Effect of Biotic Stress Due to Phyllophaga spp. on Antioxidant Compounds during Jicama Root (Pachyrhizus erosus) Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Secondary Metabolites by Spectrophotometry
2.2.1. Determination of Saponins
2.2.2. Methanol Extracts for Flavonoids and Tannins
2.2.3. Determination of Flavonoids
2.2.4. Determination of Tannins
2.2.5. Ethanolic Extracts for Total Phenols, DPPH, and ABTS
2.2.6. Determination of Total Phenols
2.2.7. Determinations of Antioxidant Activity by DPPH
2.3. Determination of Secondary Metabolites (HPLC)
2.3.1. Stock Preparation and Work Standards
2.3.2. Peak Separation for Phenolic Compounds by HPLC-DAD
2.4. Statistical Analysis
3. Results and Discussion
3.1. Saponins
3.2. Tannins
3.3. Flavonoids
3.4. Total Phenols
3.5. DPPH Antioxidant Activity
3.6. Determination of Secondary Metabolites by HPLC
3.6.1. Phenolic Acids
3.6.2. Flavonoids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Hoof, W.C.H.; Sorensen, M. Pachyrhizus erosus (L) Urbano. In Plant Resources of South-East Asia, a Selection; Westphal, E., Jansen, P.C.M., Eds.; Pudoc: Wageningen, The Netherlands, 1989; pp. 213–215. [Google Scholar]
- Barrera, V.; Tapia, R.; Monteros, A. Raíces y Tubérculos Andinos: Alternativas para la Conservación y uso Sostenible en el Ecuador; INIAP: Quito, Ecuador, 2004. [Google Scholar]
- Lomas Montesdeoca, A.E. Respuesta Al Uso de Jícama Como Tratamiento Coadyuvante en Riesgo y Diabetes Mellitus II. Licentiate Dissertation, Universidad Técnica del Norte, Ibarra, Ecuador, 2017. Available online: http://repositorio.utn.edu.ec/handle/123456789/7792 (accessed on 15 December 2020).
- Seminario, J.; Valderrama, M.; Manrique, I. El Yacón, Fundamentos para el Aprovechamiento de un Recurso Promisorio; Centro Internacional de la Papa (CIP), Universidad Nacional de Cajamarca, Agencia Suiza para el Desarrollo y la Cooperación: Lima, Perú, 2003. [Google Scholar]
- Villacrés, E.; Rubio, A.; Cuadrado, L.; Marcial, N.; Iñiguez, D. Estudio y Aprovechamiento de las Propiedades Funcionales de la Jícama. Proyecto PIC. 025; INAP: Quito, Ecuador, 2007. [Google Scholar]
- Leonella, n.G.V. Producción de Harina de Jícama (Smallanthus sonchifolius) para la Formulación de Galletas Enriquecida Con harina de Quinua (Chenopodium quinua willd). Ph. D. Dissertation, Facultad de Ciencias Agrarias, Universidad Agraria del Ecuador, Guayaquil, Ecuador, 2020. [Google Scholar]
- Duke, J.A. Handbook of Legumes of World Economic Importance; Plenum Press: New York, NY, USA; London, UK, 1981. [Google Scholar] [CrossRef]
- Schroeder, C.A. The jicama a root crop from Mexico. Proc. Trop. Region. J. Am. Soc. Hortic. Sci. 1968, 11, 65–71. [Google Scholar]
- Sorensen, M. Observationes on distribution, ecology, and cultivation of the tuber-bearing legume genus Pachyrhizus Rich. ex DC. Wagening. Agric. Univ. Pap. 1990, 90, 38. [Google Scholar]
- Cibrián, D. Manual para la Identificación y Manejo de Plagas en Plantaciones Forestales Comerciales; Comisión Nacional Forestal (CONAFOR); Universidad Autónoma Chapingo: Texcoco, Mexico, 2013; ISBN 978-607-12-0311-3. [Google Scholar]
- Becerra, L.J.M. Influencia del Daño de la Gallina Ciega Sobre la Incidencia de la Marchites por Fusarium Oxysporum (Nelson, 1970), en el Cultivo del Agave (Azul tequilana Weber). Master’s Dissertation, Universidad de Guadalajara. CUCBA, Guadalajara, Mexico, 2006. Available online: http://repositorio.cucba.udg.mx:8080/xmlui/handle/123456789/4561 (accessed on 20 February 2021).
