Determining Eastern Red Cedar Biochar Soilless-Media Supplementation Rates for Potted Geranium and Petunia Production
Abstract
:1. Introduction
2. Methods and Materials
2.1. Preparation of Biochar
2.2. Plant Materials and Growth Conditions
2.3. Treatment and Experimental Design
2.4. Physical Properties of Growth Media
2.5. Plant Growth Parameters
2.6. Statistical Analysis
3. Results
3.1. Physical Properties of 17 Different Potting Mix Ratios Determined from a 15.24 cm Pot
3.2. Geranium Growth and Development
3.3. Geranium Leaf Nutrient
3.4. Geranium Growing Media Nutrients
3.5. Petunia Growth and Development
3.6. Petunia Leaf Nutrients
3.7. Petunia Growing Media Nutrients
4. Discussion
4.1. Effect of Biochar on Physical Properties of Growing Media
4.2. Effect on Plant Growth and Quality
4.3. Effects on Leaf Nutrient Content
4.4. Effects on Growing Media Properties
4.5. Other Factors Influencing the Biochar Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steiner, C.; Harttung, T. Biochar as a growing media additive and peat substitute. Solid Earth 2014, 5, 995–999. [Google Scholar] [CrossRef]
- Bachmann, R.T.; Adawiyah, S.; Krishnan, T.; Khoo, B.; Sian, T.S.; Richards, T. Partial substitution of peat moss with biochar for sustainable cultivation of Durio zibethinus L. in nurseries. Arab J. Geosci. 2018, 11, 426. [Google Scholar] [CrossRef]
- Cleary, J.; Roulet, N.T.; Moore, T.R. Greenhouse gas emissions from Canadiac peat extraction, 1990–2000: A life-cycle analysis. AMBIO J. Hum. Environ. 2005, 34, 456–461. [Google Scholar] [CrossRef]
- Schmilewski, G. The role of peat in assuring the quality of growing media. Mires Peat 2008, 3, 1–8. [Google Scholar]
- Margenot, A.J.; Griffin, D.E.; Alves, B.S.Q.; Rippner, D.A.; Li, C.; Parikh, S.J. Substitution of peat moss with softwood biochar for soil-free marigold growth. Ind. Crops Prod. 2018, 112, 160–169. [Google Scholar] [CrossRef]
- Kern, J.; Tammeorg, P.; Shanskiy, M.; Sakrabani, R.; Knicker, H.; Kammann, C.; Tuhkanen, E.-M.; Smidt, G.; Prasad, M.; Tiilikkala, K.; et al. Synergistic use of peat and charred material in growing media—An option to reduce the pressure on peatlands? J. Environ. Eng. Landsc. Manag. 2017, 25, 160–174. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Ok, Y.S.; Nizami, A.-S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, E.F.; McGiffen, M.E., Jr.; Merhaut, D.J. Effects of biochar on nutrient leaching and begonia plant growth. J. Environ. Hort. 2018, 36, 126–132. [Google Scholar] [CrossRef]
- Masto, R.E.; Ansari, M.A.; George, J.; Selvi, V.A.; Ram, L.C. Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays. Ecol. Eng. 2013, 58, 314–322. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Hosseini-Bai, S.; Hao, Y.; Rachaputi, R.C.N.; Wang, H.; Xu, Z.; Wallace, H. Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ. Sci. Pollut. Res. 2015, 22, 6112–6125. [Google Scholar] [CrossRef]
- Liang, Y.; Cao, X.; Zhao, L.; Xu, X.; Harris, W. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: Effects of phosphorus nature and soil property. J. Environ. Qual. 2014, 43, 1504–1509. [Google Scholar] [CrossRef]
- Prasad, M.; Tzortzakis, N.; McDaniel, N. Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests. J. Environ. Manag. 2018, 216, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.M.; Pasian, C.; Lal, R.; Lopez Nunez, R.; Fernandez Martínez, M. Vermicompost and biochar as substitutes of growing media in ornamental-plant production. J. Appl. Hortic. 2017, 19, 205–214. [Google Scholar] [CrossRef]
- Hagner, M.; Kemppainen, R.; Jauhiainen, L.; Tiilikkala, K.; Setälä, H. The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil Tillage Res. 2016, 163, 224–234. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M.; Lidon, A. Analysis of two biochars and one hydrochar from different feedstock: Focus set on environmental, nutritional and horticultural considerations. J. Clean. Prod. 2015, 86, 40–48. [Google Scholar] [CrossRef]
- Regmi, A.; Singh, S.; Moustaid-Moussa, N.; Coldren, C.; Simpson, C. The negative effects of high rates of biochar on violas can be counteracted with fertilizer. Plants 2022, 11, 491. [Google Scholar] [CrossRef] [PubMed]
- Stehmann, J.R.; Lorenz-Lemke, A.P.; Freitas, L.B.; Semir, J. The Genus Petunia. In Petunia; Gerats, T., Strommer, J., Eds.; Springer: New York, NY, USA, 2009; pp. 1–28. ISBN 9780387847955. [Google Scholar]
- Gomes, P.B.; Mata, V.G.; Rodrigues, A.E. Production of rose geranium oil using supercritical fluid extraction. J. Supercrit. Fluids 2007, 41, 50–60. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Pasian, C.; Lal, R.; Lopez, R.; Díaz, M.J.; Fernandez, M. Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban For. Urban Green. 2018, 34, 175–180. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Pasian, C.; Lal, R.; Lopez, R.; Fernandez, M. Vermicompost and biochar substrates can reduce nutrients leachates on containerized ornamental plant production. Hortic. Bras. 2019, 37, 47–53. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. High rates of gasified rice hull biochar affect geranium and tomato growth in a soilless substrate. J. Plant Nutr. 2017, 40, 1816–1828. [Google Scholar] [CrossRef]
- Fascella, G.; Mammano, M.M.; D’Angiolillo, F.; Pannico, A.; Rouphael, Y. Coniferous wood biochar as substrate component of two containerized lavender species: Effects on morpho-physiological traits and nutrients partitioning. Sci. Hortic. 2020, 267, 109356. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, G.; Starman, T.; Volder, A.; Gu, M. Poinsettia growth and development response to container root substrate with biochar. Horticulturae 2018, 4, 1. [Google Scholar] [CrossRef]
- Fascella, G.; Mammano, M.M.; D’Angiolillo, F.; Rouphael, Y. Effects of conifer wood biochar as a substrate component on ornamental performance, photosynthetic activity, and mineral composition of potted Rosa rugosa. J. Hortic. Sci. Biotechnol. 2018, 93, 519–528. [Google Scholar] [CrossRef]
- Pierce, A.M.; Reich, P.B. The effects of eastern red cedar (Juniperus virginiana) invasion and removal on a dry bluff prairie ecosystem. Biol. Invasions 2010, 12, 241–252. [Google Scholar] [CrossRef]
- Caterina, G.L.; Will, R.E.; Turton, D.J.; Wilson, D.S.; Zou, C.B. Water use of Juniperus virginiana trees encroached into mesic prairies in Oklahoma, USA. Ecohydrology 2014, 7, 1124–1134. [Google Scholar] [CrossRef]
- Yang, Z.; Kumar, A.; Huhnke, R.L.; Buser, M.; Capareda, S. Pyrolysis of eastern redcedar: Distribution and characteristics of fast and slow pyrolysis products. Fuel 2016, 166, 157–165. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Byars, J.A.; Jackson, M.A.; Peterson, S.C.; Eller, F.J. Tomato seed germination and transplant growth in a commercial potting substrate amended with nutrient-preconditioned Eastern red cedar (Juniperus virginiana L.) wood biochar. Sci. Hortic. 2021, 280, 109947. [Google Scholar] [CrossRef]
- Lamichhane, B.; Dunn, B.; Singh, H. Preparation of Biochar for Use as a Soil Amendment. Oklahoma Cooperative Extension Service. HLA-6502. 2023. Available online: https://extension.okstate.edu/fact-sheets/preparation-of-biochar-for-use-as-a-soil-amendment.html (accessed on 23 January 2024).
- Abdelhafez, A.A.; Li, J.; Abbas, M.H.H. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere 2014, 117, 66–71. [Google Scholar] [CrossRef]
- Davidson, H.; Mecklenburg, R.; Peterson, C. Nursery Management: Administration and Culture, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Zhang, H.; Henderson, K. Procedures Used by OSU Soil, Water and Forage Analytical Laboratory. Oklahoma Cooperative Extension Service. PSS-2901. 2016. Available online: https://extension.okstate.edu/fact-sheets/procedures-used-by-osu-soil-water-and-forage-analytical-laboratory.html (accessed on 23 January 2024).
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Kenar, J.A.; Thompson, A.R.; Peterson, S.C. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops Prod. 2013, 51, 437–443. [Google Scholar] [CrossRef]
- Mendez, A.; Paz-Ferreiro, J.; Gil, E.; Gasco, G. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci. Hortic. 2015, 193, 225–230. [Google Scholar] [CrossRef]
- Werdin, J.; Conn, R.; Fletcher, T.D.; Rayner, J.P.; Williams, N.S.G.; Farrell, C. Biochar particle size and amendment rate are more important for water retention and weight of green roof substrates than differences in feedstock type. Ecol. Eng. 2021, 171, 106391. [Google Scholar] [CrossRef]
- Kaudal, B.B.; Chen, D.; Madhavan, D.B.; Downie, A.; Weatherley, A. An examination of physical and chemical properties of urban biochar for use as growing media substrate. Biomass Bioenergy 2016, 84, 49–58. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci. Hortic. 2014, 176, 70–78. [Google Scholar] [CrossRef]
- Huang, L.; Niu, G.; Feagley, S.E.; Gu, M. Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate. Ind. Crops Prod. 2019, 129, 549–560. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M. Effects of biochar on container substrate properties and growth of plants—A Review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy substrates need physicals too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Bures, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Conversa, G.; Bonasia, A.; Lazzizera, C.; Elia, A. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of pelargonium (Pelargonium zonale L.) plants. Front. Plant Sci. 2015, 6, 127299. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Li, Z.; Huang, X.; Shen, T.; Zou, X. Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features. Biosyst. Eng. 2021, 212, 458–467. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, Y.; Xie, X.; Atefi, A.; Wijewardane, N.K.; Thapa, S. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods. 2022, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Quilliam, R.S.; Marsden, K.A.; Gertler, C.; Rousk, J.; DeLuca, T.H.; Jones, D.L. Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agric. Ecosyst. Environ. 2012, 158, 192–199. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M. Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Sci. Agric. 2018, 75, 304–312. [Google Scholar] [CrossRef]
- Graber, E.R.; Meller Harel, Y.; Kolton, M.; Cytryn, E.; Silber, A.; Rav David, D.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Rathinasabapathi, B.; Ferguson, J.; Gal, M. Evaluation of allelopathic potential of wood chips for weed suppression in horticultural production systems. HortScience 2005, 40, 711–713. [Google Scholar] [CrossRef]
- Fox, T.E. Physical and Cultural Properties of Cedar Mulch Amended Growth Media Affecting Container Grown Ornamental Plants. (Ph.D. in Horticulture) Graduate Thesis and Dissertations, Texas A&M University, College Station, TX, USA, 1979. [Google Scholar]
- Starr, Z.; Boyer, C.; Griffin, J. Growth of Pistacia chinensis in a red cedar–amended substrate. In Combined Proceedings International Plant Propagators’ Society; IPPS: Monroe, CT, USA, 2010; Volume 60, pp. 602–606. [Google Scholar]
- Bu, X.; Ji, H.; Ma, W.; Mu, C.; Xian, T.; Zhou, Z.; Wang, F.; Xue, J. Effects of biochar as a peat-based substrate component on morphological, photosynthetic and biochemical characteristics of Rhododendron delavayi Franch. Sci. Hortic. 2022, 302, 111148. [Google Scholar] [CrossRef]
- Headlee, W.L.; Brewer, C.E.; Hall, R.B. Biochar as a substitute for vermiculite in potting mix for hybrid poplar. Bioenergy Res. 2014, 7, 120–131. [Google Scholar] [CrossRef]
- Sasmita, K.D.; Anas, I.; Anwar, S.; Yahya, S.; Djajakirana, G. Application of biochar and organic fertilizer on acid soil as growing medium for cacao (Theobroma cacao L.) seedlings. Int. J. Sci. Basic Appl. Res. 2017, 36, 261–273. [Google Scholar]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn Growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Prasad, M.; Kavanagh, A.; Tzortzakis, N. Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production. Agronomy 2019, 9, 693. [Google Scholar] [CrossRef]
- Buss, W.; Graham, M.C.; Shepherd, J.G.; Masek, O. Suitability of marginal biomass-derived biochars for soil amendment. Sci. Total Environ. 2016, 547, 314–322. [Google Scholar] [CrossRef]
- Basiri Jahromi, N.; Fulcher, A.; Walker, F.; Altland, J. Optimizing substrate available water and coir amendment rate in pine bark substrates. Water 2020, 12, 362. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Sahin, O.; Taskin, M.B.; Atakol, O.; Yilmaz, N. Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition. Soil Use Manag. 2015, 31, 429–437. [Google Scholar] [CrossRef]
- Naeem, M.A.; Khalid, M.; Aon, M.; Abbas, G.; Tahir, M.; Amjad, M.; Murtaza, B.; Yang, A.; Akhtar, S.S. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Arch. Agron. Soil Sci. 2017, 63, 2048–2061. [Google Scholar] [CrossRef]
- Thomas, S.C. Post-processing of biochars to enhance plant growth responses: A review and meta-analysis. Biochar 2021, 3, 437–455. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Liang, C.; Xu, Q.; Li, Y.; Qin, H.; Fuhrmann, J.J. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Sci. Total Environ. 2017, 574, 24–33. [Google Scholar] [CrossRef]
- Billah, M.M.; Ahmad, W.; Ali, M. Biochar particle size and rhizobia strains effect on the uptake and efficiency of nitrogen in lentils. J. Plant Nutr. 2019, 42, 1709–1725. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient leaching in a colombian savanna oxisol amended with biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Dong, H.; Wang, R.; Mei, B.; Zhu, J. A 3-Year Record of N2O and CH4 Emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ. 2012, 152, 1–9. [Google Scholar] [CrossRef]
Media Ratio (v/v) | Temperature (°C) | Treatment |
---|---|---|
Soilless media | Soilless media | T1 |
15 ERC bark/85 soilless media | ERC bark | T2 |
30 ERC bark/70 soilless media | ERC bark | T3 |
45 ERC bark/55 soilless media | ERC bark | T4 |
60 ERC bark/40 soilless media | ERC bark | T5 |
15 biochar/85 soilless media | 300–350 | T6 |
30 biochar/70 soilless media | 300–350 | T7 |
45 biochar/55 soilless media | 300–350 | T8 |
60 biochar/40 soilless media | 300–350 | T9 |
15 biochar/85 soilless media | 400–450 | T10 |
30 biochar/70 soilless media | 400–450 | T11 |
45 biochar/55 soilless media | 400–450 | T12 |
60 biochar/40 soilless media | 400–450 | T13 |
15 biochar/85 soilless media | 500–550 | T14 |
30 biochar/70 soilless media | 500–550 | T15 |
45 biochar/55 soilless media | 500–550 | T16 |
60 biochar/40 soilless media | 500–550 | T17 |
Treatment z | BD (g cm−3) | TP (%) | AP (%) | WHC (%) |
---|---|---|---|---|
T1 | 0.6a y | 45.7h | 11.6g | 34.1bcd |
T2 | 0.5bcd | 48.3gh | 15.2fg | 33.1b–e |
T3 | 0.5de | 54.0ef | 25.7bcd | 28.3de |
T4 | 0.4fg | 59.5b–e | 29.8ab | 29.7cde |
T5 | 0.3j | 63.0ab | 37.4a | 25.6e |
T6 | 0.5bc | 51.0fg | 22.0cde | 29.0de |
T7 | 0.5cd | 56.6cde | 18.6ef | 38.0ab |
T8 | 0.4fg | 57.8cde | 20.8c–f | 37.0ab |
T9 | 0.4gh | 60.1a–e | 24.5bcd | 35.6a–d |
T10 | 0.5bc | 55.5de | 19.1def | 36.3abc |
T11 | 0.5cd | 61.2abc | 18.1ef | 43.1a |
T12 | 0.5def | 60.9a–d | 24.3cd | 36.6ab |
T13 | 0.4hi | 64.7a | 23.0cde | 41.8a |
T14 | 0.5b | 55.8de | 18.3ef | 37.5ab |
T15 | 0.5cd | 61.3abc | 18.7ef | 42.7a |
T16 | 0.4ef | 59.2b–e | 21.6cde | 37.7ab |
T17 | 0.3ij | 63.5ab | 25.8bc | 37.7ab |
Significance | <0.001 | <0.001 | <0.001 | 0.001 |
Treatment z | Height (cm) | Width (cm) | No. of Umbels | No. of Flowers | Umbel Height (cm) | Shoot Dry wt (g) | Root to Shoot Ratio | WUE (mg mL−1) |
---|---|---|---|---|---|---|---|---|
T1 | 42.0abc y | 28.9ab | 3.0a–d | 96.6d | 23.4ab | 18.9abc | 0.1bc | 2.1abc |
T2 | 41.9abc | 26.6b–e | 3.1abc | 111.1bcd | 22.2a–d | 17.5bc | 0.1bc | 1.9bc |
T3 | 43.0abc | 27.1a–d | 2.8a–d | 111.6bcd | 22.0a–e | 16.0bcd | 0.1bc | 1.7bcd |
T4 | 40.5bcd | 23.7g | 2.8a–d | 102.3cd | 21.8a–e | 12.1de | 0.2b | 1.4de |
T5 | 35.1e | 20.8h | 2.2d | 50.6e | 21.0b–e | 9.6e | 0.2a | 1.1e |
T6 | 44.4ab | 29.1a | 2.9a–d | 108.4bcd | 22.5abc | 18.5abc | 0.1bc | 2.0abc |
T7 | 42.5abc | 27.6a–d | 3.1abc | 142.9ab | 21.6a–e | 17.5bc | 0.1bc | 1.9bc |
T8 | 39.6cd | 26.0d–g | 3.2abc | 139.3abc | 21.5a–e | 17.8bc | 0.1c | 1.9bc |
T9 | 37.1de | 24.4efg | 2.9a–d | 112.3a–d | 20.0cde | 17.1bc | 0.1bc | 1.9bc |
T10 | 43.6ab | 28.9ab | 3.1abc | 115.4a–d | 22.1a–e | 19.7ab | 0.1bc | 2.1ab |
T11 | 42.3abc | 26.7b–e | 2.6cd | 124.9a–d | 24.4a | 16.4bc | 0.1bc | 1.8bcd |
T12 | 41.6abc | 26.3c–f | 3.3abc | 124.1a–d | 21.1b–e | 15.7bcd | 0.1bc | 1.7cd |
T13 | 37.5de | 24.0fg | 2.6bcd | 92.8d | 21.3b–e | 14.9cd | 0.1bc | 1.7cd |
T14 | 44.8a | 28.8ab | 3.6a | 142.1ab | 21.4a–e | 22.0a | 0.1c | 2.4a |
T15 | 43.9ab | 28.6abc | 3.4ab | 136.1abc | 21.3b–e | 18.5abc | 0.1bc | 2.0abc |
T16 | 42.1abc | 26.0d–g | 3.7a | 149.6a | 19.4de | 17.9abc | 0.1bc | 2.0abc |
T17 | 37.4de | 25.6d–g | 3.1abc | 94.3d | 19.3e | 17.5bc | 0.1bc | 1.9bc |
Significance | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment z | TN (%) | K (%) | S (%) | B (mg L−1) | Zn (mg L−1) | Cu (mg L−1) | Mn (mg L−1) |
---|---|---|---|---|---|---|---|
T1 | 3.1a y | 2.6a | 0.2a | 56.7a | 34.6ab | 1.3b | 63.2ab |
T2 | 3.1a | 2.3ab | 0.2a | 55.4a | 30.2ab | 1.6ab | 68.2ab |
T3 | 3.0ab | 2.3ab | 0.2a | 56.4a | 28.5b | 2.2ab | 61.6ab |
T4 | 2.9ab | 2.2ab | 0.2a | 56.7a | 45.5a | 2.1ab | 71.3ab |
T5 | 2.6b | 2.3ab | 0.2a | 50.2a | 27.4b | 1.9ab | 65.8ab |
T6 | 3.1a | 2.4ab | 0.2a | 59.1a | 29.0ab | 2.8a | 61.0ab |
T7 | 2.9ab | 2.3ab | 0.2a | 60.6a | 26.4b | 2.1ab | 61.5ab |
T8 | 3.0ab | 2.2ab | 0.2a | 67.7a | 33.1ab | 2.2ab | 76.4a |
T9 | 3.0ab | 2.0b | 0.2a | 50.3a | 28.6b | 1.9ab | 46.7ab |
T10 | 3.2a | 2.3ab | 0.2a | 59.7a | 28.0b | 2.2ab | 54.7ab |
T11 | 2.9ab | 2.1ab | 0.2a | 58.9a | 30.9ab | 1.9ab | 59.1ab |
T12 | 2.9ab | 2.2ab | 0.2a | 68.4a | 30.6ab | 2.1ab | 56.9ab |
T13 | 3.0ab | 2.3ab | 0.2a | 67.5a | 24.7b | 1.4ab | 45.9ab |
T14 | 3.2a | 2.5ab | 0.2a | 58.3a | 30.0ab | 2.2ab | 49.8ab |
T15 | 3.0ab | 2.2ab | 0.2a | 60.0a | 29.6ab | 2.1ab | 66.1ab |
T16 | 3.0ab | 2.0b | 0.2a | 65.9a | 28.1b | 0.0c | 68.8ab |
T17 | 3.0ab | 2.4ab | 0.2a | 64.4a | 22.7b | 1.1b | 39.9b |
Significance | 0.003 | 0.02 | 0.02 | 0.004 | 0.01 | 0.02 | 0.03 |
Treatment z | pH | EC (µS cm−1) | NH4 (mg L−1) | P (mg L−1) | K (mg L−1) | Ca (mg L−1) | Mg (mg L−1) | S (mg L−1) | B (mg L−1) | Cl (mg L−1) | Na (mg L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 7.9ab y | 2855.0a | 6.6a | 18.5a–d | 239.8ab | 177.2a | 61.8ab | 379.9abc | 0.3a | 292.0ab | 243.6a |
T2 | 7.9ab | 2808.5ab | 6.5a | 22.7a | 246.5ab | 178.1a | 65.2a | 405.5ab | 0.3ab | 309.1a | 236.6ab |
T3 | 8.0ab | 2060.0abc | 5.6abc | 19.9abc | 203.3ab | 121.2a–d | 42.3abc | 265.1bc | 0.3cd | 217.4a–d | 175.3b–e |
T4 | 7.9ab | 1950.3abc | 4.3abc | 19.5abc | 191.3ab | 111.3a–d | 38.8bc | 231.9c | 0.3bcd | 189.3a–d | 163.7de |
T5 | 7.7b | 2224.3abc | 2.2bc | 21.2ab | 248.0ab | 167.7ab | 52.2abc | 262.1bc | 0.3a–d | 230.9a–d | 156.4e |
T6 | 8.1a | 2384.8abc | 2.8abc | 15.2cd | 188.5ab | 137.3a–d | 49.1abc | 359.7abc | 0.3a–d | 236.4a–d | 209.6a–e |
T7 | 8.0ab | 2237.5abc | 3.4abc | 16.0bcd | 209.5ab | 115.2a–d | 41.2bc | 339.1abc | 0.3a–d | 202.7a–d | 194.7a–e |
T8 | 8.0ab | 2474.8abc | 5.2abc | 16.1bcd | 205.5ab | 146.8abc | 51.6abc | 379.9abc | 0.3a–d | 231.3a–d | 214.8a–e |
T9 | 8.0ab | 1751.3c | 2.0bc | 13.8d | 144.0b | 95.9bcd | 34.0c | 293.1bc | 0.3cd | 138.7d | 169.1cde |
T10 | 7.8ab | 2870.0a | 5.9ab | 19.9abc | 229.5ab | 184.8a | 64.9a | 472.2a | 0.3ab | 279.7abc | 235.5ab |
T11 | 8.1a | 2263.3abc | 5.1abc | 17.9a–d | 241.5ab | 102.6bcd | 39.5bc | 350.0abc | 0.3cd | 202.2a–d | 202.6a–e |
T12 | 8.0ab | 2642.5abc | 4.7abc | 16.7bcd | 307.8a | 91.6cd | 37.6c | 372.7abc | 0.2d | 216.9a–d | 207.3a–e |
T13 | 8.0ab | 1868.3bc | 2.2bc | 16.6bcd | 161.8ab | 68.9d | 29.2c | 324.2abc | 0.2d | 112.5d | 196.5a–e |
T14 | 7.9ab | 2354.3abc | 4.9abc | 20.4abc | 159.5ab | 129.9a–d | 48.3abc | 393.6abc | 0.3abc | 216.0a–d | 241.9a |
T15 | 7.9ab | 2492.5abc | 5.5abc | 19.8abc | 220.0ab | 125.9a–d | 49.3abc | 385.2abc | 0.3abc | 210.5a–d | 228.7abc |
T16 | 7.8ab | 2171.5abc | 4.2abc | 19.3abc | 171.0ab | 96.3bcd | 40.3bc | 371.2abc | 0.3a–d | 161.5bcd | 218.1a–d |
