 8, 218–227. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Piernik, A.; Chanona-Pérez, J.J.; Grigore, M.N.; Perea-Flores, M.J. An Overview of the Emerging Trends of the Salicornia L. Genus as a Sustainable Crop. Environ. Exp. Bot. 2021, 191, 104606. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte Crop Cultivation: The Case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Glenn, E.P.; O’Leary, J.W.; Watson, M.C.; Thompson, T.L.; Kuehl, R.O. Salicornia bigelovii Torr.: An Oilseed Halophyte for Seawater Irrigation. Science 1991, 251, 1065–1067. [Google Scholar] [CrossRef]
- Guil, J.L.; Rodríguez-Garcí, I.; Torija, E. Nutritional and Toxic Factors in Selected Wild Edible Plants. Plant Foods Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef]
- Pérez-romero, J.A.; Barcia-Piedras, J.M.; Redondo-Gómez, S.; Mateos-Naranjo, E.; Barcia-Piedras, J.M.; Redondo-Gómez, S.; Mateos-Naranjo, E. Impact of Short-Term Extreme Temperature Events on Physiological Performance of Salicornia ramosissima J. Woods under Optimal and Sub-Optimal Saline Conditions. Sci. Rep. 2019, 9, 659. [Google Scholar] [CrossRef]
- Maciel, E.; Lillebø, A.; Domingues, P.; da Costa, E.; Calado, R.; Domingues, M.R.M. Polar Lipidome Profiling of Salicornia ramosissima and Halimione portulacoides and the Relevance of Lipidomics for the Valorization of Halophytes. Phytochemistry 2018, 153, 94–101. [Google Scholar] [CrossRef]
- Pantanella, E. Nutrition and Quality of Aquaponic Systems. Ph.D. Dissertation, Università Degli Studi Della Tuscia, Viterbo, Italy, 2012. [Google Scholar]
- Lee, U.; Chang, S.; Putra, G.A.; Kim, H.; Kim, D.H. An Automated, High-Throughput Plant Phenotyping System Using Machine Learning-Based Plant Segmentation and Image Analysis. PLoS ONE 2018, 13, e0196615. [Google Scholar] [CrossRef] [PubMed]
- Bandira, P.N.A.; Mahamud, M.A.; Samat, N.; Tan, M.L.; Chan, N.W. GIS-Based Multi-Criteria Evaluation for Potential Inland Aquaculture Site Selection in the George Town Conurbation, Malaysia. Land 2021, 10, 1174. [Google Scholar] [CrossRef]
Scientific Name | Family | Comun Name | Response to Salinity |
---|---|---|---|
Aster tripolium L. [24] | Asteraceae | Sea aster | Salt-tolerant glycophyte |
Atriplex hortensis L. [25] | Amaranthaceae | Red orach | Facultative halophyte |
Beta vulgaris var. cicla L. [26] | Amaranthaceae | Swiss chard | Facultative halophyte |
Beta vulgaris ssp. maritima (L.) Arcang [27] | Amaranthaceae | Sea beet | Salt-tolerant glycophyte |
Cichlearia officinalis L. [28] | Brassicaceae | Scurvy grass | Salt-tolerant glycophyte |
Crithmum maritimum L. [29] | Apiaceae | Sea fennel, rock samphire | Facultative halophyte |
Diplotaxis tenuifolia (L.) DC. [30] | Brassicaceae | Perennial wallrocket | Salt-tolerant glycophyte |
Inula crithmoides L. [31] | Asteraceae | Sea grass | Facultative halophyte |
Portulaca oleracea L. [32] | Portulacaceae | Common purslane | Salt-tolerant glycophyte |
Salicornia bigelovii Torr. [33] | Amaranthaceae | Pickleweed, sea-beans | Obligate halophyte |
Salicornia europaea L. [34] | Amaranthaceae | Marsh samphire | Obligate halophyte |