- Huber, D.; Römheld, V.; Weinmann, M. Chapter 10 Relationship between Nutrition, Plant Diseases and Pests. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 283–298. [Google Scholar] [CrossRef]
- Pinto-Zevallos, D.M.; Pareja, M.; Ambrogi, B.G. Current knowledge and future research perspectives on cassava (Manihot esculenta Crantz) chemical defenses: An agroecological view. Phytochemistry 2016, 130, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Lee, S.K.; Kader, A.A. Pre-harvest and post-harvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Imeh, U.; Khokhar, S. Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. J. Agric. Food Chem. 2002, 50, 6301–6306. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, A.C.; Smith, L.; Lapointe, S.L. Recent Advances in cassava pest management. Annu. Rev. Entomol. 1999, 44, 343–370. [Google Scholar] [CrossRef]
- FAO. Save and Grow: Cassava; Food and Agriculture Organization for United Nations: Rome, Italy, 2013. [Google Scholar]
- Simmonds, M.S. Flavonoid insect interactions: Recent advances in our knowledge. Phytochemistry 2003, 64, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Hounsome, N.; Hounsome, B.; Tomos, D.; Edwards-Jones, G. Changes in antioxidant compounds in white cabbage during winter storage. Postharvest Biol. Technol. 2009, 52, 173–179. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, A.; Wang, S.; Hao, Y.; Cui, M.; Liu, L.; Luo, L. Metabolic response of Citrus limon to Asian citrus psyllid infestation revealed by EESI-MS and HPLC. Anal. Biochem. 2020, 609, 113973. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G.; Knodler, M.; Carle, R.; Schieber, A. Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem. 2010, 119, 1175–1181. [Google Scholar] [CrossRef]
- Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem. Rev. 2006, 5, 293–308. [Google Scholar] [CrossRef]
- Yamane, H.; Konno, K.; Sabelis, M.; Takabayashi, J.; Sassa, T.; Oikawa, H. Chemical defense and toxins in plants. In Comprehensive Natural Products II: Chemistry and Biology; Mander, L., Liu, H.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 339–385. [Google Scholar]
- Petrov, V.; Hille, J.; Mueller-Roeber, B.; Gechev, T.S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 2015, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Blagbrough, I.S.; Bayoumi, S.A.; Rowan, M.G.; Beeching, J.R. Cassava: An appraisal of its phytochemistry and its biotechnological prospects. Phytochemistry 2010, 71, 1940–1951. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Y.; Li, X.Y.; Zhang, C.Y.; Bai, C.Y. Scopoletin: A review of its pharmacology, pharmacokinetics, and toxicity. Front. Pharmacol. 2024, 15, 1268464. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Ju, W.; Pei, S.; Tang, Y.; Xiao, Y. Pharmacological Activities and Synthesis of Esculetin and Its Derivatives: A Mini-Review. Molecules 2017, 22, 387. [Google Scholar] [CrossRef]
- González-Vázquez, M.; Calderón-Domínguez, G.; Mora-Escobedo, R.; Salgado-Cruz, M.P.; Arreguín-Centeno, J.H.; Monterrubio-López, R. Polysaccharides of nutritional interest in jicama (Pachyrhizus erosus) during root development. Food Sci. Nutr. 2022, 10, 1146–1158. [Google Scholar] [CrossRef]
- Hiai, S.; Oura, H.; Nakajima, T. Reaction of some sapogenins and saponins with vainillin and sulfuric acid. Planta Medica 1976, 29, 116–122. [Google Scholar] [CrossRef]
- Rosales-Castro, M.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Peralta-Cruz, J.; Karchesy, J.J. Evaluación química y capacidad antioxidante de extractos polifenólicos de cortezas de Pinus cooperi, P. engelmannii, P. leiophylla y P. teocote. Madera Bosques 2009, 15, 87–105. [Google Scholar] [CrossRef]
- Burns, R.E. Method for estimation of tannin in grain sorghum 1. J. Agron. 1971, 63, 511–512. [Google Scholar] [CrossRef]
- Gupta, C.; Verma, R. Visual estimation and spectrophotometric determination of tannin content and antioxidant activity of three common vegetables. Int. J. Pharm. Sci. Res. 2011, 2, 175–182. [Google Scholar]
- Cuellar Sánchez, V. Efecto del Método de Extracción Sobre el Perfil de Metabolitos y la Actividad Antirradical de Extractos de tejidos de Diferentes Variedades de Aguacate. Master’s Dissertation, Instituto Tecnológico de Veracruz (UNIDA), Veracruz, Mexico, 2018. Available online: https://rinacional.tecnm.mx/jspui/handle/TecNM/2508 (accessed on 20 October 2020).