T17 | 8.0ab | 2177.5abc | 1.7c | 15.4cd | 226.0ab | 70.2d | 30.3c | 387.3abc | 0.2d | 150.4cd | 226.7abc |
Significance | 0.03 | 0.001 | <0.001 | <0.001 | 0.05 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment z | Height (cm) | Width (cm) | No. of Flowers | Shoot Dry wt (g) | Root Dry wt (g) | Flower Diameter (cm) | WUE (mg mL−1) | Root to Shoot Ratio |
---|---|---|---|---|---|---|---|---|
T1 | 11.8ab y | 75.1cd | 64.9a | 18.1bc | 2.2bc | 6.6a | 1.9abc | 0.1b |
T2 | 9.3cde | 60.3e | 28.1d–g | 16.7bcd | 2.0bc | 6.2c | 1.8bcd | 0.1b |
T3 | 11.4abc | 71.0d | 49.9bc | 13.7e | 1.3c | 6.2c | 1.5e | 0.1b |
T4 | 9.9b–e | 78.9bc | 32.4c–f | 11.2f | 1.5c | 6.0d | 1.2f | 0.1b |
T5 | 9.3cde | 74.5cd | 14.9g | 10.0f | 1.2c | 5.6e | 1.1f | 0.1b |
T6 | 12.5a | 81.6b | 40.0bcd | 17.3bcd | 2.5bc | 6.4b | 1.8bcd | 0.1b |
T7 | 9.8b–e | 71.0d | 35.2cde | 15.7de | 2.0bc | 6.3c | 1.7cde | 0.1b |
T8 | 9.7b–e | 78.9bc | 22.8efg | 16.3cd | 1.9bc | 6.0d | 1.7bcd | 0.1b |
T9 | 8.6e | 74.5cd | 16.3g | 15.2de | 3.4abc | 5.7e | 1.6de | 0.2ab |
T10 | 7.9e | 81.6b | 36.5b–e | 18.9ab | 4.6ab | 6.4b | 1.9ab | 0.2ab |
T11 | 11.4abc | 75.3cd | 26.0d–g | 15.7de | 2.2bc | 6.2c | 1.7cde | 0.1b |
T12 | 10.0b–e | 77.8bc | 18.7fg | 16.8bcd | 1.8b | 6.0d | 1.8bcd | 0.1b |
T13 | 8.8e | 76.8bcd | 15.2g | 15.5de | 5.9a | 5.7e | 1.7cde | 0.5a |
T14 | 9.2cde | 89.8a | 49.9b | 20.5a | 4.5ab | 6.7b | 2.2a | 0.2ab |
T15 | 8.0e | 78.0bc | 33.3cde | 17.3bcd | 2.3b | 6.2c | 1.8bcd | 0.1b |
T16 | 11.0a–d | 76.8bcd | 24.7efg | 18.5abc | 2.3bc | 6.0d | 1.9ab | 0.1b |
T17 | 8.9de | 75.6bcd | 24.0efg | 16.9bcd | 3.7abc | 5.7e | 1.8bcd | 0.2ab |
Significance | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment z | P (%) | Mg (%) | S (%) | B (mg L−1) | Fe (mg L−1) | Zn (mg L−1) |
---|---|---|---|---|---|---|
T1 | 0.6ab y | 0.7abc | 0.5ab | 39.3b | 195.0ab | 64.6ab |
T2 | 0.6ab | 0.7abc | 0.5ab | 37.3bc | 196.0ab | 61.6ab |
T3 | 0.6ab | 0.8abc | 0.5ab | 42.1b | 578.3a | 86.2ab |
T4 | 0.5ab | 0.6c | 0.4b | 37.3bc | 229.8ab | 63.2ab |
T5 | 0.4b | 0.6bc | 0.4ab | 40.9b | 169.8ab | 54.9ab |
T6 | 0.6ab | 0.8abc | 0.5ab | 43.6b | 223.7ab | 74.8ab |
T7 | 0.6ab | 0.8abc | 0.5ab | 60.5ab | 243.9ab | 89.3a |
T8 | 0.6ab | 0.8abc | 0.6ab | 54.6ab | 314.1ab | 77.7ab |
T9 | 0.5ab | 0.8abc | 0.5ab | 49.3b | 170.0ab | 40.3b |
T10 | 0.6ab | 0.8abc | 0.5ab | 49.3b | 115.9b | 57.4ab |
T11 | 0.7a | 0.9abc | 0.6a | 57.8ab | 139.8ab | 82.1ab |
T12 | 0.7a | 0.9abc | 0.6a | 58.8ab | 233.5ab | 74.7ab |
T13 | 0.6ab | 0.9ab | 0.6a | 69.0a | 168.0ab | 44.0ab |
T14 | 0.6ab | 0.8abc | 0.5ab | 48.5b | 242.3ab | 67.9ab |
T15 | 0.5ab | 0.8abc | 0.5ab | 54.5ab | 398.1ab | 84.4ab |
T16 | 0.5ab | 0.8abc | 0.5ab | 45.3b | 296.8ab | 85.2ab |
T17 | 0.6ab | 1.0a | 0.6a | 61.6ab | 100.2b | 49.4ab |
Significance | 0.02 | 0.007 | 0.001 | 0.006 | 0.04 | 0.005 |
Treatment z | pH | EC (µS cm−1) | NH4 (mg L−1) | NO3 (mg L−1) | P (mg L−1) | K (mg L−1) | Ca (mg L−1) | Mg (mg L−1) | S (mg L−1) | B (mg L−1) | Cl (mg L−1) | Na (mg L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 7.8ab y | 2222.3a | 5.2ab | 79.7a | 25.4a | 156.5bc | 136.0ab | 47.9ab | 264.7ab | 0.3a | 137.9ab | 235.9ab |
