Modeling of P-Loss Risk and Nutrition for Mango (Mangifera indica L.) in Sandy Calcareous Soils: A 4-Years Field Trial for Sustainable P Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Collection of Soil and Plant Samples
2.3. Soil and Plant Analysis
2.4. Statistical Analysis of Data
3. Results
3.1. Soil Available P and P Loss Risk
3.2. Effect of P Doses on P Uptake and Mango Growth
3.3. Effect of P Doses on Mango Fruit Yield and Quality
3.4. Critical P in Soil and Plant for Maximum Mango Fruit Yield
4. Discussion
4.1. P Management in Mango Orchards
4.2. P Threshold for Maximum Mango Fruit Yield
4.3. P Concentrations in Blades and Petioles of Mango Leaves
4.4. Predicting P Loss Risk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purseglove, J.W. Mangoes west of India. Acta. Hort. 1972, 24, 170–174. [Google Scholar] [CrossRef]
- Zuazo, V.D.; Raya, A.M.; Ruiz, J.A. Impact of salinity on the fruit yield of mango (Mangifera indica L. cv.‘Osteen’). Eur. J. Agron. 2004, 21, 323–334. [Google Scholar] [CrossRef]
- Helaly, M.N.; El-Hoseiny, H.; El-Sheery, N.I.; Rastogi, A.; Kalaji, H.M. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiol. Biochem. 2017, 118, 31–44. [Google Scholar] [CrossRef]
- FAOSTAT 2020. FAO Statistical Databases Agriculture. Available online: http://faostat.fao.org (accessed on 1 May 2020).
- Mikkelsen, R. Sources of phosphorus for plants: Past, present, and future. In International Plant Nutrition Institute (IPNI), The city of Peachtree Corners, GA. Better Crops Plant Food 2019, 103, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Ding, Z.; Al-Yasi, H.M.; Ali, E.F.; Eissa, M.A.; Abou-Elwafa, S.F.; Sayed, M.; Said, M.T.; Said, A.A.; Ibrahim, K.A.; et al. Modeling of phosphorus nutrition to obtain maximum yield, high p use efficiency and low p-loss risk for wheat grown in sandy calcareous soils. Agronomy 2021, 11, 1950. [Google Scholar] [CrossRef]
- Mogollon, J.M.; Beusen, A.H.W.; van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Chang. 2018, 50, 149–163. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization stdosegies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Van Kauwenbergh, J. World phosphorus rock reserves and resources. In Proceedings of the International Fertilizer Development Center, Muscle Shoals, AL, USA, 16–18 November 2010. [Google Scholar]
- Wang, B.; Liu, H.; Wang, X.H.; Li, J.M.; Ma, Y.B.; Ma, X.W. Soil phosphorus accumulation model for an arid area of north-western China with 3-year rotation of wheat, maize and cotton. J. Agric. Sci. 2014, 153, 1247–1256. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R.; White, R.P. Plant-available soil phosphorus. Part II: The response of arable crops to Olsen P on a sandy clay loam and a silty clay loam. Soil Use Manag. 2013, 29, 12–21. [Google Scholar] [CrossRef]
- Rowe, H.; Withers, P.J.A.; Baas, P.; Chan, N.I.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.; MacDonald, G.K.; McDowell, R.; et al. Integrating legacy soil phosphorus into sustainable nutrient management stdosegies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst. 2016, 104, 393–412. [Google Scholar] [CrossRef]
- Jalali, M.; Jalali, M. Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with di_erent texture. Sci. Total Environ. 2016, 566, 1080–1093. [Google Scholar] [CrossRef]
- Blombäck, K.; Bolster, C.H.; Lindsjö, A.; Hesse, K.; Linefur, H.; Parvage, M.M. Comparing measures for determination of phosphorus saturation as a method to estimate dissolved P in soil solution. Geoderma 2021, 383, 114708. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Elbehiry, F.; El-Ramady, H.; Brevik, E.C. Phosphorus Availability and Potential Environmental Risk Assessment in Alkaline Soils. Agriculture 2020, 10, 172. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; O’Halloran, I.P.; Tan, C.S.; Hu, Q.C.; Reid, D.K. Soil tests as risk indicators for leaching of dissolved phosphorus from agricultural soils in Ontario. Soil Sci. Soc. Am. J. 2012, 76, 220–229. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Sharpley, A.N. Estimating soil phosphorus sorption saturation from Mehlich-3 data. Commun. Soil Sci. Plant Anal. 2002, 33, 1825–1839. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodiumbicarbonate; US Government Printing Office: Washington, DC, USA, 2018; p. 19.
