A Single Center Study on the Risks of Peri-Intervention Stroke in Thoracic Endovascular Aortic Repair (TEVAR) and Endovascular Abdominal Aortic Repair (EVAR)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Setting
2.2. Definitions of Terms
2.3. Data Collection
2.4. Statistical Analysis
2.5. Ethical Consideration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papangelou, A.; Mirski, M. Risk assessment and prevention of perioperative stroke. In Intensive Care Medicine: Annual Update 2010; Vincent, J.-L., Ed.; Springer New York: New York, NY, USA, 2010; pp. 439–454. [Google Scholar]
- Hart, R.; Hindman, B. Mechanisms of perioperative cerebral infarction. Stroke 1982, 13, 766–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Oria, M.; Mani, K.; DeMartino, R.; Czerny, M.; Donas, K.P.; Wanhainen, A.; Lepidi, S. Narrative review on endovascular techniques for left subclavian artery revascularization during thoracic endovascular aortic repair and risk factors for postoperative stroke. Interact. Cardiovasc. Thorac. Surg. 2021, 32, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Kotelis, D.; Bischoff, M.S.; Jobst, B.J.; von Tengg-Kobligk, H.; Hinz, U.; Geisbüsch, P.; Böckler, D. Morphological risk factors of stroke during thoracic endovascular aortic repair. Langenbeck’s Arch. Surg. 2012, 397, 1267–1273. [Google Scholar] [CrossRef]
- Ullery, B.; McGarvey, M.; Cheung, A.T.; Fairman, R.M.; Jackson, B.M.; Woo, E.Y.; Desai, N.D.; Wang, G.J. Vascular distribution of stroke and its relationship to perioperative mortality and neurologic outcome after thoracic endovascular aortic repair. J. Vasc. Surg. 2012, 56, 1510–1517. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.I.; Rahman, H.A.; Adil, M.M.; E Hassan, A.; Miley, J.T. Aortic arch calcification, procedural times, and outcomes of endovascular treatment in patients with acute ischemic stroke. J. Vasc. Interv. Neurol. 2014, 7, 1–6. [Google Scholar]
- Buth, J.; Harris, P.L.; Hobo, R.; van Eps, R.; Cuypers, P.; Duijm, L.; Tielbeek, X. Neurologic complications associated with endovascular repair of thoracic aortic pathology: Incidence and risk factors. A study from the European Collaborators on Stent/Graft Techniques for Aortic Aneurysm Repair (EUROSTAR) Registry. J. Vasc. Surg. 2007, 46, 1103–1111.e2. [Google Scholar] [CrossRef] [Green Version]
- Ryomoto, M.; Tanaka, H.; Mitsuno, M.; Yamamura, M.; Sekiya, N.; Uemura, H.; Sato, A.; Ueda, D. A Novel Approach to Prevent Perioperative Stroke in Patients Undergoing Debranching Thoracic Endovascular Aortic Repair with a Mini-Cardiopulmonary Bypass Support. Ann. Vasc. Surg. 2019, 59, 143–149. [Google Scholar] [CrossRef]
- Holt, P.; