Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Participants
2.2. Data Collection
2.3. Genotype Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Association between SNPs and New-Onset Hypertension
3.3. In Silico Annotation of Linked Genes and Functional Relevance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Harrison-Bernard, L.M. The renal renin-angiotensin system. Adv. Physiol. Educ. 2009, 33, 270–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ames, M.K.; Atkins, C.E.; Pitt, B. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 2019, 33, 363–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotchen, T.A.; Guthrie, G.P., Jr. Renin-angiotensin-aldosterone and hypertension. Endocr. Rev. 1980, 1, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Mulatero, P.; Verhovez, A.; Morello, F.; Veglio, F. Diagnosis and treatment of low-renin hypertension. Clin. Endocrinol. 2007, 67, 324–334. [Google Scholar] [CrossRef]
- Choo, E.H.; Ha, K.H.; Lee, S.-W.; Kim, H.C.; Park, S.; Lee, H.Y.; Ihm, S.-H. Low plasma renin activity is an independent predictor of near-term incidence of hypertension in asian populations. Clin. Exp. Hypertens. 2019, 41, 330–335. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.-G.; Group, K. Cohort profile: The Korean genome and epidemiology study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Lim, J.H.; Kim, Y.H.; Park, Y.W. The relationship between aldosterone to renin ratio and ri value of the uterine artery in the preeclamptic patient vs. Normal pregnancy. Yonsei Med. J. 2008, 49, 138–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sealey, J.E.; Gordon, R.D.; Mantero, F. Plasma renin and aldosterone measurements in low renin hypertensive states. Trends Endocrinol. Metab. 2005, 16, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Kerner, W.; Brückel, J. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2014, 122, 384–386. [Google Scholar] [CrossRef] [Green Version]
- Carretero, O.A.; Oparil, S. Essential hypertension: Part i: Definition and etiology. Circulation 2000, 101, 329–335. [Google Scholar] [CrossRef]
- Cho, Y.S.; Go, M.J.; Kim, Y.J.; Heo, J.Y.; Oh, J.H.; Ban, H.-J.; Yoon, D.; Lee, M.H.; Kim, D.-J.; Park, M. A large-scale genome-wide association study of asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 2009, 41, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Consortium, H.P.-A.S.; Abdulla, M.A.; Ahmed, I.; Assawamakin, A.; Bhak, J.; Brahmachari, S.K.; Calacal, G.C.; Chaurasia, A.; Chen, C.-H.; Chen, J. Mapping human genetic diversity in asia. Science 2009, 326, 1541–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winn, M.P.; Conlon, P.J.; Lynn, K.L.; Farrington, M.K.; Creazzo, T.; Hawkins, A.F.; Daskalakis, N.; Kwan, S.Y.; Ebersviller, S.; Burchette, J.L. A mutation in the trpc6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005, 308, 1801–1804. [Google Scholar] [CrossRef] [Green Version]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yengo, L.; Ferreira, T.; Marouli, E.; Ji, Y. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of european ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, S.M.; Cho, M.H.; Young, K.; Hersh, C.P.; Castaldi, P.J.; McDonald, M.-L.; Regan, E.; Mattheisen, M.; DeMeo, D.L.; Parker, M. A genome-wide association study identifies risk loci for spirometric measures among smokers of european and african ancestry. BMC Genet. 2015, 16, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.R.; Li, J.; Zhao, S.D.; Bradfield, J.P.; Mentch, F.D.; Maggadottir, S.M.; Hou, C.; Abrams, D.J.; Chang, D.; Gao, F. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat. Med. 2015, 21, 1018–1027. [Google Scholar] [CrossRef]
