Unraveling the Importance of Nitrogen Nutrition for the Thermotolerance of Irrigated Crops: A Review
Abstract
:1. Introduction
2. Advances in Abiotic Stresses in Agriculture: High Temperature Alone, Without Additional Stress
3. Physiological and Molecular Mechanisms of the Interaction Between Nitrogen and Thermal Stress
4. Optimum N Concentration Reduces the Effect of High Temperature Stress
5. Prospects
6. Conclusions
Funding
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Bartlett, M.K.; Zhu, S.D.; Scoffoni, C.; Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol Lett. 2016, 19, 667–675. [Google Scholar]
- Fan, Y.; Lv, Z.; Zhang, Y.; Ma, L.; Qin, B.; Liu, Q.; Zhang, W.; Ma, S.; Ma, C.; Huang, Z. Pre-anthesis night warming improves post-anthesis physiological activity and plant productivity to post-anthesis heat stress in winter wheat (Triticum aestivum L.). Environ Exp Bot. 2022, 197, 104819. [Google Scholar] [CrossRef]
- Prado, R.M. Nitrogen. In Mineral Nutrition of Tropical Plants, 1st ed.; Prado, R.M., Ed.; Springer: Cham, Switzerland, 2021; pp. 69–98. [Google Scholar]
- Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Spaccarotella, K.; Gido, J.; Samanta, I.; Chowdhary, G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int. J. Mol. Sci. 2023, 24, 15670. [Google Scholar] [CrossRef] [PubMed]
- Streck, N.A.; Weiss, A.; Xue, Q.; Baenziger, P.S. Improving predictions of developmental stages in winter wheat: A modified Wang and Engel model. Agric. For. Meteorol. 2003, 115, 139–150. [Google Scholar] [CrossRef]
- Ohama, N.; Sato, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional Regulatory Network of Plant Heat Stress Response. Trends Plant Sci. 2017, 22, 53–65. [Google Scholar] [CrossRef]
- Mittler, R.; Finka, A.; Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 2012, 37, 118–125. [Google Scholar] [CrossRef]
- Santiago, J.P.; Sharkey, T.D. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant Cell Environ. 2019, 42, 2759–2775. [Google Scholar] [CrossRef]
- Gonzalez-Meler, M.A.; Silva, L.B.C.; Dias-De-Oliveira, E.; Flower, C.E.; Martinez, C.A. Experimental air warming of a Stylosanthes capitata Vogel dominated tropical pasture affects soil respiration and nitrogen dynamics. Front. Plant Sci. 2017, 8, 46. [Google Scholar] [CrossRef]
- World Meteorological Organization. State of the Global Climate 2023; WMO: Geneva, Switzerland, 2024; Available online: https://wmo.int/publication-series/state-of-global-climate-2023 (accessed on 14 November 2024).
- World Bank. Climate-Resilient Irrigation; World Bank: Washington, DC, USA, 2024; Available online: https://www.worldbank.org/en/topic/climate-resilient-irrigation (accessed on 14 November 2024).
- Kufa, C.A.; Bekele, A.; Atickem, A. Impacts of climate change on predicted habitat suitability and distribution of Djaffa Mountains Guereza (Colobus guereza gallarum) using MaxEnt algorithm in Eastern Ethiopian Highland. Glob. Ecol. Conserv. 2022, 35, e02094. [Google Scholar] [CrossRef]
- Illangasingha, S.; Koike, T.; Rasmy, M.; Tamakawa, K.; Matsuki, H.; Selvarajah, H. A holistic approach for using global climate model (GCM) outputs in decision making. J. Hydrol. 2023, 626, 130213. [Google Scholar] [CrossRef]
- Barreto, R.F.; Prado, R.d.M.; Habermann, E.; Viciedo, D.O.; Martinez, C.A. Warming Changes Nutritional Status and Improves Stylosanthes capitata Vogel Growth Only Under Well-Watered Conditions. J. Soil Sci. Plant Nutr. 2020, 20, 1838–1847. [Google Scholar] [CrossRef]