- Mothibedi, K. A Study of Electrospun Nanofibers and Diatomaceous Earth Materials for the Extraction of Alkaloids, Flavonoids and Aromatic Amines in Various Matrices. Ph.D. Dissertation, Rhodes University, Grahamstown, South Africa, 2013. [Google Scholar]
- Szakiel, A.; Pączkowski, C.; Henry, M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochem. Rev. 2011, 10, 471–491. [Google Scholar] [CrossRef]
- Guzmán, B.; L Cruz, D.; Alvarado, J.A.; Mollinedo, P. Cuantificación de saponinas en muestras de cañihua Chenopodiumpallidicaule aellen. Rev. Boliv. Química 2013, 30, 131–136. [Google Scholar]
- Uematsu, Y.; Hirata, K.; Saito, K.; Kudo, I. Spectrophotometric determination of saponin in Yucca extract used as food additive. J. AOAC Int. 2000, 83, 1451–1454. [Google Scholar] [CrossRef] [PubMed]
- Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Taylor, W.G.; Fields, P.G.; Asutherlande, D.H. Insecticidal components from field pea extracts: Soyasaponins and lysolecithins. J. Agric. Food Chem. 2004, 52, 7484–7490. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Kaur, A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. Lebensm.-Wiss. Technol. 2018, 87, 93–101. [Google Scholar] [CrossRef]
- Rubert-Nason, K.F.; Lindroth, R.L. Causes and consequences of condensed tannin variation in Populus: A Molecules to Ecosystems Perspective. Recent Adv. Polyphen. Res. 2021, 7, 69–112. [Google Scholar] [CrossRef]
- Centeno, P. Toxicants of Plant Origin; CRC Press: Boca Raton, FL, USA, 2002; Volume 2. [Google Scholar]
- Granados-Sánchez, D.; Ruíz-Puga, P.; Barrera-Escorcia, H. Ecología de la herbivoría. Revista Chapingo. Ser. Cienc. For. Ambiente. 2008, 14, 51–63. [Google Scholar]
- Martínez-Arias, C.; Macaya-Sanz, D.; Witzell, J.; Martín, J.A. Enhancement of Populus alba tolerance to Venturia tremulae upon inoculation with endophytes showing in vitro biocontrol Potential. Eur. J. Plant Pathol. 2019, 153, 1031–1042. [Google Scholar] [CrossRef]
- Choi, S.H.; Kozukue, N.; Kim, H.J.; Friedman, M. Analysis of protein amino acids, non-protein amino acids and metabolites, dietary protein, glucose, fructose, sucrose, phenolic, and flavonoid content and antioxidative properties of potato tubers, peels, and cortexes (pulps). J. Food Compos. Anal. 2016, 50, 77–87. [Google Scholar] [CrossRef]
- Perla, V.; Holm, D.G.; Jayanty, S.S. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. LWT-Food Sci. Technol. 2012, 45, 161–171. [Google Scholar] [CrossRef]
- Salunke, B.K.; Kotkar, H.M.; Mendki, P.S.; Upasani, S.M.; Maheshwari, V.L. Efficacy of flavonoids in controlling Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), a post-harvest pest of grain legumes. Crop Prot. 2005, 24, 888–893. [Google Scholar] [CrossRef]
- Ileke, K.D.; Idoko, J.E.; Ojo, D.O.; Adesina, B.C. Evaluation of botanical powders and extracts from Nigerian plants as protectants of maize grains against maize weevil, Sitophilus zeamais (Motschulsky) [Coleoptera: Curculionidae]. Biocatal. Agric. Biotechnol. 2020, 27, 101702. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, A.B. Ecofisiología y Bioquímica del Estrés en Plantas; Universidad Autónoma Agraria Antonio Narro, Departamento de Horticultura: Saltillo, Mexico, 2002; p. 287. ISBN 968-844-042-6. [Google Scholar]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef]
