Poultry-Based Amendments and Cover Crop Residues Enhance Nutrient Cycling and Soil Health in Greenhouse Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Experimental Setup
2.2. Soil Analyses
2.3. Plant Analyses
2.4. Data Analysis
3. Results
3.1. Soil Inorganic N
3.2. Soil Health Indicators
3.3. Plant Responses
4. Discussion
4.1. Effects of Cover Crops and Amendments on N Cycling and Uptake
4.2. Effects of Cover Crops and Amendments on Soil Health Indicators
4.3. Effects of Cover Crops and Amendments on Cash Crop Yield and P and K Uptake
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Chen, J.-Z.; Tan, M.-Z.; Gong, Z.-T. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002, 12, 243–252. [Google Scholar]
- Purwanto, B.H.; Alam, S. Impact of intensive agricultural management on carbon and nitrogen dynamics in the humid tropics. Soil Sci. Plant Nutr. 2020, 66, 50–59. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Is there a need for a more sustainable agriculture? CRC Cr. Rev. Plant Sci. 2011, 30, 6–23. [Google Scholar] [CrossRef]
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant Nutr. 2015, 15, 333–352. [Google Scholar] [CrossRef]
- Gopinath, K.A.; Saha, S.; Mina, B.L.; Pande, H.; Kundu, S.; Gupta, H.S. Influence of organic amendments on growth, yield and quality of wheat and on soil properties during transition to organic production. Nutr. Cycl. Agroecosyst. 2008, 82, 51–60. [Google Scholar] [CrossRef]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Jannoura, R.; Joergensen, R.G.; Bruns, C. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Eur. J. Agron. 2014, 52, 259–270. [Google Scholar] [CrossRef]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef]
- Hadas, A.; Kautsky, L. Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fert. Res. 1994, 38, 165–170. [Google Scholar] [CrossRef]
- Kelley, A.; Wilkie, A.C.; Maltais-Landry, G. Food-based composts provide more soil fertility benefits than cow manure-based composts in sandy soils. Agriculture 2020, 10, 69. [Google Scholar] [CrossRef]
- Quilty, J.R.; Cattle, S.R. Use and understanding of organic amendments in Australian agriculture: A review. Soil Res. 2011, 49, 1–26. [Google Scholar] [CrossRef]
- Bergström, L.; Kirchmann, H.; Aronsson, H.; Torstensson, G.; Mattsson, L. Use efficiency and leaching of nutrients in organic and conventional cropping systems in Sweden. Org. Crop Prod.-Ambitions Limit. 2008, 143–159. [Google Scholar] [CrossRef]
- Stockdale, E.A.; Shepherd, M.A.; Fortune, S.; Cuttle, S.P. Soil fertility in organic farming systems–fundamentally different? Soil Use Manag. 2002, 18, 301–308. [Google Scholar] [CrossRef]
- Watts, D.B.; Torbert, H.A.; Prior, S.A.; Huluka, G. Long-term tillage and poultry litter impacts soil carbon and nitrogen mineralization and fertility. Soil Sci. Soc. Am. J. 2010, 74, 1239–1247. [Google Scholar] [CrossRef]
- Lin, Y.; Watts, D.B.; Van Santen, E.; Cao, G. Influence of poultry litter on crop productivity under different field conditions: A meta-analysis. Agron. J. 2018, 110, 807–818. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Bennett, E.M.; Potter, P.A.; Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Ma, K.K.; Fang, K.M.; Cheung, C. Utilization of a manure compost for organic farming in Hong Kong. Bioresour. Technol. 1999, 67, 43–46. [Google Scholar] [CrossRef]