- Wilk, J.B.; Shrine, N.R.; Loehr, L.R.; Zhao, J.H.; Manichaikul, A.; Lopez, L.M.; Smith, A.V.; Heckbert, S.R.; Smolonska, J.; Tang, W. Genome-wide association studies identify chrna5/3 and htr4 in the development of airflow obstruction. Am. J. Respir. Crit. Care Med. 2012, 186, 622–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kichaev, G.; Bhatia, G.; Loh, P.-R.; Gazal, S.; Burch, K.; Freund, M.K.; Schoech, A.; Pasaniuc, B.; Price, A.L. Leveraging polygenic functional enrichment to improve gwas power. Am. J. Hum. Genet. 2019, 104, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsson, L.; Magnusson, T.; Thordarson, A.; Jonsson, T.; Geller, F.; Feenstra, B.; Melbye, M.; Nohr, E.; Vucic, S.; Dhamo, B. Rare and common variants conferring risk of tooth agenesis. J. Dent. Res. 2018, 97, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, J.; Vanholme, B.; Haegeman, A.; Gheysen, G. Four transthyretin-like genes of the migratory plant-parasitic nematode radopholus similis: Members of an extensive nematode-specific family. Gene 2007, 402, 9–19. [Google Scholar] [CrossRef]
- Gericke, B.; Raila, J.; Sehouli, J.; Haebel, S.; Könsgen, D.; Mustea, A.; Schweigert, F.J. Microheterogeneity of transthyretin in serum and ascitic fluid of ovarian cancer patients. BMC Cancer 2005, 5, 133. [Google Scholar] [CrossRef] [Green Version]
- Schweigert, F.J.; Sehouli, J. Transthyretin, a biomarker for nutritional status and ovarian cancer. Cancer Res. 2005, 65, 1114. [Google Scholar]
- Rietveld, C.A.; Medland, S.E.; Derringer, J.; Yang, J.; Esko, T.; Martin, N.W.; Westra, H.-J.; Shakhbazov, K.; Abdellaoui, A.; Agrawal, A. Gwas of 126,559 individuals identifies genetic variants associated with educational attainment. Science 2013, 340, 1467–1471. [Google Scholar] [CrossRef] [Green Version]
- Pilling, L.C.; Atkins, J.L.; Duff, M.O.; Beaumont, R.N.; Jones, S.E.; Tyrrell, J.; Kuo, C.-L.; Ruth, K.S.; Tuke, M.A.; Yaghootkar, H. Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. PLoS ONE 2017, 12, e0185083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briggs, F.; Shao, X.; Goldstein, B.A.; Oksenberg, J.R.; Barcellos, L.F.; De Jager, P.L. Genome-wide association study of severity in multiple sclerosis. Genes Immun. 2011, 12, 615–625. [Google Scholar]
- Evangelou, E.; Warren, H.R.; Mosen-Ansorena, D.; Mifsud, B.; Pazoki, R.; Gao, H.; Ntritsos, G.; Dimou, N.; Cabrera, C.P.; Karaman, I. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 2018, 50, 1412–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; Van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1100. [Google Scholar] [CrossRef] [Green Version]
- Karlsson Linnér, R.; Biroli, P.; Kong, E.; Meddens, S.F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef]