- Swedish Board of Agriculture. Rekommendationer För Gödsling Och Kalkning 2019. Jordbruksinformation 18–2018. Swedsih Board of Agriculture, Jönköping, Sweden. p. 108. 2018. Available online: https://www2.jordbruksverket.se/download/18.47f1061167704c09faaa019/1543994500651/jo18_18v2.pdf.html (accessed on 1 April 2020).
- Shi, L.; Shen, M.; Lu, C.; Wang, H.; Zhou, X.; Jin, M.; Wu, T. Soil phosphorus dynamic, balance and critical P values in long-term fertilization experiment in Taihu Lake region, China. J. Integ. Agric. 2015, 14, 2446–2455. [Google Scholar] [CrossRef]
- Mumbach, G.L.; Gatiboni, L.C.; Dall’Orsoletta, D.J.; Schmitt, D.E.; Grando, D.L.; Souza Junior, A.A.D.; Iochims, D.A. Refining phosphorus fertilizer recommendations based on buffering capacity of soils from southern Brazil. Rev. Bras. Ciência Solo 2021, 45, e0200113. [Google Scholar] [CrossRef]
- Silveira, M.L.; Obour, A.K.; Vendramini, J.M.; Sollenberger, L.E. Using tissue analysis as a tool to predict bahiagrass phosphorus fertilization requirement. J Plant Nutr. 2011, 34, 2193–2205. [Google Scholar] [CrossRef]
- Stammer, A.J. Plant Tissue Analysis to Assess Phosphorus and Potassium Nutritional Status of Corn and Soybean in Iowa; Iowa State University: Ames, IA, USA, 2015. [Google Scholar]
- D’Haene, K.; Hofman, G. Phosphorus offtake and optimal phosphorus fertilisation dose of some fodder crops and potatoes in tempedose regions. Agrokém. Talajt. 2015, 64, 403–420. [Google Scholar] [CrossRef] [Green Version]
- Cadot, S.; Bélanger, G.; Ziadi, N.; Morel, C.; Sinaj, S. Critical plant and soil phosphorus for wheat, maize, and rapeseed after 44 years of P fertilization. Nutr. Cycl. Agroecosyst. 2018, 112, 417–433. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Description, 4th ed.; Viale delle Terme di Caracalla: Rome, Italy, 2006. [Google Scholar]
- Faria, L.N.; Donato, S.L.; Santos, M.R.D.; Castro, L.G. Nutrient contents in ‘Tommy Atkins’mango leaves at flowering and fruiting stages. Eng. Agrícola 2016, 36, 107320131085. [Google Scholar]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42, Version 4.0; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2004.
- A.O.A.C. Official Methods of Analysis, 21st ed.; William, H., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Colomb, B.; Debaeke, P.; Jouany, C.; Nolot, J.M. Phosphorus management in low input stockless cropping systems: Crop and soil responses to contrasting P regimes in a 36-year experiment in southern France. Europ. J. Agron. 2007, 26, 154–165. [Google Scholar] [CrossRef]
- Khan, M.; Ahmed, N. Sustainable management of mango nutrition for better yield and quality. Cercet. Agron. În Mold. 2021, 53, 473–501. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Gruau, G.; Couic, E.; Cotinet, P.; Li, Q. Conservation practices modify soil phosphorus sorption properties and the composition of dissolved phosphorus losses during runoff. Soil Till. Res. 2022, 220, 105353. [Google Scholar] [CrossRef]