- Hoover, N.L.; Law, J.Y.; Long, L.A.M.; Kanwar, R.S.; Soupir, M.L. Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J. Environ. Manag. 2019, 252, 109582. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, climate change and soil: A review to guide future research. CSIRO Land Water Sci. Rep. 2009, 5, 17–31. [Google Scholar]
- Wang, Y.; Lin, Y.; Chiu, P.C.; Imhoff, P.T.; Guo, M. Phosphorus release behaviors of poultry litter biochar as a soil amendment. Sci. Total Environ. 2015, 512, 454–463. [Google Scholar] [CrossRef]
- Brandelli, A.; Sala, L.; Kalil, S.J. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res. Int. 2015, 73, 3–12. [Google Scholar] [CrossRef]
- Delin, S.; Stenberg, B.; Nyberg, A.; Brohede, L. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use Manag. 2012, 28, 283–291. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Buchanan, C.; Longanecker, J. Using processed fertilizers or composted poultry manure results in similar yields but contrasting nutrient budgets in organic cabbage production. J. Plant Nutr. 2022, 46, 2462–2472. [Google Scholar] [CrossRef]
- Weil, R.; Kremen, A. Thinking across and beyond disciplines to make cover crops pay. J. Sci. Food Agric. 2007, 87, 551–557. [Google Scholar] [CrossRef]
- Allar, J.; Maltais-Landry, G. Limited benefits of summer cover crops on nitrogen cycling in organic vegetable production. Nutr. Cycl. Agroecosyst. 2022, 122, 119–138. [Google Scholar] [CrossRef]
- Truong, T.H.H.; Marschner, P. Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma 2018, 319, 167–174. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Kaufman, P.R. Natural foods supermarkets gaining in popularity. Food Rev./Natl. Food Rev. 1998, 21, 25–27. [Google Scholar]
- Hurisso, T.T.; Moebius-Clune, D.J.; Culman, S.W.; Moebius-Clune, B.N.; Thies, J.E.; van Es, H.M. Soil protein as a rapid soil health indicator of potentially available organic nitrogen. Agric. Environ. Lett. 2018, 3, 180006. [Google Scholar] [CrossRef]
- Lucas, S.T.; Weil, R.R. Can a labile carbon test be used to predict crop responses to improve soil organic matter management? Agron. J. 2012, 104, 1160–1170. [Google Scholar] [CrossRef]
- Bhadha, J.H.; Capasso, J.M.; Khatiwada, R.; Swanson, S.; LaBorde, C. Raising soil organic matter content to improve water holding capacity. EDIS 2017, SL447. [Google Scholar] [CrossRef]
- Mylavarapu, R.; Harris, W.; Hochmuth, G. Agricultural soils of Florida. EDIS 2016, SL441. [Google Scholar] [CrossRef]
- Harris, W.G.; Chrysostome, M.; Obreza, T.A.; Nair, V.D. Soil properties pertinent to horticulture in Florida. HortTechnology 2010, 20, 10–18. [Google Scholar] [CrossRef]
- Lima, I.M.; Boykin, D.L.; Klasson, K.T.; Uchimiya, M. Influence of post-treatment strategies on the properties of activated chars from broiler manure. Chemosphere 2014, 95, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Lima, I.M.; Marshall, W.E. Adsorption of selected environmentally important metals by poultry manure-based granular activated carbons. J. Chem. Technol. Biotechnol. 2005, 80, 1054–1061. [Google Scholar] [CrossRef]
- Freitas, A.M.; Nair, V.D.; Harris, W.G. Biochar as influenced by feedstock variability: Implications and opportunities for phosphorus management. Front. Sustain. Food Syst. 2020, 4, 510982. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-Hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Doane, T.A.; Horwáth, W.R. Spectrophotometric determination of nitrate with a single reagent. Anal. Lett. 2003, 36, 2713–2722. [Google Scholar] [CrossRef]