Salicornia fructicosa (L.) L. [35] | Amaranthaceae | Common glasswort | Obligate halophyte |
Salicornia ramosissima J. Woods [36] | Amaranthaceae | Purple glasswort | Facultative halophyte |
Salsola soda L. [37] | Amaranthaceae | Agretti | Salt-tolerant glycophyte |
Tetragonia tetragonioides (Pall.) Kuntze [25] | Amaranthaceae | New Zealand spinach | Facultative halophyte |
Criteria and Indicators | Weights (%) | Evaluation Scale |
---|---|---|
0 Plant species selection | Excellent, Good, Medium, Poor, Unacceptable | |
1 Potential yield | 45 | Low, Medium, High |
1.1 Annual yield | 33 | Low, Medium, High |
1.2 Salinity tolerance and its impact on yield | 67 | Low, Medium, High |
2 Seed availability in Italy and surrounding countries | 14 | Low, Medium, High |
2.1 Source of seed | 27 | Low, High |
2.2 Cost of seed per unit | 45 | Low, High |
2.3 Availability of genetically selected strains | 27 | Low, High |
3 Level of knowledge available | 11 | Low, Medium, High |
3.1. Availability of biological/botanical features | 50 | Low, High |
3.2. Availability of protocols for hydroponic cultivations | 50 | Low, High |
4 Economic importance of the species | 30 | Low, Medium, High |
4.1 Potential use of the species | 27 | Low, Medium, High |
4.1.1 Species used as human food | 25 | Low, High |
4.1.2 Species with pharmaceutical and cosmetic use | 75 | Low, High |
4.2 Economic value of the species | 30 | Low, Medium, High |
4.3 Nutritional characteristics of the species | 21 | Low, Medium, High |
4.3.1 Protein content and amino acid profile | 50 | Low, High |
4.3.2 Energy content | 50 | Low, High |
4.4 Nutraceutical characteristics | 21 | Low, Medium, High |
4.4.1 Vitamin content | 75 | Low, High |
4.4.2 Mineral content | 25 | Low, High |
Plant Species | Annual Yield (kg m−2) * | Optimal Salinity (g L−1) |
---|---|---|
A. tripolium L. | 18.3 [38] | 2.9–4.7 b [38,39] |
A. hortensis L. | 60.1 [39] | 4.4–9.4 b [39] |
B. vulgaris var. cicla L. | 9.6 [26]–10.5 [40] | ≈0–5.0 [26] |
B. vulgaris ssp. maritima (L.) Arcang | 11.6 [40]–40.2 [41] | 7.3–14.6 b [42] |
C. officinalis L. | 26.4 [28] | 0–2.9 b [43] |
C. maritimum L. | 3.1 [44] | 5.8 b [44] |
D. tenuifolia (L.) DC. | 36.9 [43] | 0–2.9 b [43] |
I. crithmoides L. | 43.7 [31] | 6.3 c [31] |
P. oleracea L. | 57.9 [45] | 1.6 b–6.3 b [46] |
S. bigelovii Torr. | 27.9 [47] | 11.7 [47] |
S. europaea L. | 25.3 [48] | 16.5–24.7 [48] |
S. fructicosa (L.) L. | 9.8 [48] | 8.25–24.7 [48] |
S. ramosissima J. Woods | 0.20 [49] | 0–3.4 b [49] |
S. soda L. | 6.4 [50] | 4.5–8.9 c [50] |
T. tetragonioides (Pall.) Kuntze | 4.2 [51] | 0.4–25.1 b [51] |
Plant Species | Seed Company | Strains | Price (EUR per 1000 Seeds) |
---|---|---|---|
A. tripolium L. | Alsa Garden, | 136 [53] | |
Pennard plants | 5.58 [54] | ||
A. hortensis L. | Alsa Garden, | 171.6 [53]–89.2 [54] | |
Pennard plants | |||
B. vulgaris var. cicla L. | SAIS Spa | Verde a costa larga argentata | 2.00 [55] |
Candida | 2.00 [55] | ||
Sibilla | 2.00 [55] | ||
Barese | 2.00 [55] | ||
Bright Yellow | 9.40 [55] | ||