- Serie, D.J.; Crook, J.E.; Necela, B.M.; Dockter, T.J.; Wang, X.; Asmann, Y.W.; Fairweather, D.; Bruno, K.A.; Colon-Otero, G.; Perez, E.A. Genome-wide association study of cardiotoxicity in ncctg n9831 (alliance) adjuvant trastuzumab trial. Pharm. Genom. 2017, 27, 378. [Google Scholar] [CrossRef]
- Shrine, N.; Guyatt, A.L.; Erzurumluoglu, A.M.; Jackson, V.E.; Hobbs, B.D.; Melbourne, C.A.; Batini, C.; Fawcett, K.A.; Song, K.; Sakornsakolpat, P. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 2019, 51, 481–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotta, L.A.; Wittemans, L.B.; Zuber, V.; Stewart, I.D.; Sharp, S.J.; Luan, J.A.; Day, F.R.; Li, C.; Bowker, N.; Cai, L. Association of genetic variants related to gluteofemoral vs abdominal fat distribution with type 2 diabetes, coronary disease, and cardiovascular risk factors. JAMA 2018, 320, 2553–2563. [Google Scholar] [CrossRef]
- Sherva, R.; Tripodis, Y.; Bennett, D.A.; Chibnik, L.B.; Crane, P.K.; de Jager, P.L.; Farrer, L.A.; Saykin, A.J.; Shulman, J.M.; Naj, A. Genome-wide association study of the rate of cognitive decline in alzheimer’s disease. Alzheimer’s Dement. 2014, 10, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Wedow, R.; Okbay, A.; Kong, E.; Maghzian, O.; Zacher, M.; Nguyen-Viet, T.A.; Bowers, P.; Sidorenko, J.; Karlsson Linnér, R. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 2018, 50, 1112–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baselmans, B.M.; Jansen, R.; Ip, H.F.; van Dongen, J.; Abdellaoui, A.; van de Weijer, M.P.; Bao, Y.; Smart, M.; Kumari, M.; Willemsen, G. Multivariate genome-wide analyses of the well-being spectrum. Nat. Genet. 2019, 51, 445–451. [Google Scholar] [CrossRef]
- Deng, X.; Sabino, E.C.; Cunha-Neto, E.; Ribeiro, A.L.; Ianni, B.; Mady, C.; Busch, M.P.; Seielstad, M.; the REDSII Chagas study group from the NHLBI Retrovirus Epidemiology Donor Study-II (REDS-II); International Component. Genome wide association study (gwas) of chagas cardiomyopathy in trypanosoma cruzi seropositive subjects. PLoS ONE 2013, 8, e79629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahola-Olli, A.V.; Würtz, P.; Havulinna, A.S.; Aalto, K.; Pitkänen, N.; Lehtimäki, T.; Kähönen, M.; Lyytikäinen, L.-P.; Raitoharju, E.; Seppälä, I. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am. J. Hum. Genet. 2017, 100, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Cheng, Z.; Bass, N.; Krystal, J.H.; Farrer, L.A.; Kranzler, H.R.; Gelernter, J. Genome-wide association study identifies glutamate ionotropic receptor gria4 as a risk gene for comorbid nicotine dependence and major depression. Transl. Psychiatry 2018, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Jawinski, P.; Kirsten, H.; Sander, C.; Spada, J.; Ulke, C.; Huang, J.; Burkhardt, R.; Scholz, M.; Hensch, T.; Hegerl, U. Human brain arousal in the resting state: A genome-wide association study. Mol. Psychiatry 2019, 24, 1599–1609. [Google Scholar] [CrossRef]
- Lee, H.-S.; Duffey, K.J.; Popkin, B.M. Sodium and potassium intake patterns and trends in south korea. J. Hum. Hypertens. 2013, 27, 298–303. [Google Scholar] [CrossRef]
- Group, I.C.R. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24 h urinary sodium and potassium excretion. BMJ Br. Med. J. 1988, 297, 319–328. [Google Scholar]
- Chen, Y.-H.; Ishii, M.; Sucov, H.M.; Maxson, R.E. Msx1 and msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC Dev. Biol. 2008, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.Y.; Kim, Y.H.; Park, J.W.; Baek, S.-H. Association between msx1 snps and nonsyndromic cleft lip with or without cleft palate in the korean population. J. Korean Med. Sci. 2013, 28, 522–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumlongras, D.; Bei, M.; Stimson, J.M.; Wang, W.-F.; DePalma, S.R.; Seidman, C.E.; Felbor, U.; Maas, R.; Seidman, J.G.; Olsen, B.R. A nonsense mutation in msx1 causes witkop syndrome. Am. J. Hum. Genet. 2001, 69, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Rjiba, K.; Ayech, H.; Kraiem, O.; Slimani, W.; Jelloul, A.; Ben Hadj Hmida, I.; Mahdhaoui, N.; Saad, A.; Mougou-Zerelli, S. Disorders of sex development in wolf–hirschhorn syndrome: A genotype–phenotype correlation and msx1 as candidate gene. Mol. Cytogenet. 2021, 14, 12. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, M.; Liu, H.; Cai, T.; Feng, H.; Liu, Y.; Han, D. Novel msx1 variants identified in families with nonsyndromic oligodontia. Int. J. Oral Sci. 2021, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Penttilä, S.; Jokela, M.; Hackman, P.; Maija Saukkonen, A.; Toivanen, J.; Udd, B. Autosomal dominant late-onset spinal motor neuronopathy is linked to a new locus on chromosome 22q11.2-q13.2. Eur. J. Hum. Genet. 2012, 20, 1193–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goll, D.E.; Thompson, V.F.; Li, H.; Wei, W.; Cong, J. The calpain system. Physiol. Rev. 2003, 83, 731–801. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Brown, K.; Siebenlist, U. Activation of nf-kappa b requires proteolysis of the inhibitor i kappa b-alpha: Signal-induced phosphorylation of i kappa b-alpha alone does not release active nf-kappa b. Proc. Natl. Acad. Sci. USA 1995, 92, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Nuzzi, P.A.; Senetar, M.A.; Huttenlocher, A. Asymmetric localization of calpain 2 during neutrophil chemotaxis. Mol. Biol. Cell 2007, 18, 795–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellocq, A.; Doublier, S.; Suberville, S.; Perez, J.; Escoubet, B.; Fouqueray, B.; Puyol, D.R.g.; Baud, L. Somatostatin increases glucocorticoid binding and signaling in macrophages by blocking the calpain-specific cleavage of hsp 90. J. Biol. Chem. 1999, 274, 36891–36896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, Y.; Yamamoto, K.; Saido, T.; Kawasaki, H.; Oppenheim, J.J.; Matsushima, K. Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1 alpha. Proc. Natl. Acad. Sci. USA 1990, 87, 5548–5552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letavernier, E.; Perez, J.; Bellocq, A.; Mesnard, L.; de Castro Keller, A.; Haymann, J.-P.; Baud, L. Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin ii–induced hypertension. Circ. Res. 2008, 102, 720–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machnicka, B.; Czogalla, A.; Hryniewicz-Jankowska, A.; Bogusławska, D.M.; Grochowalska, R.; Heger, E.; Sikorski, A.F. Spectrins: A structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim. et Biophys. Acta (BBA)-Biomembr. 