Advances in Fruit Tree Physiology and Molecular Biology
1. Introduction
2. Overview of Published Articles
3. Conclusions and Prospects
Conflicts of Interest
References
- Ashraf, M.A.; Ateeq, M.; Zhu, K.J.; Asim, M.; Mohibullah, S.; Riza, T.; Huang, X.; Pan, H.Q.; Li, G.H.; Shabala, S.; et al. Phytohormone network orchestrating lateral organ adaptations to hypoxia and reoxygenation in fruit crops. Plant Cell Environ. 2025, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.N.; Zhou, Y.; Chai, X.F.; Foster, T.M.; Deng, C.H.; Wu, T.; Zhang, X.Z.; Han, Z.H.; Wang, Y. miR164-MhNAC1 regulates apple root nitrogen uptake under low nitrogen stress. New Phytol. 2024, 242, 1218–1237. [Google Scholar] [CrossRef]
- Xiao, Y.S.; Yu, C.W.; Peng, F.J.; Cai, H.L.; Guo, J.; Gao, H.F. Peach Tree MADS BOX Transcription Factor PpAGL24 gene and Its applications. CN120099022A, 6 June 2025. [Google Scholar]
- Liang, J.H.; Zheng, X.; Wu, X.L.; Wang, Z.; Li, Z.X.; Xiao, Y.S.; Guo, J.; Chen, Q.J.; Luo, J.J.; Gao, H.F.; et al. PpSnRK1α-PpNAC6/PpNAC36 module mediates nitrogen-regulated biosynthesis of γ-decalactone in peach fruit. Hortic. Res. 2025, 12, uhaf256. [Google Scholar] [CrossRef]
- Cao, X.M.; Li, X.Z.; Su, Y.K.; Zhang, C.; Wei, C.Y.; Chen, K.S.; Grierson, D.; Zhang, B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. Plant Physiol. 2023, 194, 2049–2068. [Google Scholar] [CrossRef]
- Cao, S.H.; Guo, Z.H.; Liu, H.; Wang, G.M.; Qi, K.J.; Wang, Z.W.; Tian, R.P.; Sha, S.F.; Zhang, S.L.; Gu, C. Interaction among homeodomain transcription factors mediates ethylene biosynthesis during pear fruit ripening. Hortic. Res. 2024, 11, uhae086. [Google Scholar] [CrossRef]
- Sun, M.S.; Cao, B.B.; Li, K.; Li, J.M.; Liu, J.; Xue, C.; Xu, S.Z.; Li, Y.J.; Li, Q.Y.; Qu, M.N.; et al. Haplotype-resolved, gap-free genome assemblies provide insights into the divergence between Asian and European pears. Nat. Genet. 2025, 57, 2040–2051. [Google Scholar] [CrossRef]
- Li, W.; Chu, C.; Zhang, T.K.; Sun, H.C.; Wang, S.Y.; Liu, Z.Y.; Wang, Z.J.; Li, H.; Li, Y.Q.; Zhang, X.T.; et al. Pan-genome analysis reveals the evolution and diversity of Malus. Nat. Genet. 2025, 57, 1274–1286. [Google Scholar] [CrossRef]
- Li, W.; Chu, C.; Li, H.; Zhang, H.T.; Sun, H.C.; Wang, S.Y.; Wang, Z.J.; Li, Y.Q.; Foster, T.M.; López-Girona, E.; et al. Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing. Nat. Genet. 2024, 56, 505–516. [Google Scholar] [CrossRef]
- Cai, Y.D.; Gao, X.H.; Mao, J.P.; Liu, Y.; Tong, L.; Chen, X.L.; Liu, Y.D.; Kou, W.Y.; Chang, C.J.; Foster, T.; et al. Genome sequencing of ‘Fuji’ apple clonal varieties reveals genetic mechanism of the spur-type morphology. Nat. Commun. 2024, 15, 10082. [Google Scholar] [CrossRef] [PubMed]
- Martin-Avila, E.; Lim, Y.L.; Birch, R.; Dirk, L.M.A.; Buck, S.; Rhodes, T.; Sharwood, R.E.; Kapralow, M.V.; Whitney, S.M. Modifying plant photosynthesis and growth via simultaneous chloroplast transformation of Rubisco large and small subunits. Plant Cell 2020, 32, 2898–2916. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Tu, M.X.; Wang, Y.; Yin, W.C.; Zhang, Y.; Wu, H.S.; Gu, Y.C.; Xi, Z.M.; Wang, X.P. Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine. Hortic. Res. 2021, 8, 114. [Google Scholar]
- Huang, S.L.; Lv, X.M.; Wei, J.B.; Han, D.M.; Li, J.G.; Guo, D.L. Comparative transcriptome analysis of mature leaves of Dimocarpus longan cv. ‘Sijimi’ provides insight into its continuous-flowering trait. Horticulturae 2024, 10, 974. [Google Scholar] [CrossRef]