- Viciedo, D.O.; Prado, R.d.M.; Martinez, C.A.; Habermann, E.; Piccolo, M.d.C.; Hurtado, A.C.; Barreto, R.F.; Calzada, K.P. Changes in soil water availability and air-temperature impact biomass allocation and C:N:P stoichiometry in different organs of Stylosanthes capitata Vogel. J. Environ. Manag. 2021, 278 Pt 1, 111540. [Google Scholar] [CrossRef]
- Carvalho, J.M.; Barreto, R.F.; Prado, R.M.; Habermann, E.; Martinez, C.A.; Branco, R.B.F. Elevated [CO₂] and warming increase the macronutrient use efficiency and biomass of Stylosanthes capitata Vogel under field conditions. J. Agro. Crop. Sci. 2020, 206, 597–606. [Google Scholar] [CrossRef]
- Olivera-Viciedo, D.; Prado, R.d.M.; Martinez, C.A.; Habermann, E.; Piccolo, M.d.C.; Calero-Hurtado, A.; Barreto, R.F.; Peña, K. Are the interaction effects of warming and drought on nutritional status and biomass production in a tropical forage legume greater than their individual effects? Planta 2021, 254, 104. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Artmed: Porto Alegre, Brazil, 2017. [Google Scholar]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. 2013, 4, 273. [Google Scholar]
- Riaz, A.; Thomas, J.; Ali, H.H.; Zaheer, M.S.; Ahmad, N.; Pereira, A. High night temperature stress on rice (Oryza sativa)—Insights from phenomics to physiology. A review. Funct Plant Biol. 2024, 51, FP24057. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Chaudhuri, B.; Roychoudhury, A. Influence of night temperature on rice yield and quality. In Rice Research for Quality Improvement: Genomics and Genetic Engineering; Roychoudhury, A., Ed.; Springer Nature: Singapore, 2020; pp. 579–590. [Google Scholar]
- Gupta, A.; Sarkar, A.K.; Senthil-Kumar, M. Global transcriptional regulation of heat shock proteins in Arabidopsis thaliana under heat stress. Front. Plant Sci. 2023, 14, 1123. [Google Scholar]
- Kotak, S.; Larkindale, J.; Lee, U.; Koskull-Döring, P.V.; Vierling, E.; Scharf, K.D. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 2007, 10, 310–316. [Google Scholar]
- Tian, F.; Hu, X.-L.; Yao, T.; Yang, X.; Chen, J.-G.; Lu, M.-Z.; Zhang, J. Recent advances in the roles of HSFs and HSPs in heat stress response in woody plants. Front. Plant Sci. 2021, 12, 704905. [Google Scholar] [CrossRef]
- Wang, H.; Feng, M.; Jiang, Y.; Du, D.; Dong, C.; Zhang, Z.; Wang, W.; Liu, J.; Liu, X.; Li, S. Thermosensitive SUMOylation of TaHsfA1 Defines a Dynamic ON/OFF Molecular Switch for the Heat Stress Response in Wheat. Plant Cell 2023, 35, 3889–3910. [Google Scholar] [CrossRef]
- Huang, Y.; An, J.; Sircar, S.; Bergis, C.; Lopes, C.D.; He, X.; Da Costa, B.; Tan, F.-Q.; Bazin, J.; Antunez-Sanchez, J.; et al. HSFA1a Modulates Plant Heat Stress Responses and Alters the 3D Chromatin Organization of Enhancer–Promoter Interactions. Nat. Commun. 2023, 14, 469. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B.; Li, A.; Chu, C. NRT1.1s in plants: Functions beyond nitrate transport. J. Exp. Bot. 2020, 71, 4373–4379. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.F.; Chen, Y.; Sun, M.M.; Wang, Y.; Chen, Y.F. The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize. Plant Cell. 2020, 32, 3519–3534. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Sharkey, T.D. Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ. 2005, 28, 269–277. [Google Scholar]
- Ma, X.; Bai, L. Elevated CO₂ and reactive oxygen species in stomatal closure. Plants 2021, 10, 410. [Google Scholar] [CrossRef]
- Mathivanan, S. Abiotic Stress-Induced Molecular and Physiological Changes and Adaptive Mechanisms in Plants. Abiotic Stress in Plants; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/73040 (accessed on 17 March 2025).
