Planting Date and Different N-Fertilization Rates Differently Modulate Agronomic and Economic Traits of a Sicilian Onion Landrace and of a Commercial Variety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Station, Experimental Design, and Treatments
2.2. Agronomic Management
2.3. Onion Production Traits
2.4. Nitrogen Agronomic Efficiency (NAE)
2.5. Economic Analysis
2.6. Statistical Analysis
3. Results
3.1. Rainfall and Air Temperature Trends at the Experimental Site
3.2. Yield and Yield-Related Traits
3.3. NAE
3.4. Cost–Benefit Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Anna, F.; Sabatino, L. Morphological and agronomical characterization of eggplant genetic resources from the Sicily area. J. Food Agric. Environ. 2013, 11, 401–404. [Google Scholar]
- Sabatino, L.; Palazzolo, E.; D’Anna, F. Grafting suitability of Sicilian eggplant ecotypes onto Solanum torvum: Fruit composition, production and phenology. J. Food Agric. Environ. 2013, 11, 1195–1200. [Google Scholar]
- Sabatino, L.; Iapichino, G.; Vetrano, F.; D’Anna, F. Morphological and agronomical characterisation of Sicilian bottle gourd Lagenaria siceraria (Mol.) Standley. J. Food Agric. Environ. 2014, 12, 587–590. [Google Scholar]
- Sabatino, L.; Iapichino, G.; Maggio, A.; D’anna, E.; Bruno, M.; D’Anna, F. Grafting affects yield and phenolic profile of Solanum melongena L. landraces. J. Integr. Agric. 2016, 15, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Consentino, B.B.; Sabatino, L.; Mauro, R.P.; Nicoletto, C.; De Pasquale, C.; Iapichino, G.; La Bella, S. Seaweed Extract Improves Lagenaria siceraria Young Shoot Production, Mineral Profile and Functional Quality. Horticulturae 2021, 7, 549. [Google Scholar] [CrossRef]
- Raimondo, F.M.; Bazan, G.; Troia, A. Taxa a rischio nella flora vascolare della Sicilia. Biogeogr. J. Integr. Biogeogr. 2011, 30, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Christenhusz, M.J.M.; Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar]
- Food and Agriculture Organization Faostat. Food and Agriculture Data; Food and Agriculture Organization: Rome, Italy, 2019; Available online: http://www.fao.org/faostat/en/#data (accessed on 10 June 2021).
- Marotti, M.; Piccaglia, R. Characterization of flavonoids in different cultivars of onion (Allium cepa L.). J. Food Sci. 2002, 67, 1229–1232. [Google Scholar] [CrossRef]
- Teshika, J.D.; Zakariyyah, A.M.; Zaynab, T.; Zengin, G.; Rengasamy, K.R.; Pandian, S.K.; Fawzi, M.M. Traditional and modern uses of onion bulb (Allium cepa L.): A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59 (Suppl. S1), S39–S70. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Barros, L.; Ferreira, I.C.; Ntatsi, G. Morphological, nutritional and chemical description of “Vatikiotiko”, an onion local landrace from Greece. Food Chem. 2015, 182, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Conti, S.; Villari, G.; Borrelli, C.; Melchionna, G.; Minutolo, M.; Russo, G.; Amalfitano, C. Effects of transplanting time and plant density on yield, quality and antioxidant content of onion (Allium cepa L.) in southern Italy. Sci. Hortic. 2014, 166, 111–120. [Google Scholar] [CrossRef]
