Biological Control Potential of Bacillus subtilis Isolate 1JN2 against Fusarium Wilt on Cucumber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Plant Growth Conditions
2.2. Methods for the Field Experiment
2.3. Soil Sampling and Enzyme Analysis
2.4. Analysis of Rhizo-Fungal Diversity after Treatment by B. subtilis 1JN2
2.5. Quantitative PCR Analysis of the Pathogen
2.6. Statistical Analysis
3. Results
3.1. Biological Control Efficacy
3.2. Changes in Rhizo-Fungal Diversity
3.3. Rhizo-Fungal Community Analysis at the Genus Level
3.4. Analysis of Cucumber Rhizosphere Soil Enzyme Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Cao, J.; Wang, C.; Hao, N.; Zhang, X.; Liu, M.; Wu, T. Research progress on the leaf morphology, fruit development and plant architecture of the cucumber. Plants 2022, 11, 2128. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Nie, W.; Qian, T.; He, L.; Zhang, H.; Jin, H.; Cui, J.; Wang, H.; Zhou, Q.; Yu, J. Low plant density improves fruit quality without affecting yield of cucumber in different cultivation periods in greenhouse. Agronomy 2022, 12, 1441. [Google Scholar] [CrossRef]
- Sharma, D.; Shukla, A. Fusarium wilt of cucumber—A Review. Int. J. Econ. Plants 2021, 8, 193–200. [Google Scholar] [CrossRef]
- Guo, J.; Hu, X.; Li, Y. Effect of Fusarium oxysporum f. sp. cucumerinum on photosynthesis and water physiological characteristics in cucumber. J. Nanjing Agric. Univ. 2011, 34, 79–80. [Google Scholar]
- Yang, F.; Jiang, H.; Chang, G.; Liang, S.; Ma, K.; Cai, Y.; Tian, B.; Shi, X. Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression. Microorganisms 2023, 11, 1576. [Google Scholar] [CrossRef]
- Hiddink, G.A.; Termorshuizen, A.J.; van Bruggen, A.H. Mixed cropping and suppression of soilborne diseases. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming; Springer: Berlin/Heidelberg, Germany, 2010; pp. 119–146. [Google Scholar]
- Fu, H.; Fu, J.; Zhou, B.; Wu, H.; Liao, D.; Liu, Z. Biochemical mechanisms preventing wilting under grafting: A case study on pumpkin rootstock grafting to wax gourd. Front. Plant Sci. 2024, 15, 1331698. [Google Scholar] [CrossRef] [PubMed]
- Gong, X. The Effect of Crop Rotation of Celery on the Yield of Continuous Cropping Cucumber and Soil Microorganisms. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2020. [Google Scholar]
- Yang, W.; Yan, H.; Zhang, J.; Meng, Y.; Wang, X.; Ji, L.; Luo, Y. Response of rhizosphere microbial diversity and soil physico-chemical properties in a rotation of cucumber with Volvariella volvacea. Biocontrol Sci. Technol. 2017, 27, 311–323. [Google Scholar] [CrossRef]
- Zhao, S.; Du, C.; Tian, C. Current advances in integrated management of Cucumber Fusarium Wilt. Chin. Agric. Sci. Bull. 2014, 30, 254–259. [Google Scholar]
- Lecomte, C.; Alabouvette, C.; Edel-Hermann, V.; Robert, F.; Steinberg, C. Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biol. Control 2016, 101, 17–30. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, A.; Asif, M.; Khan, F.; Ansari, T.; Shariq, M.; Siddiqui, M.A. Biological control: A sustainable and practical approach for plant disease management. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2020, 70, 507–524. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, H.; Ma, K.; Wang, X.; Liang, S.; Cai, Y.; Jing, Y.; Tian, B.; Shi, X. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt. Front. Microbiol. 2023, 14, 1279695. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, J.; Fan, C.; Sun, S.; An, X.; Sun, Y.; Gao, T.; Zhang, D. Influence of Bacillus subtilis strain Z-14 on microbial ecology of cucumber rhizospheric vermiculite infested with Fusarium oxysporum f. sp. cucumerinum. Pestic. Biochem. Physiol. 2024, 201, 105875. [Google Scholar] [CrossRef]