2014, 1838, 620–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanouna, G.; Mesnard, L.; Vandermeersch, S.; Perez, J.; Placier, S.; Haymann, J.-P.; Campagne, F.; Moroch, J.; Bataille, A.; Baud, L. Specific calpain inhibition protects kidney against inflammaging. Sci. Rep. 2017, 7, 8016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tohyama, J.; Nakashima, M.; Nabatame, S.; Miyata, R.; Rener-Primec, Z.; Kato, M.; Matsumoto, N.; Saitsu, H. Sptan1 encephalopathy: Distinct phenotypes and genotypes. J. Hum. Genet. 2015, 60, 167–173. [Google Scholar] [CrossRef]
- Lubbers, E.R.; Murphy, N.P.; Musa, H.; Huang, C.Y.-M.; Gupta, R.; Price, M.V.; Han, M.; Daoud, G.; Gratz, D.; El Refaey, M. Defining new mechanistic roles for αii spectrin in cardiac function. J. Biol. Chem. 2019, 294, 9576–9591. [Google Scholar] [CrossRef]
- Wang, X.; Gao, G.; Liu, J.; Guo, R.; Lin, Y.; Chu, Y.; Han, F.; Zhang, W.; Bai, Y. Identification of differentially expressed genes induced by angiotensin ii in rat cardiac fibroblasts. Clin. Exp. Pharmacol. Physiol. 2006, 33, 41–46. [Google Scholar] [CrossRef]
- Levy, S.B.; Lilley, J.J.; Frigon, R.P.; Stone, R.A. Urinary kallikrein and plasma renin activity as determinants of renal blood flow. The influence of race and dietary sodium intake. J. Clin. Investig. 1977, 60, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luft, F.; Grim, C.; Higgins, J., Jr.; Weinberger, M. Differences in response to sodium administration in normotensive white and black subjects. J. Lab. Clin. Med. 1977, 90, 555–562. [Google Scholar] [PubMed]
- Alderman, M.H.; Madhavan, S.; Ooi, W.L.; Cohen, H.; Sealey, J.E.; Laragh, J.H. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N. Engl. J. Med. 1991, 324, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Faul, C.; Asanuma, K.; Yanagida-Asanuma, E.; Kim, K.; Mundel, P. Actin up: Regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 2007, 17, 428–437. [Google Scholar] [CrossRef]
- Reiser, J.; Polu, K.R.; Möller, C.C.; Kenlan, P.; Altintas, M.M.; Wei, C.; Faul, C.; Herbert, S.; Villegas, I.; Avila-Casado, C. Trpc6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 2005, 37, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, C.C.; Wei, C.; Altintas, M.M.; Li, J.; Greka, A.; Ohse, T.; Pippin, J.W.; Rastaldi, M.P.; Wawersik, S.; Schiavi, S. Induction of trpc6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol. 2007, 18, 29–36. [Google Scholar] [CrossRef]
- Zheng, S.; Carlson, E.C.; Yang, L.; Kralik, P.M.; Huang, Y.; Epstein, P.N. Podocyte-specific overexpression of the antioxidant metallothionein reduces diabetic nephropathy. J. Am. Soc. Nephrol. 2008, 19, 2077–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, C.C.; Flesche, J.; Reiser, J. Sensitizing the slit diaphragm with trpc6 ion channels. J. Am. Soc. Nephrol. 2009, 20, 950–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Chen, N.; Wang, Z.-h.; Pan, X.-x.; Ren, H.; Zhang, W.; Wang, W.-m. Identification and functional analysis of a novel trpc6 mutation associated with late onset familial focal segmental glomerulosclerosis in chinese patients. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 2009, 664, 84–90. [Google Scholar] [CrossRef]