- Mogren, L.M.; Olsson, M.E.; Gertsson, U.E. Effects of cultivar, lifting time and nitrogen fertilizer level on quercetin content in onion (Allium cepa L.) at lifting. J. Sci. Food Agric. 2007, 87, 470–476. [Google Scholar] [CrossRef]
- Siracusa, L.; Avola, G.; Patane, C.; Riggi, E.; Ruberto, G. Re-evaluation of traditional Mediterranean foods. The local landraces of ‘Cipolla di Giarratana’ (Allium cepa L.) and long-storage tomato (Lycopersicon esculentum L.): Quality traits and polyphenol content. J. Sci. Food. and Agr. 2013, 93, 3512–3519. [Google Scholar] [CrossRef] [PubMed]
- Tinna, D.; Garg, N.; Sharma, S.; Pandove, G.; Chawla, N. Utilization of plant growth promoting rhizobacteria as root dipping of seedlings for improving bulb yield and curtailing mineral fertilizer use in onion under field conditions. Sci. Hortic. 2020, 270, 109432. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Barłóg, P.; Grzebisz, W.; Spiżewski, T. Onion (Allium cepa L.) yield and growth dynamics response to in-season patterns of nitrogen and sulfur uptake. Agronomy 2020, 10, 1146. [Google Scholar] [CrossRef]
- Geisseler, D.; Ortiz, R.S.; Diaz, J. Nitrogen nutrition and fertilization of onions (Allium cepa L.)–A literature review. Sci. Hortic. 2022, 291, 110591. [Google Scholar] [CrossRef]
- Gebretsadik, K.; Dechassa, N. Response of Onion (Allium cepa L.) to nitrogen fertilizer rates and spacing under rain fed condition at Tahtay Koraro, Ethiopia. Sci. Rep. 2018, 8, 9495. [Google Scholar] [CrossRef]
- Drost, D.; Koenig, R.; Tindall, T. Nitrogen use efficiency and onion yield increased with a polymer-coated nitrogen source. HortScience 2002, 37, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Buckland, K.; Reeve, J.R.; Alston, D.; Nischwitz, C.; Drost, D. Effects of nitrogen fertility and crop rotation on onion growth and yield, thrips densities, Iris yellow spot virus and soil properties. Agric. Ecosyst. Environ. 2013, 177, 63–74. [Google Scholar] [CrossRef]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Rajput, T.B.S.; Patel, N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric. Water Manag. 2006, 79, 293–311. [Google Scholar] [CrossRef]
- Servizio Informativo Agrometeorologico Siciliano. Available online: www.sias.regione.sicilia.it (accessed on 20 July 2021).
- Craswell, E.T.; Godwin, D.C. The Efficiency of Nitrogen Fertilizers Applied to Cereals Grown in Different Climates; No. REP-3326; CIMMYT: El Batán, Mexico, 1984. [Google Scholar]
- CIMMYT Economics Program, International Maize and Wheat Improvement Center. From Agronomic Data to Farmer Recommendations: An Economics Training Manual; No. 27; CIMMYT: El Batán, Mexico, 1988. [Google Scholar]
- Ismeamercati. Available online: https://www.ismeamercati.it/analisi-e-studio-filiere-agroalimentari (accessed on 20 July 2021).
- Borsa merci Roma. Available online: http://www.borsamerciroma.it/index.php?categoriaMerceologica=2400&option=com_borsamerci&modulo=listinoPerCategoria&idListino=202128&Itemid=7 (accessed on 20 July 2021).
- Confagricoltura Siracusa. Available online: https://www.confagricolturasiracusa.it/ (accessed on 20 July 2021).