Bright Lights | 9.40 [55] | ||
Rubarb chard | 2.00 [55] | ||
Semencoop | Lusiana [56] | ||
Barese [56] | |||
Liscia verde da taglio [56] | |||
Bright yellow [56] | |||
Rubhard chard [56] | |||
Rondinella [56] | |||
B. vulgaris ssp. maritima (L.) Arcang | Pennard plants | 34.3 [54] | |
C. officinalis L. | B & T World Seeds | 6.4 [57] | |
C. maritimum L. | Alsa Garden, | 220 [53] | |
D. tenuifolia (L.) DC. | SAIS Spa | Giuditta | 15.5 [55] |
Olivia | 16.6 [55] | ||
RB sementi | Winner | 0.52 [58] | |
Florence | 0.22 [58] | ||
Enza Zaden | Jolizia [59] | ||
Letizia [59] | |||
Prudenzia F1 [59] | |||
Tanazia [59] | |||
Tricia [59] | |||
Semencoop [56] | |||
I. crithmoides | B & T World Seeds | 56.9 [57] | |
P. oleracea L. | Alsa Garden | 33 [53] | |
S. bigelovii Torr. | B & T World Seeds [57] | ||
S. europaea L. | Alsa Garden | 7.90 [53] | |
T. tetragonioides (Pall.) Kuntze | Pennard plants | 111.5 [54] | |
S. soda L. | Alsa Garden, | 165.2 [53] | |
Pennard plants | –74.3 [54] |
Plant Species | Nutraceutical Characteristics | Edible Part | Commercial Use |
---|---|---|---|
A. tripolium L. [38,60] | Source of minerals. | Leaves | Fresh alone or mixed in salads and cooked (e.g., boiled), and ornamental. |
A. hortensis L. [25,61] | Source of Vitamin C and saponins. Source of calcium, potassium, copper, and manganese. Source of vitamin C. | Leaves | Fresh alone or mixed in salads and cooked (e.g., boiled), animal fodder, herbal medicine, and ornamental. |
B. vulgaris var. cicla; L. [62] | Source magnesium, calcium, and phosphorus. source of vitamins A, E, B3, B5, and B9. | Leaves | Fresh alone or mixed in salads and cooked (e.g., boiled) and modern pharmacology. |
B. vulgaris ssp. maritima (L.) Arcang [63] | Source of vitamin E. | Leaves | Fresh alone or mixed in salads and cooked. |
C. officinalis L. [43,64] | Source of vitamin C. | Leaves | Fresh alone or mixed in salads, herbal medicine. |
C. maritimum L. [29,44] | Source of vitamin A, B2, C and potassium. | Leaves | Fresh alone or mixed in salads and cooked (e.g., boiled), herbal medicine. |
D. tenuifolia (L.) DC. [43] | Source of vitamin C. Significant concentration of minerals | Leaves | Fresh alone or mixed in salads. |
I. crithmoides L. [65] | Source of minerals. | Leaves | Fresh alone or mixed in salads and cooked (e.g., boiled), and animal fodder, ornamental, herbal medicine. |
P. oleracea L. [32,66] | Source of potassium and magnesium. Source of vitamin A, vitamin C. | Leaves | Fresh mixed in salads, herbal medicine and used in modern pharmacology. |
S. bigelovii Torr. [33] | Source of vitamins A and C, and minerals. | Shoots | Oilseed production, fresh food, animal fodder and herbal medicine. |
S. europaea L. [34] | Source of vitamin C, carotenoids, and mineral elements | Shoots | Fresh alone or mixed in salad and cooked (e.g., boiled). |
S. fructicosa (L.) L. [45] | Source of vitamins, minerals, and antioxidant compounds | Shoots | Fresh alone or mixed in salad and cooked (e.g., boiled). |