- Sage, R.F.; Zhu, X.G. Exploiting the engine of C4 photosynthesis. J. Exp. Bot. 2011, 62, 2989–3000. [Google Scholar] [CrossRef]
- Yamori, W.; Hikosaka, K.; Way, D.A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth Res. 2014, 119, 101–117. [Google Scholar] [CrossRef]
- Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010, 61, 1959–1968. [Google Scholar]
- Farooq, M.; Wahid, A.; Lee, D.J.; Ito, O.; Siddique, K.H. Advances in drought resistance of rice. Crit. Rev. Plant Sci. 2009, 28, 199–217. [Google Scholar]
- Li, Y.F.; Wang, Y.; Tang, Y.; Kakani, V.G.; Mahalingam, R. Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.). BMC Plant Biol. 2013, 13, 153. [Google Scholar] [CrossRef]
- Li, C.; Zhu, J.G.; Sha, L.N.; Zhang, J.S.; Zeng, Q.; Liu, G. Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO₂ concentration and air temperature. Ecol. Res. 2017, 32, 405–411. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Chen, D.; Song, T.; Wang, W.; Lv, M.; Hansen, N.C. Nitrogen modulates the effects of short-term heat, drought and combined stresses after anthesis on photosynthesis, nitrogen metabolism, yield, and water and nitrogen use efficiency of wheat. Water 2022, 14, 1407. [Google Scholar] [CrossRef]
- Giri, A.; Heckathorn, S.; Mishra, S.; Krause, C. Heat stress decreases levels of nutrient-uptake and assimilation proteins in tomato roots. Plants 2017, 6, 6. [Google Scholar] [CrossRef]
- Li, C.; Yang, Z.; Zhang, C.; Luo, J.; Jiang, N.; Zhang, F.; Zhu, W. Heat stress recovery of chlorophyll fluorescence in tomato (Lycopersicon esculentum Mill.) leaves through nitrogen levels. Agronomy 2023, 13, 2858. [Google Scholar] [CrossRef]
- Gerard, V.A. The role of nitrogen nutrition in high-temperature tolerance of the kelp, Laminaria saccharina (Chromophyta). J. Phycol. 2008, 33, 800–810. [Google Scholar]
- Hu, Q.; Yan, N.; Cui, K.; Li, G.; Wang, W.; Huang, J.; Peng, S. Increased panicle nitrogen application improves rice yield by alleviating high-temperature damage during panicle initiation to anther development. Physiol. Plant. 2024, 176, e14230. [Google Scholar] [CrossRef]
- Tas, T. Physiological and biochemical responses of hybrid maize (Zea mays L.) varieties grown under heat stress conditions. PeerJ 2022, 10, e14141. [Google Scholar] [CrossRef]
- Rossi, G.; Beni, C.; Neri, U. Organic Mulching: A Sustainable Technique to Improve Soil Quality. Sustainability 2024, 16, 10261. [Google Scholar] [CrossRef]
- de Jesus, H.I.; Cassity-Duffey, K.; Dutta, B.; da Silva, A.L.B.R.; Coolong, T. Influence of soil type and temperature on nitrogen mineralization from organic fertilizers. Nitrogen. 2024, 5, 47–61. [Google Scholar]
- Mohammed, A.R.; Tarpley, L. High Nighttime Temperatures Affect Rice Productivity through Altered Pollen Germination and Spikelet Fertility. Agric. For. Meteorol. 2009, 149, 999–1008. [Google Scholar] [CrossRef]
- Valenzuela, H. Optimizing the nitrogen use efficiency in vegetable crops. Nitrogen 2024, 5, 106–143. [Google Scholar] [CrossRef]
- Kitaeva, A.B.; Serova, T.A.; Kusakin, P.G.; Tsyganov, V.E. Effects of Elevated Temperature on Pisum sativum Nodule Development: II-Phytohormonal Responses. Int. J. Mol. Sci. 2023, 24, 17062. [Google Scholar] [CrossRef]
- Colesie, C.; Green, A.T.G.; Budke, J.M.; Lakatos, M.; Raggio, J.; Pintado, A. Differences in Growth-Economics of Fast vs. Slow Growing Grass Species in Response to Temperature and Nitrogen Limitation. BMC Ecol. 2020, 20, 11. [Google Scholar]
- Ma, X.; Cai, F.; Mu, X.; Li, H.; Shao, R.; Li, S.; Xu, J.; Wang, S.; Lu, L.; Zhao, X.; et al. Effects of nitrogen application rate on photosynthetic physiology of maize leaves and yield under high temperature stress at ear stage. J. Plant Nutr. Fertilizers. 2022, 28, 1852–1866. [Google Scholar] [CrossRef]
