Preharvest Foliar Spray of Calcium Chloride on Growth, Yield, Quality, and Shelf Life Extension of Different Lowland Tomato Varieties in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Section
2.1.1. Plant and Planting Materials
2.1.2. Pre-Harvest Application of CaCl2
2.2. Measurement of Growth and Yield Parameters
2.3. Determination of Quality Parameters
2.3.1. Selection of Fruits
2.3.2. Firmness
2.3.3. Soluble Solid Concentration (SSC)
2.3.4. Titratable Acidity (TA)
2.3.5. Antioxidant Properties
Ascorbic Acid
Lycopene
Extraction for Antioxidant Determination
Total Phenolic Content (TPC)
DPPH Radical Scavenging Assay
2.3.6. Respiration and Ethylene Production
2.4. Postharvest Storage Evaluation
2.4.1. Weight Loss
2.4.2. Disease Incidence and Disease Severity
2.4.3. Fruit Decay and Shelf Life
2.5. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Growth and Yield Contributing Characteristics
Disease and Insect Infestation
3.2. Postharvest Performance
3.2.1. Respiration and Ethylene Production
3.2.2. Firmness
3.2.3. Soluble Solid Content (SSC) and Titratable Acidity (TA)
3.2.4. Antioxidant Properties
Ascorbic Acid and Lycopene
Total Phenolic Content (TPC) and DPPH
3.3. Postharvest Observation
3.3.1. Weight Loss
3.3.2. Disease Incidence and Disease Severity
3.3.3. Visual Symptoms
3.3.4. Shelf Life
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Safari, Z.S.; Ding, P.; Zahidi, N.M.; Atif, A.; Wafa, S.; Aziz, A.; Yusoff, S.F. Maintenance of defence enzyme activities in tomato fruit during storage by chitosan and vanillin coating. Int. J. Appl. Sci. Res. 2021, 4, 177–188. [Google Scholar]
- Arah, I.K.; Kumah, E.K.; Anku, E.K.; Amaglo, H. An overview of postharvest losses in tomato production in Africa: Causes and possible prevention strategies. J. Biol. Agric. Healthc. 2015, 5, 78–88. Available online: https://www.iiste.org/Journals/index.php/JBAH/article/view/25134 (accessed on 24 December 2020).
- FAOSTAT. Production—Crops—Area Harvested/ Production Quantity—Tomatoes—2019. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 20 April 2021).
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.; Siervo, M.; Lara, J. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, M.; Khan, N.; Jan, I. Postharvest losses in tomato crop (a case study of Peshawar Valley). Sarhad J. Agric. 2007, 23, 1279–1284. Available online: https://www.aup.edu.pk/sj_pdf/POST%20HARVEST%20LOSSES%20IN%20TOMATO%20CROP.pdf (accessed on 15 January 2021).
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Genanew, T. Effect of postharvest treatments on storage behavior and quality of tomato fruits. World J. Agric. Sci. 2013, 9, 29–37. [Google Scholar] [CrossRef]
- Anjum, S.; Hamid, A.; Ghafoor, A.; Tahira, R.; Shah, S.Z.A.; Awan, S.I.; Ahmad, K.S. Evaluation of biochemical potential in tomato (Solanum lycopersicum) germplasms. Pak. J. Agric. Sci. 2020, 57, 177–187. [Google Scholar]
- Abbasi, N.A.; Zafar, L.; Khan, H.A.; Qureshi, A.A. Effects of naphthalene acetic acid and calcium chloride application on nutrient uptake, growth, yield, and postharvest performance of tomato fruit. Pak. J. Bot. 2013, 45, 1581–1587. Available online: https://www.researchgate.net/publication/256458112 (accessed on 10 February 2021).