- Ram, R.A.; Rahim, M.A.; Alam, M.S. Diagnosis and Management of Nutrient Constraints in Mango. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; Volume 12, pp. 629–650. [Google Scholar] [CrossRef]
- Prado, R.M. Phosphorus effects in the nutrition and growth of developing mango plants. J. Plant Nutr. 2010, 33, 2041–2049. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Poulton, P.R.; Johnston, A.E.; White, R.P. Plant-available soil phosphorus. Part I: The response of winter wheat and spring barley to Olsen P on a silty clay loam. Soil Use Manag. 2013, 29, 4–11. [Google Scholar] [CrossRef]
- Bollons, H.M.; Barraclough, P.B. Assessing the phosphorus status of winter wheat crops: Inorganic orthophosphate in whole shoots. J. Agric. Sci. 1999, 133, 285–295. [Google Scholar] [CrossRef]
- Tang, X.; Ma, Y.; Hao, X.; Li, X.; Li, J.; Huang, S.; Yang, X. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant Soil 2009, 323, 143–151. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Rubæk, G.H.; Ehlert, P.A.I.; Genot, V.; Hofman, G.; Goulding, K.; Recknagel, J.; Provolo, G.; Barraclough, P. An overview of fertilizer-P recommendations in Europe: Soil testing, calibration and fertilizer recommendations. Soil Use Manag. 2012, 28, 419–435. [Google Scholar] [CrossRef]
- Tian, Z.; Li, J.; He, X.; Jia, X.; Yang, F.; Wang, Z. Grain yield, dry weight and phosphorus accumulation and translocation in two rice (Oryza sativa L.) varieties as affected by salt-alkali and phosphorus. Sustainability 2017, 9, 1461. [Google Scholar] [CrossRef] [Green Version]
- Klein, I.; Strime, M.; Faberstein, L.; Mani, Y. Irrigation and fertigation effects on phosphorus and potassium nutrition of wine grapes. Vitis 2000, 39, 55–62. [Google Scholar]
- Shane, M.W.; McCully, M.E.; Lambers, H. Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J. Exp. Bot. 2004, 55, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, E.; Wissuwa, M.; Rose, T.; Dieng, I.; Drame, K.N.; Fofana, M.; Senthilkumar, K.; Venuprasad, R.; Jallow, D.; Segda, Z.; et al. Genotypic variation in grain P loading across diverse rice growing environments and implications for field P balances. Front. Plant Sci. 2016, 7, 1435. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Reddy, V.R.; Sicher, R.C. Seasonal critical concentration and relationships of leaf phosphorus and potassium status with biomass and yield traits of soybean. J. Plant Nutr. Soil Sci. 2018, 181, 575–585. [Google Scholar] [CrossRef]
- Shabnam, R.; Iqbal, M. Phosphorus use efficiency by wheat plants that grown in an acidic soil. Braz. J. Sci. Technol. 2016, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World phosphorus use efficiency in cereal crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yan, X.; Wang, M.; Cai, Y.; Weng, X.; Su, D.; Zhang, F. Long-term excessive phosphorus fertilization alters soil phosphorus fractions in the acidic soil of pomelo orchards. Soil Till. Res. 2022, 215, 105214. [Google Scholar] [CrossRef]
Doses of P (g Tree−1) | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|
0 | 4.2 ± 0.4 g | 3.9 ± 0.3 g | 3.4 ± 0.8 g | 3.1 ± 0.7 g |