S. ramosissima J. Woods [36] | Source of lipophilic phytochemicals, antioxidants, and nutrients as fiber magnesium, potassium, calcium, and iron. | Shoots | Fresh alone or mixed in salads and cooked (e.g., boiled) and substitute of salt, herbal medicine. |
S. soda L. [53,67] | Source of calcium and iron. Source of vitamin A, C and K. | Leaves and stem | Processed food, herbal medicine and used in modern pharmacology. |
T. tetragonioides (Pall.) Kuntze [25] | Source of minerals such as iron and calcium. Source of vitamin C. | Leaves | Fresh alone or mixed in salads, herbal medicine, and modern pharmacology. |
Species | Protein Content (g 100 g−1 FW) |
---|---|
A. tripolium L. | 0.9–2.1 b [68] |
A. hortensis L. | 17.0 [69] |
B. vulgaris var. cicla | 1.1 [70] |
B. vulgaris ssp. maritima (L.) Arcang | 3.4 a [71] |
C. officinalis L. | 4.2 [72] |
C. maritimum L. | 1.6 [29] |
D. tenuifolia (L.) DC. | 2.4 b [73] |
I. crithmoides L. | 2.4 b [31] |
P. oleracea L. | 1.5–3.0 [74] |
S. bigelovii Torr. | 1.5 [33] |
S. europaea L. | 3.1 a [75] |
S. fructicosa (L.) L. | 0.3–0.4 [48] |
S. ramosissima J. Woods | 0.8 b [76] |
S. soda L. | 1.8 [70] |
T. tetragonioides (Pall.) Kuntze | 3.09 [77] |
Species | Price (Euro kg−1) | Product |
---|---|---|
A. tripolium L. | n.d. | Fresh leaves |
A. hortensis L. | 7.5 [78] | Fresh leaves |
B. vulgaris var. cicla L. | 1.0–1.5 [79] | Fresh leaves |
B. vulgaris ssp. maritima (L.) Arcang | 0.6–0.8 [79] | Fresh leaves |
C. officinalis L. | 10.3 [80] | Dry leaves |
C. maritimum L. | 0.7–1.3 [79] | Fresh shoots |
D. tenuifolia (L.) DC. | 14.9 [81] | Fresh leaves |
I. crithmoides L. | 1.9–2.2 [79] | Fresh leaves |
P. oleracea L. | 0.3 [82] | Fresh leaves |
S. bigelovii Torr. | 6 [34] | Fresh shoots |
S. europaea L. | ||
S. fructicosa (L.) L. | ||
S. ramosissima J. Woods | ||
S. soda L. | 4–4.5 [83] | Fresh stem and leaves |
T. tetragonioides (Pall.) Kuntze | 24 [84] | Fresh leaves |
Criteria and Indicators | Weight (%) | A. tripolium | A. hortensis. | B. vulgaris var cicla | B. vulgaris spp. maritima | C. officinalis | C. maritimum | D. tenuifolia | I. crithmoides | P. oleracea | S. bigelovii | S. europaea. | S. fructicosa | S. ramosissima | S. soda. | T. tetragonoides |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Potential yield | 45 | M | H | M | H | L | M | M | M | M | H | H | M | M | M | M |
1.1. Annual yield | 33 | H | H | M | H | M (+) | L | H (−) | H | H | M (−) | M | L (+) | L | L (+) | L (+) |
1.2. Salinity tolerance and its impact on yield | 67 | M (+) | H (−) | M (+) | H (−) | L (+) | M (−) | L | M (−) | M | H (−) | H | H | M (−) | H | H |
2. Seed availability in Italy and surrounding countries | 14 | L | L | H | L | L | L | H | L | L | L | L | L | L | L | L |
2.1. Source of seed | 27 | L | L | H | L | L | L | H | L | H | L | L | L | L | H | L |
2.2. Cost of seed per unit | 45 | L | L | H | L | L | L | H | L | L | L | L | L | L | L (+) | L |
2.3. Availability of genetically selected strains | 27 | L | L | H | L | L | L | H | L | L | L | L | L | L | L | L |
3. Level of knowledge available | 11 | M | M | H | M | L | M | H | L | H | M | H | L | M | L | L |