- Santín, S.; Ars, E.; Rossetti, S.; Salido, E.; Silva, I.; García-Maset, R.; Giménez, I.; Ruíz, P.; Mendizábal, S.; Luciano Nieto, J. Trpc6 mutational analysis in a large cohort of patients with focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2009, 24, 3089–3096. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, T.; Obukhov, A.G.; Schaefer, M.; Harteneck, C.; Gudermann, T.; Schultz, G. Direct activation of human trpc6 and trpc3 channels by diacylglycerol. Nature 1999, 397, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, K.; Wang, Y.; McAnally, J.; Richardson, J.A.; Bassel-Duby, R.; Hill, J.A.; Olson, E.N. Trpc6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Investig. 2006, 116, 3114–3126. [Google Scholar] [CrossRef] [PubMed]
- Ruggenenti, P.; Perna, A.; Gherardi, G.; Garini, G.; Zoccali, C.; Salvadori, M.; Scolari, F.; Schena, F.P.; Remuzzi, G. Renoprotective properties of ace-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 1999, 354, 359–364. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Perna, A.; Loriga, G.; Ganeva, M.; Ene-Iordache, B.; Turturro, M.; Lesti, M.; Perticucci, E.; Chakarski, I.N.; Leonardis, D. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (rein-2): Multicentre, randomised controlled trial. Lancet 2005, 365, 939–946. [Google Scholar] [CrossRef]
- Saleh, S.; Albert, A.P.; Peppiatt, C.; Large, W. Angiotensin ii activates two cation conductances with distinct trpc1 and trpc6 channel properties in rabbit mesenteric artery myocytes. J. Physiol. 2006, 577, 479–495. [Google Scholar] [CrossRef] [PubMed]
- Onohara, N.; Nishida, M.; Inoue, R.; Kobayashi, H.; Sumimoto, H.; Sato, Y.; Mori, Y.; Nagao, T.; Kurose, H. Trpc3 and trpc6 are essential for angiotensin ii-induced cardiac hypertrophy. EMBO J. 2006, 25, 5305–5316. [Google Scholar] [CrossRef]
- Van den Hoven, M.J.; Waanders, F.; Rops, A.L.; Kramer, A.B.; Van Goor, H.; Berden, J.H.; Navis, G.; Van der Vlag, J. Regulation of glomerular heparanase expression by aldosterone, angiotensin ii and reactive oxygen species. Nephrol. Dial. Transplant. 2009, 24, 2637–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison-Bernard, L.M.; Navar, L.G.; Ho, M.; Vinson, G.; El-Dahr, S. Immunohistochemical localization of ang ii at1 receptor in adult rat kidney using a monoclonal antibody. Am. J. Physiol.-Ren. Physiol. 1997, 273, F170–F177. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; Podlich, D.; Hähnel, B.; Kriz, W.; Gretz, N. Angiotensin ii type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J. Am. Soc. Nephrol. 2004, 15, 1475–1487. [Google Scholar] [CrossRef] [Green Version]
- Huby, A.-C.; Rastaldi, M.-P.; Caron, K.; Smithies, O.; Dussaule, J.-C.; Chatziantoniou, C. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS ONE 2009, 4, e6721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanock, S.J.; Manolio, T.; Boehnke, M.; Boerwinkle, E.; Hunter, D.J.; Thomas, G.; Hirschhorn, J.N.; Abecasis, G.; Altshuler, D.; Bailey-Wilson, J.E. Replicating genotype–phenotype associations. Nature 2007, 447, 655. [Google Scholar]