- Wang, D.J.; Wang, G.Y.; Lu, X.; Liu, Z.; Sun, S.M.; Guo, H.X.; Tian, W.; Li, Z.C.; Wang, L.; Li, L.W.; et al. Dynamic changes in polyphenols in fruit development of red flesh apple ‘Hongxun 2’. Horticulturae 2024, 10, 1125. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.J.; Ou, C.Q.; Wang, F.; Ma, L.; Wang, C.H.; Jiang, S.L. Isolation and identification of pear ring rot fungus and resistance evaluation of different pear varieties. Horticulturae 2024, 10, 1152. [Google Scholar] [CrossRef]
- Zhao, M.X.; Ma, M.Z.; Wang, W.; Cao, S.F.; Cao, G.; Li, H.X. Effects of different tree shapes on canopy characteristics of Zaosu pear (Pyrus ssp. Va.) in the Northwest arid zone. Horticulturae 2024, 10, 1254. [Google Scholar] [CrossRef]
- Liang, Y.C.; Wang, W.; Xi, J.S.; Zhao, F.Y.; Zhou, Y.F.; Zhang, H.H.; Yu, K.; Zheng, Z.; Zhao, F.Y. Impact of aerated irrigation duration on the growth of greenhouse grape seedlings and rhizosphere soil microorganisms. Horticulturae 2024, 10, 1351. [Google Scholar] [CrossRef]
- Mou, Y.L.; Dong, X.G.; Zhang, Y.; Tian, L.M.; Huo, H.L.; Qi, D.; Xu, J.Y.; Liu, C.; Li, N.M.; Yin, C.; et al. Identification and evaluation of flesh texture of crisp pear fruit based on penetration test using texture analyzer. Horticulturae 2025, 11, 359. [Google Scholar] [CrossRef]
- Li, N.M.; Wu, Y.Q.; Jiang, Z.Y.; Mou, Y.L.; Ji, X.H.; Huo, H.L.; Dong, X.G. Efficient identification and classification of pear varieties based on leaf appearance with YOLOv10 model. Horticulturae 2025, 11, 489. [Google Scholar] [CrossRef]
- Shi, Y.J.; Chen, Z.; Jiang, J.Y.; Li, Q.F.; Zeng, W. De novo assembly and comparative analysis of the mitochondrial genomes for six Rubus species. Horticulturae 2025, 11, 559. [Google Scholar] [CrossRef]
- Song, Z.Z.; Zhang, J.J.; Shi, M.; Li, D.; Liu, X.H. Cytochrome P450 CYP76F14 mediates the conversion of its substrate linalool in table grape berries. Horticulturae 2025, 11, 651. [Google Scholar] [CrossRef]
- Zavala, M.; Menares, M.; Acevedo, O.; Melo, M.; Nunez, C.; Arancibia, C.; Pedreschi, R.; Donoso, J.M.; Meisel, L.A.; Maldonado, J.E.; et al. PavSPL Expression dynamics in fruits and seeds and in relation to endocarp lignification status during the transition from development to ripening in sweet cherry. Horticulturae 2025, 11, 706. [Google Scholar] [CrossRef]
- Shi, J.J.; Ma, Y.X.; Wang, D.J.; Wang, F. MdCDPK24 encoding calcium-dependent protein kinase enhances apple resistance to Colletotrichum gloeosporioides. Horticulturae 2025, 11, 942. [Google Scholar] [CrossRef]
- Chen, L.H.; Dong, J.; Fan, B.L.; Huang, Y.C.; Yang, L.; Cai, W.G.; Chen, L.L. Integrated transcriptomics and metabolomics analyses provide insights into heat resistance in passion fruit (P. edulis f. flavicarpa). Horticulturae 2025, 11, 1037. [Google Scholar] [CrossRef]
- Li, Y.H.; Fu, Y.P.; Gan, Z.L.; Wei, Q.J.; Yang, M.; Yao, F.X.; Zhou, G.F. Manganese deficiency exacerbates boron deficiency-induced corky split vein in citrus by disrupting photosynthetic physiology and enhancing lignin metabolism. Horticulturae 2025, 11, 1172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Gao, Y. Advances in Fruit Tree Physiology and Molecular Biology. Horticulturae 2025, 11, 1455. https://doi.org/10.3390/horticulturae11121455
Wang D, Gao Y. Advances in Fruit Tree Physiology and Molecular Biology. Horticulturae. 2025; 11(12):1455. https://doi.org/10.3390/horticulturae11121455
Chicago/Turabian StyleWang, Dajiang, and Yuan Gao. 2025. "Advances in Fruit Tree Physiology and Molecular Biology" Horticulturae 11, no. 12: 1455. https://doi.org/10.3390/horticulturae11121455
APA StyleWang, D., & Gao, Y. (2025). Advances in Fruit Tree Physiology and Molecular Biology. Horticulturae, 11(12), 1455. https://doi.org/10.3390/horticulturae11121455