3.1. Availability of biological/botanical features | 50 | H | H | H | H (−) | L | H- | H | L | H (−) | H (−) | H | L | H | L | L |
3.2. Availability of protocols for hydroponic cultivations | 50 | L | L | H | L | L | L | H | L | H (−) | L | H | L | L (+) | L | L |
4. Economic importance of the species | 30 | M | H | M | M | M | M | L | M | H | M | H | H | H | H | H |
4.1. Potential use of the species | 27 | M | M | H | M | M | M | M | M | H | M | M | M | M | H | H |
4.1.1. Species with pharmaceutical and cosmetic use | 25 | L | L | H | L | L | L | L | L | H (−) | L | L | L | L | H | H |
4.1.2. Species used as human food | 75 | H | H | H | H | H | H | G | H | H (−) | H | H | H | H | H | H |
4.2. Economic value of the species | 30 | H | H | L (+) | L | H | L | L | M | L | H | H | H | H | H | L |
4.3. Nutritional characteristicsof the species | 21 | M | H | M | H | H | M | M | M | H | L | H | M | M | L | H |
4.3.1. Protein and amino acids content | 50 | H | H | L (+) | H | H | L | L | L | H (−) | L | H | L | L | L | H |
4.3.2. Energy content | 50 | L | H | H | H | H | H | H | H | H (−) | L | H | H | H | L | H |
4.4. Nutraceutical characteristics | 21 | M | M | H | H | L | H | L | M | H | H | H | H | H | H | H |
4.4.1. Vitamin content | 75 | L | L | H | H | L | H (−) | L | L (−) | H (−) | H | H | H | H | H | H |
4.4.2. Mineral content | 25 | H | H | H | L | L | L | L | H | H | H | H | H | H | H | H |
Plant species selection | M | G | M | G | P | M | M | M | G | G | G | M | M | M | M |
Criteria and Indicators | Weight (%) | A. tripolium | A. hortensis. | B. vulgaris var cicla | B. vulgaris spp. maritima | C. officinalis | C. maritimum | D. tenuifolia | I. crithmoides | P. oleracea | S. bigelovii | S. europaea. | S. fructicosa | S. ramosissima | S. soda. | T. tetragonoides |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Potential yield | 45 | M | M | L | M | L | L | M | M | M | M | H | M | L | L | M |
1.1. Annual yield | 33 | H (−) | H (−) | M | H | M (+) | L | H (−) | H (−) | H (−) | M | M | L (+) | L | L | L |
1.2. Salinity tolerance and its impact on yield | 67 | L | L | L | M (+) | L (+) | L (+) | L | L | L | M (±) | H | H | L (+) | L (+) | M (−) |
2. Seed availability in Italy and surrounding countries | 14 | L | L | H | L | L | L | H | L | L | L | L | L | L | L | L |
2.1. Source of seed | 27 | L | L | H | L | L | L | H | L | H | L | L | L | L | H | L |
2.2. Cost of seed per unit | 45 | L | L | H (−) | L | L | L | H | L | L | L | L | L | L | L (+) | L |
2.3. Availability of genetically selected strains | 27 | L | L | H | L | L | L | H | L | L | L | L | L | L | L | L |
3. Level of knowledge available | 11 | M | M | H | M | L | M | H | L | H | M | H | L | M | L | L |
3.1. Availability of biological/botanical features | 50 | H | H | H (−) | H | L | H | H | L (+) | H (−) | H | H | L | H | L | L |
3.2. Availability of protocols for hydroponic cultivations | 50 | L | L (+) | H (−) | L | L | L | H | L (+) | H (−) | L | H | L | L (+) | L | L |
4. Economic importance of the species | 30 | M | H | M | M | M | M | L | M | H | M | H | H | H | H | H |