- Rönn, T.; Volkov, P.; Davegårdh, C.; Dayeh, T.; Hall, E.; Olsson, A.H.; Nilsson, E.; Tornberg, Å.; Nitert, M.D.; Eriksson, K.-F. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013, 9, e1003572. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, M.E.; Marabita, F.; Gomez-Cabrero, D.; Rundqvist, H.; Ekström, T.J.; Tegnér, J.; Sundberg, C.J. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics 2014, 9, 1557–1569. [Google Scholar] [CrossRef] [PubMed]
Low Renin Group | High Renin Group | |||||
---|---|---|---|---|---|---|
Normotensive | New-Onset Hypertension | p-Value | Normotensive | New-Onset Hypertension | p-Value | |
No. subjects (%) | 2372 | 1294 | 1135 | 410 | ||
Age (years) | 49.2 ± 7.9 | 53.9 ± 8.8 | <0.001 | 49.1 ± 8.2 | 51.9 ± 8.8 | <0.001 |
Sex, n (%) | 0.069 | 0.009 | ||||
Male | 944 (39.8) | 555 (42.9) | 667 (58.8) | 271 (66.1) | ||
Female | 1428 (60.2) | 739 (57.1) | 468 (41.2) | 139 (33.9) | ||
Body mass index (kg/m2) | 24.0 ± 2.9 | 24.9 ± 3.0 | <0.001 | 23.8 ± 2.9 | 24.5 ± 3.2 | <0.001 |
Fasting plasma glucose (mg/dL) | 88.9 ± 16.6 | 91.8 ± 20.7 | <0.001 | 92.2 ± 23.1 | 96.5 ± 35.0 | 0.007 |
Total cholesterol (mg/dL) | 193.0 ± 34.7 | 196.1 ± 34.8 | 0.016 | 199.6 ± 34.5 | 202.4 ± 38.2 | 0.173 |
Triglycerides (mg/dL) | 132.4 ± 92.0 | 150.9 ± 99.7 | <0.001 | 141.1 ± 97.9 | 168.9 ± 117.8 | <0.001 |
HDL cholesterol (mg/dL) | 50.2 ± 11.7 | 48.4 ± 11.2 | <0.001 | 50.3 ± 11.9 | 49.7 ± 12.2 | 0.379 |
Systolic blood pressure (mmHg) | 120.8 ± 19.7 | 121.1 ± 19.3 | 0.663 | 119.8 ± 18.0 | 120.6 ± 18.9 | 0.449 |
Diastolic blood pressure (mmHg) | 88.9 ± 16.6 | 79.9 ± 12.4 | 0.337 | 79.8 ± 11.4 | 79.3 ± 11.9 | 0.450 |
Current smoker, n (%) | 509 (21.4) | 323 (24.9) | 0.015 | 361 (31.8) | 143 (34.9) | 0.256 |
Diabetes, n (%) | 165 (7.0) | 167 (13.0) | <0.001 | 103 (9.1) | 64 (15.6) | <0.001 |
CHR | SNP | BP | A1 | Total Hypertension Cases (n= 1704) and Controls (n = 3507) | Low Renin Group Cases (n = 1294) and Controls (n = 2372) | High Renin Group Cases (n = 410) and Controls (n = 1135) | Associations by Renin Group | Locus Top | Cluster Pick | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | L95 | U95 | p | OR | L95 | U95 | P | OR | L95 | U95 | p | |||||||
4 | rs11726091 | 4,952,412 | C | 1.14 | 1.04 | 1.24 | 3.3 × 10−3 | 1.03 | 0.93 | 1.14 | 5.5 × 10−1 | 1.48 | 1.25 | 1.75 | 4.2 × 10−6 | H | T | C |
4 | rs17038966 | 109,296,214 | A | 0.72 | 0.60 | 0.86 | 2.1 × 10−4 | 0.62 | 0.50 | 0.76 | 6.0 × 10−6 | 1.05 | 0.76 | 1.44 | 7.7 × 10−1 | L | T | C |
4 | rs145286444 | 167,264,137 | A | 1.33 | 1.15 | 1.55 | 2.1 × 10−4 | 1.54 | 1.28 | 1.84 | 2.9 × 10−6 | 0.97 | 0.72 | 1.30 | 8.2 × 10−1 | L | T | C |
5 | rs2118663 | 153,340,145 | C | 1.26 | 1.10 | 1.44 | 1.0 × 10−3 | 1.46 | 1.24 | 1.71 | 3.8 × 10−6 | 0.81 | 0.61 | 1.08 | 1.5 × 10−1 | L | T | C |
9 | rs12336898 | 131,305,177 | T | 0.85 | 0.78 | 0.93 | 4.8 × 10−4 | 0.77 | 0.69 | 0.86 | 1.3 × 10−6 | 1.09 | 0.93 | 1.29 | 2.9 × 10−1 | L | T | C |
11 | rs1938859 | 101,547,723 | T | 1.38 | 1.20 | 1.58 | 4.6 × 10−6 | 1.40 | 1.19 | 1.64 | 4.7 × 10−5 | 1.35 | 1.04 | 1.75 | 2.3 × 10−2 | M | T | C |
12 | rs7968218 | 94,189,185 | C | 0.74 | 0.65 | 0.84 | 4.1 × 10−6 | 0.75 | 0.65 | 0.88 | 2.3 × 10−4 | 0.68 | 0.53 | 0.88 | 3.9 × 10−3 | M | T | C |
18 | rs117246401 | 32,975,483 | T | 1.71 | 1.37 | 2.14 | 1.8 × 10−6 | 1.57 | 1.21 | 2.04 | 6.6 × 10−4 | 2.09 | 1.38 | 3.16 | 5.1 × 10−4 | M | T | C |