- Senevirathna, P.A.W.A.N.K.; Daundasekera, W.A.M. Effect of postharvest calcium chloride vacuum infiltration on the shelf life and quality of tomato (cv.’Thilina’). Ceylon J. Sci. 2010, 39, 35–44. [Google Scholar] [CrossRef]
- Bhattarai, D.R.; Gautam, D.M. Effect of harvesting method and calcium on postharvest physiology of tomato. Nepal Agric. Res. J. 2006, 7, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Michailidis, M.; Karagiannis, E.; Tanou, G.; Samiotaki, M.; Tsiolas, G.; Sarrou, E.; Molassiotis, A. Novel insights into the calcium action in cherry fruit development revealed by high-throughput mapping. Plant Mol. Biol. 2020, 104, 597–614. [Google Scholar] [CrossRef]
- Michailidis, M.; Polychroniadou, C.; Kosmidou, M.A.; Petraki-Katsoulaki, D.; Karagiannis, E.; Molassiotis, A.; Tanou, G. An Early Calcium Loading during Cherry Tree Dormancy Improves Fruit Quality Features at Harvest. Horticulturae 2021, 7, 135. [Google Scholar] [CrossRef]
- Michailidis, M.; Karagiannis, E.; Tanou, G.; Karamanoli, K.; Lazaridou, A.; Matsi, T.; Molassiotis, A. Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology. Plant Physiol. Biochem. 2017, 116, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Tejashvini, A. Growth and yield attribute as influenced by calcium foliar nutrition under poly-house condition. Int. J. Pure Appl. Biosci. 2018, 6, 952–957. [Google Scholar] [CrossRef]
- Hanna, H.Y. Influence of cultivar, growing media, and cluster pruning on greenhouse tomato yield and fruit quality. Hort. Technol. 2009, 19, 395–399. Available online: http://horttech.ashspublications.org/ (accessed on 7 November 2020). [CrossRef]
- Rahim, H.; Wahab, M.A.M.A.; Amin, M.Z.M.; Harun, A.; Haimid, M.T. Technological adoption evaluation of agricultural and food sectors towards modern agriculture: Tomato. Econ. Technol. Manag. Rev. 2017, 12, 41–53. Available online: http://etmr.mardi.gov.my/Content/ETMR%20Vol.12/Vol12_5.pdf (accessed on 21 January 2021).
- Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: A new handbook for standardized measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef] [Green Version]
- Gbollie, S.N.; Mwonga, S.M.; Kibe, A.M. Effects of Calcium Nitrate Levels and Soaking Durations on Cocopeat Nutrient Content. J. Agric. Chem. Environ. 2021, 10, 372–388. [Google Scholar]
- Cox, D. Water quality: PH and alkalinity. University of Massachusetts Extension. Dep. Plant Soil Sci. Massa 1995, 50–51. [Google Scholar]
- Kumah, P.; Olympio, N.S.; Tayviah, C.S. Sensitivity of three tomatoes (Lycopersicon esculentum) cultivars-Akoma, Pectomech, and power-to-chilling injury. Agric. Biol. J. 2011, 2, 799–805. Available online: http://hdl.handle.net/123456789/7180 (accessed on 17 September 2020).
- Nirupama, P.; Neeta, B.G.; Ramana Rao, T.V. Effect of Postharvest Treatments on Physicochemical Characteristics and Storage life of Tomato (Lycopersicon esculentum Mill.) Fruits during Storage. Am. Eurasian J. Agric. Environ. Sci. 2010, 9, 470–479. Available online: http://idosi.org/aejaes/jaes9/3.pdf (accessed on 10 November 2020).
- Mohammadi-Aylar, S.; Jamaati-e-Somarin, S.; Azimi, J. Effect of stage of ripening on mechanical damage in tomato fruits. Am. Eurasian J. Agric. Environ. Sci. 2010, 9, 297–302. Available online: http://www.idosi.org/aejaes/jaes9/12.pdf (accessed on 10 November 2020).
- Ding, P.; Mashah, N.C. Growth, maturation, and ripening of underutilized Carissa congesta fruit. Fruits 2016, 71, 171–176. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. A simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. Available online: http://cse.naro.affrc.go.jp/mnagata/pigment2.pdf (accessed on 4 July 2020). [CrossRef] [Green Version]
- Addai, Z.R.; Abdullah, A.; Mutalib, S.A. Influence of ripening stages on antioxidant properties of papaya fruit (Carica papaya L.). AIP Conf. Proc. 2013, 1571, 696–701. [Google Scholar] [CrossRef] [Green Version]
- Musa, K.H.; Abdullah, A.; Jusoh, K.; Subramaniam, V. Antioxidant activity of pink-flesh guava (Psidium guajava L.): Effect of extraction techniques and solvents. Food Anal. Methods 2011, 4, 100–107. [Google Scholar] [CrossRef]
- Zhu, S.H.; Zhou, J. Effect of nitric oxide on ethylene production in strawberry fruit during storage. Food Chem. 2007, 100, 1517–1522. [Google Scholar] [CrossRef]
- Amadi, J.; Nnamani, C.; Ozokonkwo, O.; Eze, C.S. Survey of the incidence and severity of okra (Abelmoschus esculentus L. Moench) Fruit rot in Awka South lga, Anambra state, Nigeria. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 1114–1121. Available online: http://eprints.gouni.edu.ng/id/eprint/1363 (accessed on 11 February 2021).