- Stott, D.E. Recommended Soil Health Indicators and Associated Laboratory Procedures; Soil Health Technical Note No. 450-03; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2019.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Lynch, M.J.; Mulvaney, M.J.; Hodges, S.C.; Thompson, T.L.; Thomason, W.E. Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti. Springerplus 2016, 5, 973. [Google Scholar] [CrossRef]
- Teixeira, R.A.; Soares, T.G.; Fernandes, A.R.; Braz, A.M.d.S. Grasses and legumes as cover crop in no-tillage system in northeastern Pará Brazil. Acta Amaz. 2014, 44, 411–418. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Maltais-Landry, G.; Paudel, B.R. Dynamics of soil nitrogen availability following sunn hemp residue incorporation in organic strawberry production systems. HortScience 2021, 56, 138–146. [Google Scholar] [CrossRef]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fert. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Palanivell, P.; Ahmed, O.H.; Latifah, O.; Abdul Majid, N.M. Adsorption and desorption of nitrogen, phosphorus, potassium, and soil buffering capacity following application of chicken litter biochar to an acid soil. Appl. Sci. 2019, 10, 295. [Google Scholar] [CrossRef]
- Fine, A.K.; van Es, H.M.; Schindelbeck, R.R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 2017, 81, 589–601. [Google Scholar] [CrossRef]
- Wright, S.F.; Starr, J.L.; Paltineanu, I.C. Changes in aggregate stability and concentration of glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi, during transition from plow-to no-till management. Soil Sci. Soc. Am. J. 1999, 63, 1825–1829. [Google Scholar] [CrossRef]
- Marshall, C.B.; Burton, D.L.; Lynch, D.H. Cover crops improve some, but not all, soil health indicators in horticultural rotations. Can. J. Plant Sci. 2021, 102, 1–10. [Google Scholar] [CrossRef]
- Kobierski, M.; Bartkowiak, A.; Lemanowicz, J.; Piekarczyk, M. Impact of poultry manure fertilization on chemical and biochemical properties of soils. Plant Soil Environ. 2017, 63, 558–563. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Calderón, F.J.; Culman, S.; Six, J.; Franzluebbers, A.J.; Schipanski, M.; Beniston, J.; Grandy, S.; Kong, A.Y. Quantification of soil permanganate oxidizable C (POXC) using infrared spectroscopy. Soil Sci. Soc. Am. J. 2017, 81, 277–288. [Google Scholar] [CrossRef]
- Wade, J.; Maltais-Landry, G.; Lucas, D.E.; Bongiorno, G.; Bowles, T.M.; Calderón, F.J.; Culman, S.W.; Daughtridge, R.; Ernakovich, J.G.; Fonte, S.J. Assessing the sensitivity and repeatability of permanganate oxidizable carbon as a soil health metric: An interlab comparison across soils. Geoderma 2020, 366, 114235. [Google Scholar] [CrossRef]
- Wooliver, R.; Jagadamma, S. Response of soil organic carbon fractions to cover cropping: A meta-analysis of agroecosystems. Agric. Ecosyst. Environ. 2023, 351, 108497. [Google Scholar] [CrossRef]
- Zhang, Z.; Kaye, J.P.; Bradley, B.A.; Amsili, J.P.; Suseela, V. Cover crop functional types differentially alter the content and composition of soil organic carbon in particulate and mineral-associated fractions. Glob. Chang. Biol. 2022, 28, 5831–5848. [Google Scholar] [CrossRef] [PubMed]