- Miceli, A.; Vetrano, F.; Sabatino, L.; D’Anna, F.; Moncada, A. Influence of Preharvest Gibberellic Acid Treatments on Postharvest Quality of Minimally Processed Leaf Lettuce and Rocket. Horticulturae 2019, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Sabatino, L.; La Bella, S.; Ntatsi, G.; Iapichino, G.; D’Anna, F.; De Pasquale, C.; Consentino, B.B.; Rouphael, Y. Selenium biofortification and grafting modulate plant performance and functional features of cherry tomato grown in a soilless system. Sci. Hortic. 2021, 285, 110095. [Google Scholar] [CrossRef]
- Consentino, B.B.; Aprile, S.; Rouphael, Y.; Ntatsi, G.; De Pasquale, C.; Iapichino, G.; Alibrandi, P.; Sabatino, L. Application of PGPB Combined with Variable N Doses Affects Growth, Yield-Related Traits, N-Fertilizer Efficiency and Nutritional Status of Lettuce Grown under Controlled Condition. Agronomy 2022, 12, 236. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Biber, M.; Pluta, M.; Grzebisz, W. Mineral density of onion bulbs as affected by fertilizers based on elemental sulfur. J. Elem. 2016, 21, 485–499. [Google Scholar] [CrossRef]
- Golubkina, N.; Amalfitano, C.; Sekara, A.; Tallarita, A.; Pokluda, R.; Stoleru, V.; Cuciniello, A.; Agafonov, A.F.; Kalisz, A.; Hamburda, S.B.; et al. Yield and bulb quality of storage onion cultivars as affected by farming system and nitrogen dose. Sci. Hortic. 2022, 293, 110751. [Google Scholar] [CrossRef]
- Banjare, C.; Shukla, N.; Sharma, P.K.; Patanwar, M.; Chandravanshi, D. Effect of organic substances on yield and quality of onion, Allium cepa L. Int. J. Sci. 2015, 5, 30–35. [Google Scholar]
- Kazimierczak, R.; Średnicka-Tober, D.; Barański, M.; Hallmann, E.; Góralska-Walczak, R.; Kopczyńska, K.; Rembiałkowska, E.; Górski, J.; Leifert, C.; Rempelos, L.; et al. The Effect of different fertilization regimes on yield, selected nutrients, and bioactive compounds profiles of onion. Agronomy 2021, 11, 883. [Google Scholar] [CrossRef]
- Gererufael, L.A.; Abraham, N.T.; Reda, T.B. Growth and yield of onion (Allium cepa L.) as affected by farmyard manure and nitrogen fertilizer application in Tahtay Koraro District, Northwestern Zone of Tigray, Ethiopia. Vegetos 2020, 33, 617–627. [Google Scholar] [CrossRef]
- Ncayiyana, M.; Maboko, M.M.; Bertling, I. Alterations in yield, physicochemical components and mineral composition of onion following organic manure and inorganic nitrogen application. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 213–219. [Google Scholar] [CrossRef]
- Boyhan, G.E.; Torrance, R.L.; Hill, C.R. Effects of nitrogen, phosphorus, and potassium rates and fertilizer sources on yield and leaf nutrient status of short-day onions. HortScience 2007, 42, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Piri, H.; Naserin, A. Effect of different levels of water, applied nitrogen and irrigation methods on yield, yield components and IWUE of onion. Sci. Hortic. 2020, 268, 109361. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Bartolo, M.E.; Reule, C.A.; Berrada, A. Nitrogen effects on onion yield under drip and furrow irrigation. Agron. J. 2008, 100, 1062–1069. [Google Scholar] [CrossRef]