- Xue, J.; Sun, L.; Xu, H.; Gu, Y.; Lei, P. Bacillus atrophaeus NX-12 Utilizes Exosmotic Glycerol from Fusarium oxysporum f. sp. cucumerinum for Fengycin Production. J. Agric. Food Chem. 2023, 71, 10565–10574. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhao, J.; Suo, M.; Wu, H.; Zhao, M.; Yang, H. Biocontrol mechanisms of Bacillus velezensis against Fusarium oxysporum from Panax ginseng. Biol. Control 2023, 182, 105222. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, Y.; Gan, G.; Li, W.; Wan, W.; Jiang, Y.; Yang, T.; Zhang, Y.; Xu, Y.; Wang, Y.; et al. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME Commun. 2022, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Modi, D.; Picot, A. Soil and phytomicrobiome for plant disease suppression and management under climate change: A review. Plants 2023, 12, 2736. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xu, Q.; Liu, H.X.; Wang, Y.P.; Wang, Y.M.; Yang, H.T.; Guo, J.H. Evaluation of biological control agents against Ralstonia wilt on ginger. Biol. Control 2012, 62, 144–151. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Yan, H.; Sun, Y.; Wu, D.; Du, Y.; Luo, Y. Recruitment of beneficial cucumber rhizosphere microbes mediated by amino acid secretion induced by biocontrol Bacillus subtilis isolate 1JN2. Front. Microbiol. 2024, 15, 1379566. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, R.; Xue, C.; Zhang, S.; Li, S.; Zhang, N.; Shen, Q. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol. Fertil. Soils 2012, 48, 807–816. [Google Scholar] [CrossRef]
- Ye, X.; Li, Z.; Luo, X.; Wang, W.; Li, Y.; Li, R.; Zhang, B.; Qiao, Y.; Zhou, J.; Fan, J.; et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. Microbiome 2020, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Boulahouat, S.; Cherif-Silini, H.; Silini, A.; Bouket, A.C.; Luptakova, L.; Alenezi, F.N.; Belbahri, L. Biocontrol efficiency of rhizospheric Bacillus against the plant pathogen Fusarium oxysporum: A promising approach for sustainable agriculture. Microbiol. Res. 2023, 14, 892–908. [Google Scholar] [CrossRef]
- Lian, H.; Li, R.; Ma, G.; Zhao, Z.; Zhang, T.; Li, M. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt. Sci. Rep. 2023, 13, 17606. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, X.; Yin, Y.; Norvienyeku, J.; Khan RA, A.; Zhang, M.; Ren, S.; Chen, J.; Liu, T. Biocontrol of cucumber Fusarium wilt by Trichoderma asperellum FJ035 dependent on antagonism and spatiotemporal competition with Fusarium oxysporum. Biol. Control 2023, 186, 105334. [Google Scholar] [CrossRef]
- Chu, R.; Li, Z.X.; Zhang, X.Q.; Yang, D.Y.; Cao, H.H.; Zhang, X.Y. Screening and identification of antagonistic Bacillus spp. against cucumber Fusarium wilt and its biocontrol effect. Biotechnol. Bull. 2023, 39, 262. [Google Scholar]
- Jan, F.; Arshad, H.; Ahad, M.; Jamal, A.; Smith, D.L. In vitro assessment of Bacillus subtilis FJ3 affirms its biocontrol and plant growth promoting potential. Front. Plant Sci. 2023, 14, 1205894. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Yang, C.; Ma, T.; Richard, O.; Jin, M.; Zhang, C.; Wang, Y. An endophytic Paenibacillus polymyxa hg18 and its biocontrol potential against Fusarium oxysporum f. sp. cucumerinum. Biol. Control 2023, 188, 105380. [Google Scholar] [CrossRef]
- Chiarini, L.; Bevivino, A.; Dalmastri, C.; Nacamulli, C.; Tabacchioni, S. Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl. Soil Ecol. 1998, 8, 11–18. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Winding, A.; Binnerup, S.J.; Pritchard, H. Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 2004, 47, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, J.; Singh, R.S. Nonpathogenic Fusarium as a biological control agent. Plant Pathol. J. 2011, 9, 79–91. [Google Scholar] [CrossRef]
- Wu, H.; Chen, S.; Zhu, L.; Xu, Y.; Li, J.; Ling, N.; Yuan, J.; Xue, C.; Shen, Q. Identification of antibiotic resistant bacteria communities and a GeoChip based study of resistome in Fusarium wilt diseased and healthy soil. Appl. Soil Ecol. 2024, 193, 105103. [Google Scholar] [CrossRef]
- Duan, P.; Liu, X.; Niu, G.; Jia, N.; Wen, T.; Zeng, J.; Chen, Q.; Zhang, J.; Xue, C.; Shen, Q.; et al. Application of coronarin enhances maize drought tolerance by affecting interactions between rhizosphere fungal community and metabolites. Comput. Struct. Biotechnol. J. 2023, 21, 5273–5284. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Jiang, Q.; Bai, Y.; Shen, G.; Li, S.; Ding, W. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci. Rep. 2016, 6, 36773. [Google Scholar] [CrossRef]