30 | 6.0 ± 0.7 f | 5.7 ± 0.5 f | 5.3 ± 0.8 f | 5.0 ± 0.5 f |
60 | 9.3 ± 1.0 e | 9.1 ± 0.9 e | 8.9 ± 1.2 e | 8.7 ± 0.9 e |
90 | 12.5 ± 1.2 d | 13.4 ± 1.2 d | 14.5 ± 1.3 d | 14.6 ± 2.2 d |
120 | 15.78 ± 1.1 c | 16.1 ± 1.1 c | 17.7 ± 1.2 c | 18.6 ± 2.2 c |
150 | 17.4 ± 1.7 b | 18.2 ± 1.6 b | 18.9 ± 1.4 c | 22.9 ± 2.6 b |
180 | 19.0 ± 2.8 a | 20.9 ± 2.1 a | 22.3 ± 2.7 b | 23.8 ± 3.1 b |
210 | 19.8 ± 2.4 a | 21.1 ± 2.2 a | 24.8 ± 2.8 a | 26.8 ± 3.2 a |
240 | 20.5 ± 2.0 a | 22.0 ± 2.3 a | 25.9 ± 2.2 a | 27.3 ± 3.3 a |
pP | 0.002 | |||
pY | 0.010 | |||
pPY | 0.005 |
P Doses (g Tree−1) | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|
0 | 3.9 ± 0.3 h | 3.6 ± 0.4 h | 3.4 ± 0.7 g | 3.3 ± 0.6 g |
30 | 7.3 ± 0.8 g | 6.6 ± 0.6 g | 6.5 ± 0.7 f | 6.3 ± 0.6 f |
60 | 9.7 ± 1.2 f | 9.3 ± 0.8 f | 9.2 ± 1.3 e | 9.1 ± 0.8 e |
90 | 16.7 ± 1.3 e | 17.1 ± 1.4 e | 18.9 ± 2.4 d | 19.0 ± 1.3 d |
120 | 19.0 ± 1.2 d | 19.6 ± 1.3 d | 19.9 ± 1.3 d | 20.7 ± 1.2 d |
150 | 22.3 ± 1.8 c | 22.8 ± 1.7 c | 23.1 ± 2.4 c | 23.5 ± 2.6 c |
180 | 26.0 ± 2.9 b | 27.2 ± 2.3 b | 28.0 ± 2.8 b | 28.9 ± 2.2 b |
210 | 26.3 ± 2.8 b | 26.8 ± 2.3 b | 27.2 ± 2.8 b | 28.2 ± 2.3 b |
240 | 28.3 ± 2.2 a | 29.9 ± 2.2 a | 31.5 ± 2.4 a | 32.5 ± 2.1 a |
pP | 0.009 | |||
pY | 0.019 | |||
pPY | 0.006 |
P Doses (g Tree−1) | Chlorophyll | Shoot Length (cm) | Number of Leaves/Shoot | Leaf Area (cm) | |
---|---|---|---|---|---|
Beginning of flowering stage | 0 | 35 ± 2 c | 50 ± 4c | 41 ± 3 b | 48 ± 3 c |
30 | 40 ± 2 b | 62 ± 9 b | 44 ± 2 b | 60 ± 5 b | |
60 | 39 ± 2 b | 64 ± 8 b | 43 ± 2 b | 62 ± 4 b | |
90 | 44 ± 3 a | 70 ± 6 a | 50 ± 4 a | 68 ± 4 ab | |
120 | 45 ± 2 a | 73 ± 6 a | 52 ± 2 a | 73 ± 5 a | |
150 | 45 ± 2 a | 72 ± 7 a | 53 ± 5 a | 72 ± 3 a | |
180 | 44 ± 2 a | 75 ± 6 a | 54 ± 3 a | 75 ± 4 a | |
210 | 46 ± 2 a | 74 ± 8 a | 53 ± 5 a | 76 ± 6 a | |
240 | 47 ± 3 a | 75 ± 7 a | 54 ± 4 a | 77 ± 8 a | |
p | 0.010 | 0.008 | 0.016 | 0.003 | |
Full blooming stage | 0 | 33 ± 2 c | 52 ± 3 c | 43 ± 4 b | 58 ± 3 c |
30 | 38 ± 2 b | 64 ± 5 b | 45 ± 5 b | 72 ± 6 b | |
60 | 40 ± 2 b | 66 ± 5 b | 46 ± 3 b | 73 ± 7 b | |
90 | 46 ± 3 a | 73 ± 3 a | 52 ± 4 a | 76 ± 8 b | |
120 | 45 ± 2 a | 75 ± 4 a | 54 ± 2 a | 84 ± 8 a | |
150 | 44 ± 2 a | 76 ± 6 a | 55 ± 5 a | 84 ± 8 a | |
180 | 46 ± 2 a | 76 ± 5 a | 56 ± 3 a | 86 ± 7 a | |
210 | 46 ± 2 a | 77 ± 4 a | 55 ± 4 a | 84 ± 6 a | |
240 | 46 ± 3 a | 78 ± 5 a | 56 ± 6 a | 85 ± 7 a | |
p | 0.013 | 0.011 | 0.005 | 0.004 | |
Beginning of fruiting stage | 0 | 33 ± 2 c | 56 ± 5 c | 44 ± 2 b | 63 ± 4 c |
30 | 40 ± 2 b | 70 ± 6 b | 46 ± 3 b | 80 ± 5 b | |
60 | 39 ± 2 b | 72 ± 7 b | 46 ± 3 b | 82 ± 3 b | |
90 | 46 ± 3 a | 79 ± 4 a | 55 ± 6 a | 84 ± 5 b | |
120 | 44 ± 2 a | 80 ± 5 a | 54 ± 5 a | 95 ± 8 a | |
150 | 45 ± 2 a | 82 ± 6 a | 56 ± 4 a | 93 ± 9 a | |
180 | 43 ± 2 a | 83 ± 3 a | 57 ± 4 a | 95 ± 9 a | |
210 | 46 ± 2 a | 85 ± 7 a | 56 ± 5 a | 96 ± 8 a | |
240 | 44 ± 3 a | 84 ± 8 a | 56 ± 6 a | 94 ± 9 a | |
p | 0.012 | 0.018 | 0.002 | 0.007 |
Growth Stage | Agronomic Traits | Equation | R2 | r |
---|---|---|---|---|