- Tuteja, N. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2007, 2, 135–138. [Google Scholar] [CrossRef]
- Davies, C.; Böttcher, C. Other hormonal signals during ripening. In Fruit Ripening: Physiology, Signalling and Genomics; En, P., Nath, M., Bouzayen, A.K., Mattoo, J.C., Pech, Eds.; CABI: Oxfordshire, UK, 2014; pp. 202–216. [Google Scholar] [CrossRef]
- Pérez-Llorca, M.; Muñoz, P.; Müller, M.; Munné-Bosch, S. Biosynthesis, Metabolism and Function of Auxin, Salicylic Acid and Melatonin in Climacteric and Non-climacteric Fruits. Front. Plant Sci. 2019, 10, 136. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Zhan, P.; Du, F.; Zong, A.; Xu, T. Isolation and identification of phenolic compounds in Chinese purple yam and evaluation of antioxidant activity. LWT-Food Sci. Technol. 2018, 96, 161–165. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Amara, K.; Reis, F.S.; Barros, L.; Martins, A.; Calhelha, R.C.; Venturini, M.E.; Blanco, D.; Redondo, D.; Marco, P.; et al. Chemical composition and evaluation of antioxidant, antimicrobial and antiproliferative activities of Tuber and Terfezia truffles. Int. Food Res. J. 2021, 140, 110071. [Google Scholar] [CrossRef] [PubMed]
- Bhanja, A.; Paikra, S.K.; Sutar, P.P.; Mishra, M. Characterization and identification of inulin from Pachyrhizus erosus and evaluation of its antioxidant and in-vitro prebiotic efficacy. J. Food Sci. Technol. 2023, 60, 328–339. [Google Scholar] [CrossRef]
- García, A.Á.; Carril, E.P.U. Metabolismo secundario de plantas. Reduca 2011, 2, 119–145. [Google Scholar]
- Punia, A.; Singh, V.; Thakur, A.; Chauhan, N.S. Impact of caffeic acid on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius). Heliyon 2023, 9, e14593. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M.T.; Escribano-Bailón, M.T.; Moreno, F.J.; Villamiel, M.; Dueñas, M. Determination by HPLC-DAD-ESI/MSn of phenolic compounds in Andean tubers grown in Ecuador. J. Food Compos. Anal. 2019, 84, 103258. [Google Scholar] [CrossRef]
- Simonovska, B.; Vovk, I.; Andrenšek, S.; Valentová, K.; Ulrichová, J. Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. J. Chromatogr. A 2003, 1016, 89–98. [Google Scholar] [CrossRef]
- Habib, N.C.; Serra-Barcellona, C.; Honoré, S.M.; Genta, S.B.; Sánchez, S.S. Yacon roots (Smallanthus sonchifolius) improve oxidative stress in diabetic rats. Pharm. Biol. 2015, 53, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.K.; Chenchaiah, K.C. Seed coat phenolic compounds of Cajanus cajan as chemical barrier in formulation of artificial diet of Spodoptera litura (F.). Ann. Plant Sci. 2007, 15, 92–96. [Google Scholar]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [Google Scholar] [CrossRef]
- Martínez, N.L.; Trujillo, J.P.F.; Biesaga, M.; Mejía, E.Z. Modificaciones en el metabolismo fenilpropanoide inducido por el nematodo falso agallador Nacobbus aberrans en chile CM334. In Proceedings of the 6th Workshop on Agri-Food Research. WIA, Cartagena, Spain. 8–9 May 2017; Universidad Politécnica de Cartagena: Cartagena, Spain, 2018; Volume 17, pp. 39–42. [Google Scholar] [CrossRef]