- Leghari, H.J.; Han, W.; Soomro, A.A.; Shoukat, M.R.; Zain, M.; Wei, Y.; Xu, Q.; Buriro, M.; Bhutto, T.A.; Soothar, R.K.; et al. Navigating water and nitrogen practices for sustainable wheat production by model-based optimization management systems: A case study of China and Pakistan. Agric. Water Manag. 2024, 300, 108917. [Google Scholar] [CrossRef]
- Kayoumu, M.; Iqbal, A.; Muhammad, N.; Li, X.; Li, L.; Wang, X.; Gui, H.; Qi, Q.; Ruan, S.; Guo, R.; et al. Phosphorus Availability Affects the Photosynthesis and Antioxidant System of Contrasting Low-P-Tolerant Cotton Genotypes. Antioxidants 2023, 12, 466. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita Fujita, M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Sarwar, M.; Saleem, M.F.; Ullah, N.; Ali, S.; Rizwan, M.; Shahid, M.R.; Alyemeni, M.N.; Alamri, S.A.; Ahmad, P. Role of mineral nutrition in alleviation of heat stress in cotton plants grown in glasshouse and field conditions. Sci. Rep. 2019, 9, 13022. [Google Scholar] [CrossRef]
- Jia, Y.; Qin, D.; Zheng, Y.; Wang, Y. Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response. Int. J. Mol. Sci. 2023, 24, 14406. [Google Scholar] [CrossRef]
- Yang, J.; Deng, X.; Wang, X.; Wang, J.; Du, S.; Li, Y. The calcium sensor OsCBL1 modulates nitrate signaling to regulate seedling growth in rice. PLoS ONE 2019, 14, e0224962. [Google Scholar] [CrossRef]
- Mir, B.A.; Kumari, R.; Rakhra, G.; Parihar, P.; Singh, R.; Raju, A.D.; Srivastava, P.K.; Prasad, S.M.; Singh, R.; Gulliya, S. Sulfur assimilation and regulation of abiotic stress via OMICS. Plant Stress. 2024, 14, 100630. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Goatley, M.; Ervin, E. Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at Different N Levels. PLoS ONE 2014, 9, e102914. [Google Scholar] [CrossRef]
- Takahashi, Y.; Wada, S.; Noguchi, K.; Miyake, C.; Makino, A.; Suzuki, Y. Photochemistry of Photosystems II and I in Rice Plants Grown under Different N Levels at Normal and High Temperature. Plant Cell Physiol. 2021, 62, 1121–1130. [Google Scholar] [CrossRef]
- Hu, J.; Ma, W.; Wang, Z. Effects of nitrogen addition and drought on the relationship between nitrogen- and water-use efficiency in a temperate grassland. Ecol. Process. 2023, 12, 36. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Q.; Liu, Y.; Chen, J.; Wang, L.; Xiu, Y.; Zheng, H.; Lin, S.; Ling, P.; Tang, M. Combined analysis of transcriptome and metabolome provides insights into response mechanism under heat stress in avocado (Persea americana Mill.). Int. J. Mol. Sci. 2024, 25, 10312. [Google Scholar] [CrossRef]
- Guo, S.; Liu, Z.; Zhou, Z.; Lu, T.; Chen, S.; He, M.; Zeng, X.; Chen, K.; Yu, H.; Shangguan, Y.; et al. Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China. Agriculture 2022, 12, 209. [Google Scholar] [CrossRef]
- Wysokinski, A.; Wysokinska, A.; Noulas, C.; Wysokinska, A. Optimal nitrogen fertilizer rates for soybean cultivation. Agronomy 2024, 14, 1375. [Google Scholar] [CrossRef]
- Malik, T.H.; Lal, S.B.; Wani, N.R.; Amin, D.; Wani, R.A. Effect Of Different Levels Of Nitrogen On Growth And Yield Attributes Of Different Varieties Of Basmati Rice (Oryza sativa L.). Int. J. Sci. Technol. Res. 2014, 3, 444–448. [Google Scholar]
- Wu, B.; Zuo, W.; Yang, P.; Zhang, W. Optimal water and nitrogen management increases cotton yield through improving leaf number and canopy light environment. Field Crops Res. 2023, 290, 108745. [Google Scholar] [CrossRef]
- Desalegn, B.; Kebede, E.; Legesse, H.; Fite, T. Sugarcane productivity and sugar yield improvement: Selecting variety, nitrogen fertilizer rate, and bioregulator as a first-line treatment. Heliyon 2023, 9, e15520. [Google Scholar] [CrossRef]
- Luo, J.; Yang, Z.; Zhang, F.; Li, C. Effect of nitrogen application on enhancing high-temperature stress tolerance of tomato plants during the flowering and fruiting stage. Front. Plant Sci. 2023, 14, 1172078. [Google Scholar] [CrossRef]