Beginning of flowering stage | Chlorophyll | y = 1.256X − 12.46 | 0.94 | 0.86 ** |
Leaves area | y = 0.075X + 6.498 | 0.73 | 0.77 ** | |
Shoot length | y = 0.012X + 5.867 | 0.70 | 0.83 ** | |
Leave number | y = 0.257X + 7.878 | 0.95 | 0.92 ** | |
P in blades | y = 2.082X + 8.912 | 0.77 | 0.65 * | |
P in petioles | y = 0.086X+ 0.355 | 0.94 | 0.82 ** | |
Full blooming stage | Chlorophyll | y = 1.156X − 1.963 | 0.84 | 0.79 ** |
Leaves area | y = 0.003X + 5.875 | 0.27 | 0.19 | |
Shoot length | y = 0.092X + 3.257 | 0.69 | 0.62 * | |
Leave number | y = 0.008X + 4.896 | 0.48 | 0.35 | |
P in blades | y = 0.004X + 2.862 | 0.39 | 0.48 | |
P in petioles | y = 0.152X + 5.237 | 0.82 | 0.76 ** | |
Beginning of fruiting stage | Chlorophyll | y = 1.112X − 2.496 | 0.73 | 0.82 * |
Leaves area | y = 0.056X + 15.27 | 0.33 | 0.39 | |
Shoot length | y = 0.098X + 5.672 | 0.58 | 0.45 | |
Leave number | y = 0.037X + 6.920 | 0.35 | 0.27 | |
P in blades | y = 0.297X + 4.835 | 0.49 | 0.32 | |
P in petioles | y = 0.372X + 4.569 | 0.33 | 0.54 |
Formula | R2 | Critical p Value (mg kg−1) | ||
---|---|---|---|---|
Soil available P | linear-linear | Y = 0.0592 + 0.1405X − 0.0070X2 + 0.0001X3 | 0.89 ** | 11.43 |
Quadratic | Y = 0.2374 + 0.0844X − 0.002X2 | 0.88 ** | 10.43 | |
Exponential | Y = 1.0075 (1 − e−0.1889X) | 0.89 ** | 11.85 | |
P in plant petioles | linear-linear | Y = 0.0360 + 0.4005 − 0.0467X2 + 0.0011X3 | 0.67 * | 3.39 |
Quadratic | Y = 0.0722 + 0.3620X − 0.00348X2 | 0.67 * | 2.34 | |
Exponential | Y = 1.1170 (1 − exp−0.4648X) | 0.66 * | 3.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Elbagory, M.; He, Y.; Zhang, X.; Hui, Y.; Eissa, M.A.; Ding, Z.; El-Nahrawy, S.; Omara, A.E.-D.; Zoghdan, M.G.; et al. Modeling of P-Loss Risk and Nutrition for Mango (Mangifera indica L.) in Sandy Calcareous Soils: A 4-Years Field Trial for Sustainable P Management. Horticulturae 2022, 8, 1064. https://doi.org/10.3390/horticulturae8111064
Wang J, Elbagory M, He Y, Zhang X, Hui Y, Eissa MA, Ding Z, El-Nahrawy S, Omara AE-D, Zoghdan MG, et al. Modeling of P-Loss Risk and Nutrition for Mango (Mangifera indica L.) in Sandy Calcareous Soils: A 4-Years Field Trial for Sustainable P Management. Horticulturae. 2022; 8(11):1064. https://doi.org/10.3390/horticulturae8111064
Chicago/Turabian StyleWang, Jiyue, Mohssen Elbagory, Yingdui He, Xu Zhang, Yongyong Hui, Mamdouh A. Eissa, Zheli Ding, Sahar El-Nahrawy, Alaa El-Dein Omara, Medhat G. Zoghdan, and et al. 2022. "Modeling of P-Loss Risk and Nutrition for Mango (Mangifera indica L.) in Sandy Calcareous Soils: A 4-Years Field Trial for Sustainable P Management" Horticulturae 8, no. 11: 1064. https://doi.org/10.3390/horticulturae8111064
APA StyleWang, J., Elbagory, M., He, Y., Zhang, X., Hui, Y., Eissa, M. A., Ding, Z., El-Nahrawy, S., Omara, A. E. -D., Zoghdan, M. G., & Kheir, A. M. S. (2022). Modeling of P-Loss Risk and Nutrition for Mango (Mangifera indica L.) in Sandy Calcareous Soils: A 4-Years Field Trial for Sustainable P Management. Horticulturae, 8(11), 1064. https://doi.org/10.3390/horticulturae8111064