- SAS Institute. SAS 9.4 Output Delivery System: User’s Guide; SAS Institute: Cary, NC, USA, 2014. [Google Scholar]
- Ayyub, C.M.; Pervez, M.A.; Shaheen, M.R.; Ashraf, M.I.; Haider, M.W.; Hussain, S.; Mahmood, N. Assessment of various growth and yield attributes of tomato in response to pre-harvest applications of calcium chloride. Pak. J. Life Soc. Sci. 2012, 10, 102–105. Available online: http://www.pjlss.edu.pk/pdf_files/2012_2/4.%20Research%20Paper%20102–105.pdf (accessed on 9 August 2020).
- Daundasekera, W.A.M.; Liyanage, G.L.S.G.; Wijerathne, R.Y.; Pieris, R. Preharvest calcium chloride application improves postharvest keeping quality of tomato (Lycopersicon esculentum Mill.). Ceylon J. Sci. 2015, 44, 55–60. [Google Scholar] [CrossRef]
- Rab, A.; Haq, I.U. Foliar application of calcium chloride and borax influences plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) fruit. Turk. J. Agric. For. 2012, 36, 695–701. Available online: https://journals.tubitak.gov.tr/agriculture/issues/tar-12–36–6/tar-36–6-8–1112–7.pdf (accessed on 21 December 2020).
- Braga, M.A.; Marques, T.R.; Simao, A.A.; Botelho, L.N.S.; Oliveira, L.S.D.; Abreu, C.M.P.D. Mechanism of firmness loss in guava cv. Pedro Sato during ripening at room temperature. Food Sci. Technol. 2017, 38, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Madani, B.; Mirshekari, A.; Yahia, E. Effect of calcium chloride treatments on calcium content, anthracnose severity, and antioxidant activity in papaya fruit during ambient storage. J. Sci. Food Agric. 2016, 96, 2963–2968. [Google Scholar] [CrossRef] [PubMed]
- Peyvast, G.; Olfati, J.A.; Ramezani-Kharazi, P.; Kamari-Shahmaleki, S. Uptake of calcium nitrate and potassium phosphate from foliar fertilization by tomato. J. Hortic. For. 2009, 1, 7–13. [Google Scholar] [CrossRef]
- Mujtaba, A.; Masud, T.; Butt, S.J.; Qazalbash, M.A.; Fareed, W.; Shahid, A. Potential role of calcium chloride, potassium permanganate, and boric acid on quality maintenance of tomato cv. Rio grandi at ambient temperature. Int. J. Biol. Sci. 2014, 5, 9–20. [Google Scholar] [CrossRef]
- Mishra, S.; Prakash, V. Biochemical changes in calcium chloride treated Hisar Arun (Local) and Kashi Vishesh (Hybrid) cultivars of Tomato fruit. Curr. Agric. Res. J. 2018, 6, 395. [Google Scholar] [CrossRef]
- Eric, A.; Oduro, I.; Kumah, P. Postharvest quality response of tomato (Lycopersicon esculentum, Mill) fruits to different concentrations of calcium chloride at different dip-times. Am. J. Food Nutr. 2015, 5, 1–8. [Google Scholar]
- Tolasa, M.; Gedamu, F.; Woldetsadik, K. Impacts of harvesting stages and pre-storage treatments on shelf life and quality of tomato (Solanum lycopersicum L.). Cogent Food Agric. 2021, 7, 1863620. [Google Scholar] [CrossRef]
- Ranjbar, S.; Rahemi, M.; Ramezanian, A. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious. Sci. Hortic. 2018, 240, 57–64. [Google Scholar] [CrossRef]
- Hassnain, H.; Basit, A.; Alam, M.; Ahmad, I.; Ullah, I.; Alam, N.; Ullah, I.; Khalid, M.A.; Shair, M.; Zafar, N. Efficacy of Chitosan on Performance of Tomato (Lycopersicon esculentum L.) Plant under Water Stress Condition. Pak. J. Agric. Res. 2020, 33, 27. [Google Scholar] [CrossRef]
- Torres, L.M.A.R.; Silva, M.A.; Guaglianoni, D.G.; Neves, V.A. Effects of heat treatment and calcium on postharvest storage of atemoya fruits. Aliment. E Nutr. Araraquara 2010, 20, 359–367. [Google Scholar]
- Bagheri, M.; Esna-Ashari, M.; Ershadi, A. Effect of postharvest calcium chloride treatment on the storage life and quality of persimmon fruits (Diospyros kaki Thunb.) cv.‘Karaj’. Int. J. Hortic. Sci. Technol. 2015, 2, 15–26. Available online: https://ijhst.ut.ac.ir/article_54260_7334.html (accessed on 20 October 2020).