- Silva, V.J.; Pedreira, C.G.; Sollenberger, L.E.; da Silva, L.S.; Yasuoka, J.I.; Almeida, I.C. Canopy Height and Nitrogen Affect Herbage Accumulation, Nutritive Value, and Grazing Efficiency of ‘Mulato II’ Brachiariagrass. Crop Sci. 2016, 56, 2054–2061. [Google Scholar]
- Santos, M.E.R.; Carvalho, A.N.; Paiva, A.J.; Carvalho, B.H.R.; Borges, G.S.; da Silva, S.P.; Oliveira, D.M.; de Oliveira, D.H.A.M. Contribution of tiller age category to herbage accumulation of Marandu palisadegrass under two fertilization regimes. Semin. Ciências Agrárias 2022, 43, 211–228. [Google Scholar]
- Ongaratto, F.; Fernandes, M.H.M.D.R.; Dallantonia, E.E.; Lima, L.D.O.; Val, G.A.D.; Cardoso, A.D.S.; Rigobello, I.L.; Campos, J.A.A.; Reis, R.A.; Ruggieri, A.C.; et al. Intensive Production and Management of Marandu Palisadegrass (Urochloa brizantha ‘Marandu’) Accelerates Leaf Turnover but Does Not Change Herbage Mass. Agronomy 2021, 11, 1846. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Zhong, S.; Meng, O.; Li, Y.; Wang, J.; Gao, Y.; Cui, X. Advances in controlled-release fertilizer encapsulated by organic-inorganic composite membranes. Particuology. 2024, 84, 236–248. [Google Scholar] [CrossRef]
- Smil, V. Harvesting the Biosphere: What We Have Taken from Nature; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; Sujayananad, G.K.; Vadivel, R.; Das, T.K.; et al. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Horie, Y.; Ito, H.; Kusaba, M.; Tanaka, R.; Tanaka, A. Participation of Chlorophyll b Reductase in the Initial Step of the Degradation of Light-Harvesting Chlorophyll a/b-Protein Complexes in Arabidopsis. J. Biol. Chem. 2009, 284, 17449–17456. [Google Scholar]
- Sarker, U.K.; Uddin, R.; Kaysar, S.; Hossain, A.; Somaddar, U.; Saha, G. Exploring relationship among nitrogen fertilizer, yield and nitrogen use efficiency in modern wheat varieties under subtropical condition. Saudi J. Biol. Sci. 2023, 30, 103602. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.; Gill, S.K.; Saini, D.K.; Chopra, Y.; de Koff, J.P.; Sandhu, K.S. A Comprehensive Review of High Throughput Phenotyping and Machine Learning for Plant Stress Phenotyping. Phenomics 2022, 2, 156–183. [Google Scholar] [CrossRef] [PubMed]
Culture Type | Optimal Concentration of N (kg/ha) 1 | Temp. (°C) | Soil Type | Ref. |
---|---|---|---|---|
Grains and cereals | ||||
Maize | 180 | 19.3–41.9 | Sandy loam | [54] |
Soybean | 120 | - | - | [67] |
Rice | 120 | 38 | Sandy loam | [68] |
Wheat | 207 | 35–39 | Sandy loam | [55] |
Commercial crops grown for profit | ||||
Cotton | 272 | - | Clay loam | [69] |
Sugarcane | 100 | 30.6–14.5 | Luvisols | [70] |
Vegetables | ||||
Tomato | 106 | 30–40 | Medium loam | [71] |
Other cultures | ||||
Bentgrass | 65 | 38–28 | Clay | [62] |
Pasture | 50–500 | - | - | [72,73,74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Júnior, F.S.F.d.; Reis, A.D.P.; Prado, R.d.M. Unraveling the Importance of Nitrogen Nutrition for the Thermotolerance of Irrigated Crops: A Review. Horticulturae 2025, 11, 350. https://doi.org/10.3390/horticulturae11040350
Santos Júnior FSFd, Reis ADP, Prado RdM. Unraveling the Importance of Nitrogen Nutrition for the Thermotolerance of Irrigated Crops: A Review. Horticulturae. 2025; 11(4):350. https://doi.org/10.3390/horticulturae11040350
Chicago/Turabian StyleSantos Júnior, Francisco Sales Ferreira dos, Aline Dell Passo Reis, and Renato de Mello Prado. 2025. "Unraveling the Importance of Nitrogen Nutrition for the Thermotolerance of Irrigated Crops: A Review" Horticulturae 11, no. 4: 350. https://doi.org/10.3390/horticulturae11040350
APA StyleSantos Júnior, F. S. F. d., Reis, A. D. P., & Prado, R. d. M. (2025). Unraveling the Importance of Nitrogen Nutrition for the Thermotolerance of Irrigated Crops: A Review. Horticulturae, 11(4), 350. https://doi.org/10.3390/horticulturae11040350