- Amare, G. Review on Mineral Nutrition of Onion (Allium cepa L.). Open Biotechnol. J. 2020, 14, 134–144. [Google Scholar] [CrossRef]
- Bojović, B.; Marković, A. Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujev. J. Sci. 2009, 31, 69–74. [Google Scholar]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.; Ferreira, I.M. Changes in Macrominerals, Trace Elements and Pigments Content during Lettuce (Lactuca Sativa L.) Growth: Influence of Soil Composition. Food Chem. 2014, 152, 603–611. [Google Scholar] [CrossRef]
- Sabatino, L.; Iapichino, G.; La Bella, S.; Tuttolomondo, T.; D’Anna, F.; Cardarelli, M.; Consentino, B.B.; Rouphael, Y. An Appraisal of Calcium Cyanamide as Alternative N Source for Spring-Summer and Fall Season Curly Endive Crops: Effects on Crop Performance, NUE and Functional Quality Components. Agronomy 2020, 10, 1357. [Google Scholar] [CrossRef]
- Benti, G. Influence of nitrogen rate and varieties on storage periods of onion (Allium cepa L.) in Fedis district, Eastern Ethiopia. Int. J. Inform. Res. Rev. 2017, 4, 4097–4105. [Google Scholar]
- Sekara, A.; Pokluda, R.; Del Vacchio, L.; Somma, S.; Caruso, G. Interactions among genotype, environment and agronomicpractices on production and quality of storage onion (Allium cepa L.)—A review. Hort. Sci. 2017, 44, 21–42. [Google Scholar]
- Mallor Giménez, C.; Carravedo Fantova, M.; Estopañán Muñoz, G.; Mallor Giménez, F. Characterization of genetic resources of onion (Allium cepa L.) from the Spanish secondary centre of diversity. Span. J. Agric. Res. 2011, 9, 144–155. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Kwon, J.H.; Chang, Y.H.; Kwon, Y.S.; Kim, T.J.; Park, M.J.; Kim, M.A.; Lee, H.M. Evaluation of forty-five cultivars as affected by bulb initiation, bulb and scale characteristics, and bulb minerals and organic compounds of intermediate-day yellow onion (Allium cepa L.) in South Korea. Hortic. Environ. Biotechnol. 2020, 61, 1011–1029. [Google Scholar] [CrossRef]
- Pöhnl, T.; Schweiggert, R.M.; Carle, R. Impact of cultivation method and cultivar selection on soluble carbohydrates and pungent principles in onions (Allium cepa L.). J. Agric. Food Chem. 2018, 66, 12827–12835. [Google Scholar] [CrossRef] [PubMed]
- Tekeste, N.; Dechassa, N.; Woldetsadik, K.; Talae, A.; Dessalegne, L.; Takele, A. Effect of Integrated Nitrogen, Phosphorus, and Farmyard manure on post-harvest quality and storability of onion (Allium cepa L.). J. Postharvest Technol. 2017, 5, 25–37. [Google Scholar]
- Larsen, T.; Saxena, A.; Cramer, C.S. Relatedness of bulb firmness to other attributes of New Mexico onion entries. Int. J. Veg. Sci. 2009, 15, 206–217. [Google Scholar] [CrossRef]
- Charron, G.; Furlan, V.; Bernier-Cardou, M.; Doyon, G. Response of onion plants to arbuscular mycorrhizae: 2. Effects of nitrogen fertilization on biomass and bulb firmness. Mycorrhiza 2001, 11, 145–150. [Google Scholar] [CrossRef]