- Webster, E.; Gaudin, A.C.; Pulleman, M.; Siles, P.; Fonte, S.J. Improved pastures support early indicators of soil restoration in low-input agroecosystems of Nicaragua. Environ. Manag. 2019, 64, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Lentz, R.D.; Ippolito, J.A. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 2012, 41, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Marschner, P. Soil respiration, microbial biomass and nutrient availability in soil after repeated addition of low and high C/N plant residues. Biol. Fertil. Soils 2016, 52, 165–176. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, Y.; Luo, X.; Liu, Y.; Yue, X.; Yao, B.; Xue, J.; Zhang, L.; Fan, J.; Xu, X.; et al. Manure properties, soil conditions and managerial factors regulate greenhouse vegetable yield with organic fertilizer application across China. Front. Plant Sci. 2022, 13, 1009631. [Google Scholar] [CrossRef]
- Usherwood, N.R.; Segars, W.I. Nitrogen interactions with phosphorus and potassium for optimum crop yield, nitrogen use effectiveness, and environmental stewardship. Sci. World J. 2001, 11, 57–60. [Google Scholar] [CrossRef]
Input | Carbon | Total Nitrogen 1 | Phosphorus | Potassium | ||||
---|---|---|---|---|---|---|---|---|
% | Input (kg C ha−1) | % | Input (kg N ha−1) | % | Input (kg P ha−1) | % | Input (kg K ha−1) | |
Amendments | ||||||||
NatureSafe fertilizer | 40 | 536 | 10 | 134 | 0.87 | 12 | 6.6 | 89 |
Frye biochar | 32 | 4100 | 3.4 | 428 | 2.5 | 317 | 5.4 | 700 |
Everlizer manure | 34 | 4700 | 3.1 | 431 | 1.7 | 238 | 4.3 | 594 |
Cover crop residues | ||||||||
Cowpea | 43 | 5400 | 3.0 | 380 | 0.41 | 52 | 2.9 | 367 |
Millet | 42 | 5200 | 2.1 | 263 | 0.57 | 72 | 4.3 | 536 |
S. sudangrass | 44 | 5500 | 1.9 | 239 | 0.45 | 56 | 2.2 | 271 |
Sunn hemp | 44 | 5500 | 2.3 | 295 | 0.26 | 33 | 2.0 | 252 |
Time | Amendment | Cover Crop | ANOVA | |||||
---|---|---|---|---|---|---|---|---|
Control | Millet | Sorghum | Cowpea | Sunn Hemp | Factor | Sig | ||
28 DAA | Control | 0.4 ± 0.1 a D * | 1.1 ± 0.2 b C | 1.4 ± 0.3 b BC | 4.7 ± 0.7 b A | 2.7 ± 0.2 b AB | Amendment | p < 0.001 |
Everlizer | 2.2 ± 0.5 a B | 1.6 ± 0.1 b B | 1.6 ± 0.4 ab B | 4.8 ± 0.4 b A | 3.5 ± 0.7 b AB | Cover crop | p < 0.001 | |
Frye | 2.4 ± 0.7 a B | 1.6 ± 0.2 b B | 1.6 ± 0.3 ab B | 6.3 ± 1.3 b A | 2.8 ± 0.3 b AB | Interaction | p = 0.01 | |
NatureSafe | 2.7 ± 0.7 a C | 3.8 ± 0.5 a BC | 3.7 ± 0.9 a BC | 13.2 ± 2.1 a A | 6.1 ± 0.5 a AB | |||
44 DAA | Control | 0.2 ± 0.1 b D | 0.5 ± 0.1 c D | 1.0 ± 0.1 c C | 7.6 ± 1.0 b A | 2.6 ± 0.3 c B | Amendment | p < 0.001 |
Everlizer | 2.4 ± 0.5 a B | 2.9 ± 0.5 ab B | 2.5 ± 0.4 b B | 8.1 ± 1.3 b A | 7.9 ± 3.6 b AB | Cover crop | p < 0.001 | |
Frye | 2.9 ± 1.0 a B | 1.8 ± 0.4 bc B | 1.9 ± 0.2 b B | 9.4 ± 0.7 b A | 4.1 ± 0.6 bc B | Interaction | p < 0.001 | |
NatureSafe | 6.3 ± 1.0 a B | 4.2 ± 0.7 a B | 5.6 ± 1.4 a B | 26.6 ± 5.3 a A | 16.5 ± 2.0 a A | |||
58 DAA | Control | 1.2 ± 0.2 | 1.1 ± 0.2 | 2.6 ± 0.7 | 14.2 ± 3.2 | 3.9 ± 0.5 | Amendment | p < 0.001 |
Everlizer | 9.8 ± 2.9 | 5.1 ± 2.0 | 3.8 ± 0.4 | 20.3 ± 5.2 | 14.0 ± 4.2 | Cover crop | p < 0.001 | |
Frye | 5.2 ± 3.3 | 2.3 ± 0.5 | 2.4 ± 0.4 | 12.8 ± 3.7 | 6.4 ± 2.2 | Interaction | p = 0.42 X | |
NatureSafe | 12.6 ± 3.3 | 8.5 ± 2.3 | 13.3 ± 3.1 | 51.0 ± 9.5 | 30.4 ± 6.3 | |||
72 DAA | Control | 0.3 ± 0.1 b D | 0.8 ± 0.1 c C | 1.2 ± 0.1 b BC | 11.7 ± 1.4 a A | 3.3 ± 1.2 a B | Amendment | p < 0.001 |