22 | rs8137145 | 25,213,480 | T | 0.83 | 0.76 | 0.91 | 6.6 × 10−5 | 0.91 | 0.82 | 1.01 | 7.7 × 10−2 | 0.67 | 0.57 | 0.80 | 6.4 × 10−6 | H | T | C |
CHR | SNP | BP | A1 | Renin Group | Locus | Nearby Genes (±100 kbp) | Function | Previous GWAS (±100 kbp) | eQTL |
---|---|---|---|---|---|---|---|---|---|
4 | rs11726091 | 4,952,412 | C | H | 4p16.2 | MSX1 CYTL1 | Intergenic | Body mass index, waist-hip ratio, post bronchodilator FEV1/FVC ratio, lung function (FVC), pediatric autoimmune diseases [17,18,19] | MSX1 (artery-aorta, muscle-skeletal) |
4 | rs17038966 | 109,296,214 | A | L | 4q25 | No gene | Intergenic | Lung function (FVC), hair colour, tooth agenesis, airflow obstruction [20,21,22] | |
4 | rs145286444 | 167,264,137 | A | L | 4q32.3 | TTL1 | Intergenic | Velopharyngeal dysfunction, serous borderline ovarian cancer, obesity-related traits [23,24,25] | |
5 | rs2118663 | 153,340,145 | C | L | 5q33.2 | FAM114A2 MFAP3 | 3′ downstream | Educational attainment (MTAG), red cell distribution width, multiple sclerosis [26,27,28] | FAM114A2 (muscle-skeletal, whole-blood, heart-atrial appendage, brain-frontal-cortex, adipose-subcutaneous, cultured-fibroblasts) |
9 | rs12336898 | 131,305,177 | T | L | 9q34.11 | ODF2 GLE1 SPTAN1 | 3′ downstream | Axial length, pulse pressure [29] | |
11 | rs1938859 | 101,547,723 | T | M | 11q22.1 | TRPC6 | 5′ upstream | Sleep duration, general risk tolerance (MTAG), change in LVEF in response to paclitaxel and trastuzumab in HER2+ breast cancer [30,31,32] | TRPC6 (colon-sigmoid, pancreas, heart-left-ventricle, nerve-tibial) |
12 | rs7968218 | 94,189,185 | C | M | 12q22 | CRADD | Intron | Lung function (FVC), waist-to-hip ratio, Alzheimer’s disease (cognitive decline) [33,34,35] | |
18 | rs117246401 | 32,975,483 | T | M | 18q12.2 | ZNF271P, ZNF396, INO80C | Intergenic | Highest math class taken (MTAG), Parkinson’s disease, well-being spectrum (multivariate analysis), neuroticism, life satisfaction, parasitaemia in Tripanosoma cruzi seropositivity [36,37,38] | |
22 | rs8137145 | 25,213,480 | T | H | 22q11.23 | PIWIL3 SGSM1 | Intron of SGSM1 | Macrophage migration inhibitory factor levels, nicotine dependence and major depression (severity of comorbidity), resting-state electroencephalogram vigilance [39,40,41] | SGSM1 (muscle-skeletal, lung, adipose-visceral, spleen, pancreas, whole-blood) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-B.; Park, B.; Hong, K.-W.; Jung, D.-H. Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study. J. Cardiovasc. Dev. Dis. 2022, 9, 104. https://doi.org/10.3390/jcdd9040104
Lee S-B, Park B, Hong K-W, Jung D-H. Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study. Journal of Cardiovascular Development and Disease. 2022; 9(4):104. https://doi.org/10.3390/jcdd9040104
Chicago/Turabian StyleLee, Sung-Bum, Byoungjin Park, Kyung-Won Hong, and Dong-Hyuk Jung. 2022. "Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study" Journal of Cardiovascular Development and Disease 9, no. 4: 104. https://doi.org/10.3390/jcdd9040104
APA StyleLee, S.-B., Park, B., Hong, K.-W., & Jung, D.-H. (2022). Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study. Journal of Cardiovascular Development and Disease, 9(4), 104. https://doi.org/10.3390/jcdd9040104