- Randle, W.M. Increasing nitrogen concentration in hydroponic solutions affects onion flavor and bulb quality. J. Am. Soc. Hort. Sci. 2000, 125, 254–259. [Google Scholar] [CrossRef]
- Coolong, T.W.; Randle, W.M.; Wicker, L. Structural and chemical differences in the cell wall regions in relation to scale firmness of three onion (Allium cepa L.) selections at harvest and during storage. J. Sci. Food Agric. 2008, 88, 1277–1286. [Google Scholar] [CrossRef]
- Bal, S.; Maity, T.K.; Maji, A. Genetic Divergence Studies for Yield and Quality Traits in Onion (Allium cepa L.). Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3201–3208. [Google Scholar] [CrossRef]
- Sinkovič, L.; Škof, M.; Ugrinović, K. Fertilization influenced physico-chemical parameters of different onion cultivars (Allium cepa L.). In Proceedings of the Novi Izzivi V Agron, Laško, Slovenia, 31 Januar–1 February 2019; pp. 215–221. [Google Scholar]
- Díaz-Pérez, J.C.; Bautista, J.; Gunawan, G.; Bateman, A.; Riner, C.M. Sweet onion (Allium cepa L.) as influenced by organic fertilization rate: 1. Plant growth, and leaf and bulb mineral composition. HortScience 2018, 53, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Bavec, M.; Jakop, D.; Mlakar, S.G.; Bavec, F. Effect of Nitrogen Fertilization on Yields and Nitrogen Agronomic Efficiency of Onion. In Proceedings of the 47th Croatian and 7th International Symposium on Agriculture, Opatija, Croatia, 13–17 February 2012; Volume 368, p. 372. [Google Scholar]
- Sandoval-Contreras, H.A.; Ribeiro-Barzan, R.; Sandoval-Contreras, M.; Rodrigues-Brito, O. Growth, yield and agronomic efficiency of rice (Oryza sativa L.) cv. IAPAR 117 affected by nitrogen rates and sources. Acta Agron. 2017, 66, 558–565. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; Rodrigues, W.L.; Fernandes, G.C.; Boleta, E.H.M.; Santini, J.M.K.; Jalal, A.; Buzetti, S.; Lavrès, J.; Teixeira Filho, M.C.M. Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions. Plants 2021, 10, 1329. [Google Scholar] [CrossRef] [PubMed]
- Bezabih, T.T.; Girmay, S. Nutrient use efficiency and agro-economic performance of onion (Allium cepa L.) under combined applications of N, K and S nutrients. Vegetos 2020, 33, 117–127. [Google Scholar] [CrossRef]
- Nigatu, M.; Alemayehu, M.; Sellassie, A.H. Optimum rate of NPS fertilizer for economical production of irrigated onion (Allium cepa L.) in Dembyia district of Amhara region, Ethiopia. Ethiop. J. Sci. Technol. 2018, 11, 113–127. [Google Scholar] [CrossRef] [Green Version]
Treatment | Dry Matter [%] | Average Bulb Weight [kg] | Number of Bulbs per Unit Area [Bulbs m−2] | Total Yield [t ha−1] | Marketable Yield [t ha−1] | Unmarketable Yield [t ha−1] | Double Bulbs [t ha−1] | Waste Bulbs [t ha−1] | Days from Sowing to Harvest [Days] | Number of Scales [Bulb−1] | Firmness [kg cm−2] |
---|---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | |||||||||||