Everlizer | 1.8 ± 0.4 a A | 2.3 ± 0.2 b A | 4.7 ± 1.4 a A | 12.6 ± 7.9 a A | 7.4 ± 2.8 a A | Cover crop | p < 0.001 | |
Frye | 0.5 ± 0.1 b B | 1.1 ± 0.2 bc AB | 1.3 ± 0.2 b AB | 1.0 ± 0.2 b AB | 3.8 ± 2.2 a A | Interaction | p < 0.001 | |
NatureSafe | 4.2 ± 1.3 a A | 7.4 ± 2.6 a A | 5.9 ± 2.3 a A | 12.5 ± 4.2 a A | 13.4 ± 4.0 a A | |||
85 DAA | Control | 0.3 ± 0.1 | 0.3 ± 0.0 | 0.9 ± 0.1 | 0.6 ± 0.2 | 0.6 ± 0.1 | Amendment | p < 0.001 |
Everlizer | 0.8 ± 0.2 | 0.8 ± 0.1 | 1.1 ± 0.1 | 1.0 ± 0.2 | 2.8 ± 1.5 | Cover crop | p = 0.002 | |
Frye | 0.6 ± 0.1 | 1.1 ± 0.3 | 0.6 ± 0.1 | 0.9 ± 0.2 | 0.9 ± 0.3 | Interaction | p = 0.13 X | |
NatureSafe | 0.5 ± 0.1 | 0.9 ± 0.3 | 1.3 ± 0.3 | 0.5 ± 0.2 † | 1.2 ± 0.1 |
Amendment | Cover Crops | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|
Control | Millet | Sorghum | Cowpea | Sunn hemp | Factor | Sig. | ||
N uptake | Control | 0.4 ± 0.1 b B * | 0.5 ± 0.1 b B | 1.2 ± 0.4 a AB | 2.4 ± 0.5 b A | 1.4 ± 0.3 b AB | Amendment | p < 0.001 |
Everlizer | 2.3 ± 0.8 a A | 2.6 ± 0.5 a A | 2.6 ± 0.7 a A | 3.5 ± 0.6 ab A | 2.8 ± 0.7 b A | Cover crop | p < 0.001 | |
Frye | 3.5 ± 0.7 a B | 3.3 ± 0.3 a B | 3.1 ± 0.6 a B | 15.6 ± 3.8 a A | 6.4 ± 1.0 a B | Interaction | p < 0.01 | |
NatureSafe | 1.1 ± 0.3 ab A | 2.1 ± 0.4 ab A | 2.9 ± 0.9 a A | 1.3 ± 0.4 b A | 1.4 ± 0.7 b A | |||
P uptake | Control | 0.1 ± 0.0 c B | 0.3 ± 0.0 c AB | 0.3 ± 0.1 b A | 0.4 ± 0.1 bc A | 0.3 ± 0.1 c AB | Amendment | p < 0.001 |
Everlizer | 0.7 ± 0.2 ab A | 0.8 ± 0.2 ab A | 0.5 ± 0.1 b A | 0.7 ± 0.1 b A | 0.7 ± 0.2 b A | Cover crop | p = 0.08 | |
Frye | 2.3 ± 0.8 a AB | 1.3 ± 0.3 a B | 1.3 ± 0.3 a B | 5.3 ± 1.2 a A | 2.4 ± 0.4 a AB | Interaction | p < 0.01 | |
NatureSafe | 0.2 ± 0.1 bc A | 0.4 ± 0.0 bc A | 0.5 ± 0.1 b A | 0.2 ± 0.1 c A | 0.2 ± 0.0 c A | |||
K uptake | Control | 0.1 ± 0.0 c C | 1.0 ± 0.2 b A | 0.9 ± 0.2 b AB | 0.4 ± 0.1 bc BC | 0.2 ± 0.1 b C | Amendment | p < 0.001 |
Everlizer | 0.5 ± 0.2 b A | 1.2 ± 0.5 b A | 0.5 ± 0.2 b A | 0.5 ± 0.1 b A | 0.7 ± 0.1 b A | Cover crop | p < 0.001 | |
Frye | 7.7 ± 2.4 a A | 7.9 ± 1.2 a A | 5.8 ± 1.3 a A | 10.8 ± 2.7 a A | 7.4 ± 0.3 a A | Interaction | p = 0.015 | |
NatureSafe | 0.1 ± 0.0 c A | 0.4 ± 0.1 b A | 0.5 ± 0.2 b A | 0.2 ± 0.1 c A | 0.1 ± 0.0 b A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freidenreich, A.; Pelegrina, G.; Victores, S.; Maltais-Landry, G. Poultry-Based Amendments and Cover Crop Residues Enhance Nutrient Cycling and Soil Health in Greenhouse Conditions. Horticulturae 2024, 10, 594. https://doi.org/10.3390/horticulturae10060594
Freidenreich A, Pelegrina G, Victores S, Maltais-Landry G. Poultry-Based Amendments and Cover Crop Residues Enhance Nutrient Cycling and Soil Health in Greenhouse Conditions. Horticulturae. 2024; 10(6):594. https://doi.org/10.3390/horticulturae10060594
Chicago/Turabian StyleFreidenreich, Ariel, Gabriel Pelegrina, Samantha Victores, and Gabriel Maltais-Landry. 2024. "Poultry-Based Amendments and Cover Crop Residues Enhance Nutrient Cycling and Soil Health in Greenhouse Conditions" Horticulturae 10, no. 6: 594. https://doi.org/10.3390/horticulturae10060594
APA StyleFreidenreich, A., Pelegrina, G., Victores, S., & Maltais-Landry, G. (2024). Poultry-Based Amendments and Cover Crop Residues Enhance Nutrient Cycling and Soil Health in Greenhouse Conditions. Horticulturae, 10(6), 594. https://doi.org/10.3390/horticulturae10060594