- de Oliveira Schmidt, H.; Rockett, F.C.; Klen, A.V.B.; Schmidt, L.; Rodrigues, E.; Tischer, B.; Rossini, A.P.; de Oliveira, R.V.; Lima, S.V.; Hickman, F.S.; et al. New insights into the phenolic compounds and antioxidant capacity of feijoa and cherry fruits cultivated in Brazil. Int. Food Res. J. 2020, 136, 109564. [Google Scholar] [CrossRef]
- Han, K.H.; Kitano-Okada, T.; Seo, J.M.; Kim, S.J.; Sasaki, K.; Shimada, K.I.; Fukushima, M. Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. J. Funct. Foods 2015, 14, 692–701. [Google Scholar] [CrossRef]
- Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. Appl. Res. Med. Aromat. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Ren, H.; Endo, H.; Hayashi, T. Antioxidative and antimutagenic activities and polyphenol content of pesticide-free and organically cultivated green vegetables using water-soluble chitosan as a soil modifier and leaf surface spray. J. Sci. Food Agric. 2001, 81, 1426–1432. [Google Scholar] [CrossRef]
- Dueñas, M.; Hernandez, T.; Estrella, I. Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem. 2007, 101, 90–97. [Google Scholar] [CrossRef]
- Bertin, R.; Chen, Z.; Marin, R.; Donati, M.; Feltrinelli, A.; Montopoli, M.; Zambon, S.; Manzato, E.; Froldi, G. Activity of myricetin and other plant-derived polyhydroxyl compounds in human LDL and human vascular endothelial cells against oxidative stress. Biomed. Pharmacother. 2016, 82, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; Wiley: Chichester, UK, 2009. [Google Scholar]
- Benoit, I.; Asther, M.; Bourne, Y.; Navarro, D.; Canaan, S.; Lesage-Meessen, L.; Herwijer, M.; Coutinho, P.M.; Asther, M.; Record, E. Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from Aspergillus niger. Appl. Environ. Microbiol. 2007, 73, 5624–5632. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuellar-Sánchez, V.; Arreguín-Centeno, J.H.; González-Vázquez, M.; Salgado-Cruz, M.d.l.P.; Farrera-Rebollo, R.R.; Gutiérrez-López, G.F.; Calderón-Domínguez, G. Effect of Biotic Stress Due to Phyllophaga spp. on Antioxidant Compounds during Jicama Root (Pachyrhizus erosus) Development. Horticulturae 2024, 10, 485. https://doi.org/10.3390/horticulturae10050485
Cuellar-Sánchez V, Arreguín-Centeno JH, González-Vázquez M, Salgado-Cruz MdlP, Farrera-Rebollo RR, Gutiérrez-López GF, Calderón-Domínguez G. Effect of Biotic Stress Due to Phyllophaga spp. on Antioxidant Compounds during Jicama Root (Pachyrhizus erosus) Development. Horticulturae. 2024; 10(5):485. https://doi.org/10.3390/horticulturae10050485
Chicago/Turabian StyleCuellar-Sánchez, Verónica, José Honorato Arreguín-Centeno, Marcela González-Vázquez, Ma. de la Paz Salgado-Cruz, Reynold R. Farrera-Rebollo, Gustavo F. Gutiérrez-López, and Georgina Calderón-Domínguez. 2024. "Effect of Biotic Stress Due to Phyllophaga spp. on Antioxidant Compounds during Jicama Root (Pachyrhizus erosus) Development" Horticulturae 10, no. 5: 485. https://doi.org/10.3390/horticulturae10050485
APA StyleCuellar-Sánchez, V., Arreguín-Centeno, J. H., González-Vázquez, M., Salgado-Cruz, M. d. l. P., Farrera-Rebollo, R. R., Gutiérrez-López, G. F., & Calderón-Domínguez, G. (2024). Effect of Biotic Stress Due to Phyllophaga spp. on Antioxidant Compounds during Jicama Root (Pachyrhizus erosus) Development. Horticulturae, 10(5), 485. https://doi.org/10.3390/horticulturae10050485