- Patrick Kumah, I.O.; Arthur, E. Effect of maturity stage and postharvest calcium chloride treatment on the quality and storage life of tomatoes (Lycopersicon esculentum Mill). J. Postharvest Technol. 2015, 3, 74–81. [Google Scholar]
- Gayed, A.A.N.A.; Shaarawi, S.A.M.A.; Elkhishen, M.A.; Elsherbini, N.R.M. Pre-harvest application of calcium chloride and chitosan on fruit quality and storability of ‘Early Swelling’peach during cold storage. Food Sci. Technol. Ciênc. Agrotec 2017, 41, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Deytieux-Belleau, C.; Vallet, A.; Donèche, B.; Geny, L. Pectin methylesterase and polygalacturonase in the developing grape skin. Plant Physiol. Biochem. 2008, 46, 638–646. [Google Scholar] [CrossRef]
- Kirmani, S.N.; Wani, G.M.; Wani, M.S.; Ghani, M.Y.; Abid, M.; Muzamil, S.; Raja, H.; Malik, A.R. Effect of preharvest application of calcium chloride (CaCl2), Gibberlic acid (GA3), and Napthelenic acetic acid (NAA) on storage of Plum (Prunus salicina L.) cv. Santa Rosa under ambient storage conditions. Afr. J. Agric. Res. 2013, 8, 812–818. [Google Scholar] [CrossRef]
- Chauhan, S.; Gupta, K.C.; Agrawal, M. Efficacy of chitosan and calcium chloride on postharvest storage period of mango with the application of hurdle technology. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 731–740. Available online: https://www.ijcmas.com/vol-3–5/Shweta%20Chauhan,%20et%20al.pdf (accessed on 13 February 2021).
Treatment | No. of Branches | Plant Height (cm) | Total Number of Fruits | Individual Fruit Weight (g) | Total Yield (t/ha) |
---|---|---|---|---|---|
Variety | |||||
MT-1 | 47.25 a | 131.60 c | 35 b | 23.85 c | 18.38 b |
MT-3 | 48.38 a | 137.22 c | 39 a | 26.57 b | 21.14 a |
303 | 37.31 c | 153.40 a | 27 c | 30.91 a | 17.98 b |
105 | 43.00 b | 141.77 b | 39 a | 26.20b c | 22.80 a |
CaCl2 (w/v, %) | |||||
0 | 42.44 a | 141.79 a | 39 a | 27.12 a | 21.73 a |
1 | 45.81 a | 140.36 a | 34 b | 27.20 a | 20.93 ab |
1.5 | 44.50 a | 141.97 a | 34 b | 28.30 a | 19.22 bc |
2 | 43.20 a | 139.87 a | 34 b | 25.51 a | 18.42 c |
Interaction (Variety × CaCl2) | ns | ns | ns | ns | ns |
LSD | 4.53 | 4.99 | 2.95 | 2.58 | 2.14 |
Treatment | Whitefly-Infected Leaf (%) | Early Blight-Infected Leaf (%) |
---|---|---|
Variety | ||
MT-1 | 2.20 b | 10.75 b |
MT-3 | 2.12 b | 3.29 ab |
303 | 6.25 a | 24.50 a |
105 | 7.37 a | 26.00 a |
CaCl2 (w/v, %) | ||
0 | 3.94 a | 4.62 a |
1 | 4.06 a | 4.06 a |
1.5 | 4.93 a | 4.62 a |
2 | 4.31 a | 3.75 a |
Interaction (Variety × CaCl2) | ns | ns |
LSD | 0.02 | 0.02 |
Treatment | Ethylene Production (μL C2H4/kg/h) | Respiration Rate (mL CO2/kg/h) | Firmness (N) | SSC (% Brix) | Titratable Acidity (%) |
---|---|---|---|---|---|
Variety | |||||
MT-1 | 149.83 a | 2.95 b | 9.64 b | 4.48 a | 0.68 a |
MT-3 | 158.59 a | 3.29 ab | 12.98 a | 4.76 a | 0.75 a |
303 | 234.58 a | 3.96 a | 9.12 b | 3.76 b | 0.53 b |
105 | 127.65 a | 2.98 b | 9.37 b | 3.91 b | 0.51 b |
CaCl2 (%) | |||||