2005/2006 | 7.17 a | 0.18 a | 29.91 a | 51.25 a | 32.39 a | 16.00 a | 2.21 a | 0.65 a | 214 a | 8.05 b | 8.52 b |
2006/2007 | 7.28 a | 0.20 a | 30.08 a | 52.50 a | 34.70 a | 15.65 a | 1.45 a | 0.69 a | 210 a | 8.36 a | 8.86 a |
Accession (A) | |||||||||||
L1 | 7.07 a | 0.23 a | 29.99 a | 62.08 a | 40.46 a | 21.32 a | 0.00 b | 0.30 b | 214 a | 8.15 b | 7.76 b |
V1 | 7.38 a | 0.15 b | 30.00 a | 41.67 b | 26.63 b | 10.34 b | 3.67 a | 1.04 a | 210 a | 8.26 a | 9.62 a |
Planting Date (PD) | |||||||||||
PD 1 | 6.93 b | 0.19 a | 26.10 b | 45.16 b | 26.21 b | 16.77 a | 1.69 a | 0.49 a | 246 a | 8.18 b | 8.80 a |
PD 2 | 7.52 a | 0.18 a | 33.89 a | 58.59 a | 40.87 a | 14.89 a | 1.98 a | 0.85 a | 177 b | 8.23 a | 8.58 b |
Nitrogen (N) [kg ha−1] | |||||||||||
0 | 7.77 a | 0.17 b | 25.16 b | 35.45 c | 25.80 c | 8.17 c | 0.88 a | 0.61 a | 212 a | 8.29 a | 9.51 a |
80 | 7.48 ab | 0.18 b | 30.87 a | 48.99 b | 31.98 b | 14.70 b | 1.57 a | 0.74 a | 212 a | 8.28 a | 8.87 b |
160 | 6.83 b | 0.21 a | 30.77 a | 61.14 a | 36.49 ab | 20.87 a | 3.13 a | 0.66 a | 212 a | 8.19 b | 8.44 c |
220 | 6.82 b | 0.19 ab | 33.19 a | 61.92 a | 39.91 a | 19.57 a | 1.76 a | 0.67 a | 212 a | 8.05 c | 7.94 d |
Treatment | Total Yield | Marketable Yield | Unmarketable Yield | Firmness | |
---|---|---|---|---|---|
[t ha−1] | [t ha−1] | [t ha−1] | [kg cm−2] | ||
L1 | N 0 | 41.41de | 29.87 bc | 11.29 bc | 8.63 e |
N 80 | 58.62 b | 36.89 bc | 21.45 a | 7.90 f | |
N 160 | 75.78 a | 47.39 a | 27.99 a | 7.48 g | |
N 220 | 72.53 a | 47.70 a | 24.56 a | 7.03 h | |
V1 | N 0 | 29.50 f | 21.73 d | 5.05 c | 10.39 a |
N 80 | 39.36 e | 27.08 cd | 7.95 bc | 9.83 b | |
N 160 | 46.50 cd | 25.59 cd | 13.76 b | 9.41 c | |
N 220 | 51.31 c | 32.12 bc | 14.59 b | 8.86 d |
Treatment | Dry Matter | Average Bulb Weight | Number of Bulbs Per Unit Area | Number of Scales | Firmness | |
---|---|---|---|---|---|---|
[%] | [kg] | [bulbs m−2] | [bulb−1] | [kg cm−2] | ||
L1 | PD 1 | 7.00 b | 0.25 a | 28.83 c | 8.10 b | 7.90 c |
PD 2 | 7.14 ab | 0.20 b | 36.14 a | 8.19 a | 7.62 d | |
V1 | PD 1 | 6.86 b | 0.13 c | 28.36 bc | 8.26 a | 9.71 a |
PD 2 | 7.90 a | 0.17 d | 31.64 ab | 8.27 a | 9.53 b |
Treatment | Total Yield | Marketable Yield | Unmarketable Yield | Firmness | |
---|---|---|---|---|---|
[t ha−1] | [t ha−1] | [t ha−1] | [kg cm−2] | ||
PD 1 | N 0 | 31.32 e | 21.56 e | 8.07 c | 9.63 a |
N 80 | 43.98 cd | 24.30 de | 17.61 ab | 9.04 c | |
N 160 | 54.79 b | 32.33 cd | 19.76 a | 8.56 e | |
N 220 | 50.57 cb | 26.67 de | 21.64 a | 7.99 g | |
PD 2 | N 0 | 39.59 d | 30.04 d | 8.27 c | 9.39 b |
N 80 | 54.00 b | 39.66 bc | 11.79 bc | 8.70 d | |
N 160 | 67.50 a | 40.65 b | 21.99 a | 8.33 f | |
N 220 | 73.27 a | 53.15 a | 17.51 ab | 7.89 h |
Treatment | NAE |
---|---|
Year (Y) | |
2005/2006 | 113.47 a |
2006/2007 | 111.54 a |
Accession (A) | |
L1 | 142.84 a |
V1 | 82.19 b |
Planting Date (PD) | |
PD 1 | 98.11 b |
PD 2 | 126.92 a |
Nitrogen (N) | |
N 0 | 0 c |
N 80 | 169.21 a |
N 160 | 160.56 a |
N 220 | 120.28 b |