T2 | 7.7ab | 2251.0a | 1.2b | 0.2b | 23.7ab | 205.5abc | 147.3a | 52.0a | 304.0ab | 0.3ab | 191.2a | 224.8a–d |
T3 | 7.9ab | 1907.8ab | 2.3ab | 0.2b | 21.6abc | 184.0bc | 124.3abc | 41.8a–d | 214.1ab | 0.3cd | 151.6ab | 179.8b–e |
T4 | 7.8ab | 1719.3ab | 2.9ab | 0.2b | 23.6ab | 158.5bc | 106.2abc | 37.0a–e | 168.7b | 0.3bcd | 112.1ab | 165.6de |
T5 | 7.5b | 1902.8ab | 1.9ab | 0.2b | 24.7a | 227.8ab | 135.9ab | 46.3abc | 188.9ab | 0.3a–d | 164.7ab | 136.3e |
T6 | 8.1a | 1419.3b | 3.3ab | 0.4b | 22.2abc | 109.0c | 74.3cd | 25.9de | 167.2b | 0.3a–d | 72.6b | 173.1cde |
T7 | 8.2a | 1571.0ab | 4.0ab | 1.4b | 21.1abc | 117.0bc | 80.0bcd | 28.1cde | 206.3ab | 0.3a–d | 94.5ab | 190.8a–e |
T8 | 8.1a | 1956.0ab | 2.1ab | 0.7b | 16.9bc | 184.0bc | 108.9abc | 37.5a–e | 274.0ab | 0.3a–d | 163.2ab | 201.1a–d |
T9 | 8.0ab | 1660.3ab | 3.0ab | 2.2b | 16.6c | 149.5bc | 78.2bcd | 25.9de | 212.6ab | 0.2cd | 108.7ab | 184.5a–e |
T10 | 8.0ab | 1613.3ab | 4.8ab | 0.2b | 22.6abc | 137.8bc | 79.6bcd | 27.5cde | 207.7ab | 0.3ab | 102.5ab | 192.6a–e |
T11 | 7.9ab | 1595.3ab | 3.6ab | 1.2b | 21.1abc | 155.8bc | 73.5cd | 27.1cde | 187.2ab | 0.3cd | 96.7ab | 176.7b–e |
T12 | 8.1a | 1864.5ab | 4.0ab | 4.5b | 21.5abc | 201.0abc | 66.8cd | 25.5de | 241.3ab | 0.2d | 112.9ab | 201.9a–d |
T13 | 8.1a | 2262.8a | 2.5ab | 6.6b | 17.1bc | 307.5a | 70.1cd | 25.7de | 312.3a | 0.2d | 166.7ab | 212.0a–d |
T14 | 8.0ab | 2088.0ab | 6.2a | 0.5b | 20.0abc | 172.0bc | 97.9a–d | 36.3a–e | 325.3a | 0.3abc | 163.7ab | 245.3a |
T15 | 8.1a | 1602.0ab | 4.9ab | 0.2b | 20.9abc | 120.0bc | 79.4bcd | 28.7b–e | 219.9ab | 0.3abc | 93.5ab | 194.9a–e |
T16 | 8.2a | 1885.5ab | 4.2ab | 2.1b | 23.4abc | 162.3bc | 75.3cd | 28.0cde | 276.4ab | 0.3abcd | 118.0ab | 232.1abc |
T17 | 8.1a | 1957.5ab | 3.3ab | 3.0b | 20.9abc | 206.8abc | 47.5d | 18.8e | 257.3ab | 0.2cd | 100.3ab | 230.6abc |
Significance | <0.001 | 0.002 | 0.04 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.01 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamichhane, B.; Dunn, B.L.; Singh, H.; Kumar, A.; Norwood, F.B. Determining Eastern Red Cedar Biochar Soilless-Media Supplementation Rates for Potted Geranium and Petunia Production. Horticulturae 2024, 10, 467. https://doi.org/10.3390/horticulturae10050467
Lamichhane B, Dunn BL, Singh H, Kumar A, Norwood FB. Determining Eastern Red Cedar Biochar Soilless-Media Supplementation Rates for Potted Geranium and Petunia Production. Horticulturae. 2024; 10(5):467. https://doi.org/10.3390/horticulturae10050467
Chicago/Turabian StyleLamichhane, Babita, Bruce L. Dunn, Hardeep Singh, Ajay Kumar, and F. Bailey Norwood. 2024. "Determining Eastern Red Cedar Biochar Soilless-Media Supplementation Rates for Potted Geranium and Petunia Production" Horticulturae 10, no. 5: 467. https://doi.org/10.3390/horticulturae10050467
APA StyleLamichhane, B., Dunn, B. L., Singh, H., Kumar, A., & Norwood, F. B. (2024). Determining Eastern Red Cedar Biochar Soilless-Media Supplementation Rates for Potted Geranium and Petunia Production. Horticulturae, 10(5), 467. https://doi.org/10.3390/horticulturae10050467