0 | 191.65 a | 3.79 a | 9.71 b | 4.37 a | 0.64 a |
1 | 185.51 a | 3.55 a | 9.23 b | 4.10 a | 0.64 a |
1.5 | 165.02 a | 3.21 ab | 10.22 b | 4.19 a | 0.61 a |
2 | 228.58 a | 2.63 b | 11.95 a | 4.24 a | 0.58 a |
Interaction (Variety × CaCl2) | ns | ns | ns | ns | ns |
LSD | 142.36 | 0.75 | 1.51 | 0.52 | 0.11 |
Treatment | Ascorbic Acid (mg/g FW) | Lycopene (mg/100 g FW) | TPC (mg/g FW) | DPPH Scavenging Activity (%) |
---|---|---|---|---|
Variety | ||||
MT-1 | 0.54 a | 2.02 b | 0.30 ab | 55.42 a |
MT-3 | 0.43 a | 2.47 a | 0.39 a | 55.25 a |
303 | 0.58 a | 2.06 ab | 0.38 a | 65.99 a |
105 | 0.49 a | 2.22 ab | 0.15 b | 60.99 a |
CaCl2 (%) | ||||
0 | 0.43 b | 2.51 a | 0.25 a | 57.48 a |
1 | 0.47 ab | 1.98 b | 0.29 a | 62.70 a |
1.5 | 0.62 a | 2.43 a | 0.33 a | 58.81 a |
2 | 0.52 ab | 1.84 b | 0.35 a | 61.67 a |
Interaction (Variety × CaCl2) | ns | * | ns | ns |
LSD | 0.17 | 0.42 | 0.16 | 12.32 |
Treatment | Weight Loss (%) | Disease Incidence (%) | Disease Severity (%) | Visual Symptoms (%) |
---|---|---|---|---|
Variety (V) | ||||
MT-1 | 8.70 a | 5.70 a | 1.00 a | 2.69 c |
MT-3 | 6.65 b | 3.44 a | 0.63 a | 2.17 c |
303 | 6.71 b | 2.50 a | 0.23 a | 5.29 a |
105 | 5.03 c | 2.50 a | 0.41 a | 3.85 b |
CaCl2 (w/v, %) | ||||
0 | 7.80 a | 5.94 a | 0.73 a | 4.35 a |
1 | 6.62 b | 4.45 ab | 0.90 a | 3.66 b |
1.5 | 6.54 b | 3.13 ab | 0.47 a | 3.31 b |
2 | 6.14 b | 0.63 b | 0.18 a | 2.69 c |
Storage time (ST) (day) | ||||
5 | 2.48 d | 0.31 c | 0.02 b | 0.59 d |
10 | 5.41 c | 1.02 bc | 0.12 b | 1.95 c |
15 | 8.23 b | 5.31 ab | 0.47 b | 3.96 b |
20 | 10.97 a | 7.50 a | 1.66 a | 7.50 a |
Interaction V × CaCl2 | ** | ns | ns | ** |
V × ST | ** | ns | ns | ** |
CaCl2 × ST | * | ns | ns | ns |
V × CaCl2 × ST | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazumder, M.N.N.; Misran, A.; Ding, P.; Wahab, P.E.M.; Mohamad, A. Preharvest Foliar Spray of Calcium Chloride on Growth, Yield, Quality, and Shelf Life Extension of Different Lowland Tomato Varieties in Malaysia. Horticulturae 2021, 7, 466. https://doi.org/10.3390/horticulturae7110466
Mazumder MNN, Misran A, Ding P, Wahab PEM, Mohamad A. Preharvest Foliar Spray of Calcium Chloride on Growth, Yield, Quality, and Shelf Life Extension of Different Lowland Tomato Varieties in Malaysia. Horticulturae. 2021; 7(11):466. https://doi.org/10.3390/horticulturae7110466
Chicago/Turabian StyleMazumder, Mohammad Nurun Nabi, Azizah Misran, Phebe Ding, Puteri Edaroyati Megat Wahab, and Azhar Mohamad. 2021. "Preharvest Foliar Spray of Calcium Chloride on Growth, Yield, Quality, and Shelf Life Extension of Different Lowland Tomato Varieties in Malaysia" Horticulturae 7, no. 11: 466. https://doi.org/10.3390/horticulturae7110466
APA StyleMazumder, M. N. N., Misran, A., Ding, P., Wahab, P. E. M., & Mohamad, A. (2021). Preharvest Foliar Spray of Calcium Chloride on Growth, Yield, Quality, and Shelf Life Extension of Different Lowland Tomato Varieties in Malaysia. Horticulturae, 7(11), 466. https://doi.org/10.3390/horticulturae7110466