- Liu, H.; Dong, Y.; Shen, M.; Sun, F.; Wang, X.; Liu, J.; Li, J. Characteristics of Rhizosphere Microbial Communities in a Disease suppressive Soil of Tomato Bacterial Wilt and Its Disease-suppressive Transmission Mechanism. Acta Pedol. Sin. 2021, 59, 1125–1135. [Google Scholar]
- Benitez, M.S.; Ewing, P.M.; Osborne, S.L.; Lehman, R.M. Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance. Soil Biol. Biochem. 2021, 159, 108309. [Google Scholar] [CrossRef]
- Wang, X.; Ji, C.; Song, X.; Liu, Z.; Liu, Y.; Li, H.; Gao, Q.; Li, C.; Zheng, R.; Han, X.; et al. Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Wheat. BioMed. Res. Int. 2021, 2021, 8835275. [Google Scholar] [CrossRef] [PubMed]
- Hartwright, L.M.; Hunter, P.J.; Walsh, J.A. A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biol. 2010, 114, 26–33. [Google Scholar] [CrossRef]
- Stanghellini, M.E.; Mathews, D.M.; Misaghi, I.J. Pathogenicity and management of Olpidium bornovanus, a root pathogen of melons. Plant Dis. 2010, 94, 163–166. [Google Scholar] [CrossRef]
- Walts, A.E. Pseudallescheria: An underdiagnosed fungus? Diagn. Cytopathol. 2001, 25, 153–157. [Google Scholar] [CrossRef]
- Wang, X.W.; Yang, F.Y.; Meijer, M.; Kraak, B.; Sun, B.D.; Jiang, Y.L.; Wu, Y.M.; Bai, F.Y.; Seifert, P.W.; Samson, R.A.; et al. Redefining Humicola sensu stricto and related genera in the Chaetomiaceae. Stud. Mycol. 2019, 93, 65–153. [Google Scholar] [CrossRef]
- Wang, X.W.; Han, P.J.; Bai, F.Y.; Luo, A.; Bensch, K.; Meijer, M.; Kraak, B.; Han, D.Y.; Sun, B.D.; Crous, P.W.; et al. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud. Mycol. 2022, 101, 121. [Google Scholar] [CrossRef]
- Ibrahim, S.R.; Mohamed, S.G.; Sindi, I.A.; Mohamed, G.A. Biologically active secondary metabolites and biotechnological applications of species of the family Chaetomiaceae (Sordariales): An updated review from 2016 to 2021. Mycol. Prog. 2021, 20, 595–639. [Google Scholar] [CrossRef]
- Chen, S.; Waghmode, T.R.; Sun, R.; Kuramae, E.E.; Hu, C.; Liu, B. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 2019, 7, 136. [Google Scholar] [CrossRef]
- De Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef]
- Jamir, E.; Kangabam, R.D.; Borah, K.; Tamuly, A.; Deka Boruah, H.P.; Silla, Y. Role of soil microbiome and enzyme activities in plant growth nutrition and ecological restoration of soil health. In Microbes and Enzymes in Soil Health and Bioremediation; Springer: Singapore, 2019; pp. 99–132. [Google Scholar]
Treatments | 30th Day | 60th Day | ||
---|---|---|---|---|
Disease Index | Biocontrol Efficacy (%) | Disease Index | Biocontrol Efficacy (%) | |
B. subtilis 1JN2 | 0.26 # ± 0.02 b | 43.1 | 0.29 ± 0.02 b | 58.5 |
Untreated control | 0.46 ± 0.02 a | --- | 0.69 ± 0.02 a | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Wang, L.; Li, X.; Yan, H.; Zhong, B.; Du, X.; Guo, Q.; He, T.; Luo, Y. Biological Control Potential of Bacillus subtilis Isolate 1JN2 against Fusarium Wilt on Cucumber. Horticulturae 2024, 10, 843. https://doi.org/10.3390/horticulturae10080843
Yang W, Wang L, Li X, Yan H, Zhong B, Du X, Guo Q, He T, Luo Y. Biological Control Potential of Bacillus subtilis Isolate 1JN2 against Fusarium Wilt on Cucumber. Horticulturae. 2024; 10(8):843. https://doi.org/10.3390/horticulturae10080843
Chicago/Turabian StyleYang, Wei, Lan Wang, Xiao Li, Haixia Yan, Beibei Zhong, Xinru Du, Qi Guo, Tingting He, and Yuming Luo. 2024. "Biological Control Potential of Bacillus subtilis Isolate 1JN2 against Fusarium Wilt on Cucumber" Horticulturae 10, no. 8: 843. https://doi.org/10.3390/horticulturae10080843
APA StyleYang, W., Wang, L., Li, X., Yan, H., Zhong, B., Du, X., Guo, Q., He, T., & Luo, Y. (2024). Biological Control Potential of Bacillus subtilis Isolate 1JN2 against Fusarium Wilt on Cucumber. Horticulturae, 10(8), 843. https://doi.org/10.3390/horticulturae10080843