4.1. Potential use of the species | 27 | M | M | H | M | M | M | M | M | H | M | M | M | M | H | H |
4.1.1. Species with pharmaceutical and cosmetic use | 25 | L | L | H | L | L | L | L | L | H (−) | L | L | L | L | H | H |
4.1.2. Species used as human food | 75 | H | H | H | H | H | H | G | H | H (−) | H | H | H | H | H | H |
4.2. Economic value of the species | 30 | H | H | L | L | H | L | L | M | L | H | H | H | H | H | L |
4.3. Nutritional characteristics of the species | 21 | M | H | M | H | H | M | M | M | H | L | H | M | M | L | H |
4.3.1. Protein and amino acids content | 50 | H | H | L | H | H | L | L | L | H (−) | L | H | L | L | L | H |
4.3.2. Energy content | 50 | L | H | H | H | H | H | H | H | H (−) | L | H | H | H | L | H |
4.4. Nutraceutical characteristics | 21 | M | M | H | H | L | H | L | M | H | H | H | H | H | H | H |
4.4.1. Vitamin content | 75 | L | L | H | H | L | H (−) | L | L | H (−) | H | H | H | H | H | H |
4.4.2. Mineral content | 25 | H | H | H | L | L | L | L | H | H | H | H | H | H | H | H |
Plant species selection | M | M | M | M | P | P | M | M | G | M | G | M | P | P | M |
Species | Scenario | |
---|---|---|
Low Salinity (10 g L−1) | High Salinity (35 g L−1) | |
A. tripolium L. | Medium | Medium |
A. hortensis L. | Good | Medium |
B. vulgaris var. cicla L. | Medium | Medium |
B. vulgaris ssp. maritima (L.) Arcang | Good | Medium |
C. officinalis L. | Poor | Poor |
C. maritimum L. | Medium | Poor |
D. tenuifolia (L.) DC. | Medium | Medium |
I. crithmoides L. | Medium | Medium |
P. oleracea L. | Good | Good |
S. bigelovii Torr. | Good | Medium |
S. europaea L. | Good | Good |
S. fructicosa (L.) L. | Medium | Medium |
S. ramosissima J. Woods | Medium | Poor |
S. soda L. | Medium | Poor |
T. tetragonoides (Pall.) Kuntze | Medium | Medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puccinelli, M.; Fierro-Sañudo, J.F.; Bibbiani, C.; Fronte, B.; Maibam, C.; Dubois, T.; Pardossi, A.; Incrocci, L.; Rossi, L. Multi-Criteria DEXi Analysis for the Selection of Crop Species for Saltwater Aquaponics. Horticulturae 2022, 8, 703. https://doi.org/10.3390/horticulturae8080703
Puccinelli M, Fierro-Sañudo JF, Bibbiani C, Fronte B, Maibam C, Dubois T, Pardossi A, Incrocci L, Rossi L. Multi-Criteria DEXi Analysis for the Selection of Crop Species for Saltwater Aquaponics. Horticulturae. 2022; 8(8):703. https://doi.org/10.3390/horticulturae8080703
Chicago/Turabian StylePuccinelli, Martina, Juan Francisco Fierro-Sañudo, Carlo Bibbiani, Baldassare Fronte, Chingoileima Maibam, Theo Dubois, Alberto Pardossi, Luca Incrocci, and Lorenzo Rossi. 2022. "Multi-Criteria DEXi Analysis for the Selection of Crop Species for Saltwater Aquaponics" Horticulturae 8, no. 8: 703. https://doi.org/10.3390/horticulturae8080703
APA StylePuccinelli, M., Fierro-Sañudo, J. F., Bibbiani, C., Fronte, B., Maibam, C., Dubois, T., Pardossi, A., Incrocci, L., & Rossi, L. (2022). Multi-Criteria DEXi Analysis for the Selection of Crop Species for Saltwater Aquaponics. Horticulturae, 8(8), 703. https://doi.org/10.3390/horticulturae8080703