Accession | Planting Date | N [kg ha−1] | Marketable Yield [t ha−1] | Adjusted Yield [t ha−1] | Gross Field Benefits [EUR ha−1] | Total Variable Costs [EUR] | Net Benefits [EUR] | Dominance |
---|---|---|---|---|---|---|---|---|
L1 | 1 | 0 | 25.13 | 22.62 | 9048 | 0 | 9048 | |
L1 | 1 | 80 | 30.97 | 27.88 | 11,151 | 209 | 10,942 | |
L1 | 1 | 160 | 43.25 | 38.93 | 15,572 | 418 | 15,154 | |
L1 | 1 | 220 | 33.32 | 29.99 | 11,996 | 604 | 11,391 | D |
L1 | 2 | 0 | 34.60 | 31.14 | 12,457 | 0 | 12,457 | D |
L1 | 2 | 80 | 42.80 | 38.52 | 15,408 | 209 | 15,199 | |
L1 | 2 | 160 | 51.52 | 46.37 | 18,547 | 418 | 18,130 | |
L1 | 2 | 220 | 62.09 | 55.88 | 22,351 | 604 | 21,747 | |
V1 | 1 | 0 | 17.98 | 16.18 | 6472 | 0 | 6472 | |
V1 | 1 | 80 | 17.63 | 15.87 | 6348 | 209 | 6139 | D |
V1 | 1 | 160 | 21.40 | 19.26 | 7703 | 418 | 7286 | |
V1 | 1 | 220 | 20.02 | 18.02 | 7209 | 604 | 6604 | D |
V1 | 2 | 0 | 25.48 | 22.93 | 9171 | 0 | 9171 | |
V1 | 2 | 80 | 36.52 | 32.87 | 13,149 | 209 | 12,940 | |
V1 | 2 | 160 | 29.78 | 26.80 | 10,720 | 418 | 10,302 | D |
V1 | 2 | 220 | 44.21 | 39.79 | 15,915 | 604 | 15,311 |
Accession | Planting Date | N [kg ha−1] | Adjusted Yield [t ha−1] | Total Variable Costs [EUR] | Net Benefits [EUR] | MRR [%] |
---|---|---|---|---|---|---|
L1 | 1 | 80 | 27.88 | 209 | 10,942 | 907 |
L1 | 1 | 160 | 38.93 | 418 | 15,154 | 2016 |
L1 | 2 | 80 | 38.52 | 209 | 15,199 | 1313 |
L1 | 2 | 160 | 46.37 | 418 | 18,130 | 1403 |
L1 | 2 | 220 | 55.88 | 604 | 21,747 | 1938 |
V1 | 1 | 160 | 19.26 | 418 | 7286 | 195 |
V1 | 2 | 80 | 32.87 | 209 | 12,940 | 1804 |
V1 | 2 | 220 | 39.79 | 604 | 15,311 | 599 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Miceli, G.; Farruggia, D.; Iacuzzi, N.; Bacarella, S.; La Bella, S.; Consentino, B.B. Planting Date and Different N-Fertilization Rates Differently Modulate Agronomic and Economic Traits of a Sicilian Onion Landrace and of a Commercial Variety. Horticulturae 2022, 8, 454. https://doi.org/10.3390/horticulturae8050454
Di Miceli G, Farruggia D, Iacuzzi N, Bacarella S, La Bella S, Consentino BB. Planting Date and Different N-Fertilization Rates Differently Modulate Agronomic and Economic Traits of a Sicilian Onion Landrace and of a Commercial Variety. Horticulturae. 2022; 8(5):454. https://doi.org/10.3390/horticulturae8050454
Chicago/Turabian StyleDi Miceli, Giuseppe, Davide Farruggia, Nicolò Iacuzzi, Simona Bacarella, Salvatore La Bella, and Beppe Benedetto Consentino. 2022. "Planting Date and Different N-Fertilization Rates Differently Modulate Agronomic and Economic Traits of a Sicilian Onion Landrace and of a Commercial Variety" Horticulturae 8, no. 5: 454. https://doi.org/10.3390/horticulturae8050454
APA StyleDi Miceli, G., Farruggia, D., Iacuzzi, N., Bacarella, S., La Bella, S., & Consentino, B. B. (2022). Planting Date and Different N-Fertilization Rates Differently Modulate Agronomic and Economic Traits of a Sicilian Onion Landrace and of a Commercial Variety. Horticulturae, 8(5), 454. https://doi.org/10.3390/horticulturae8050454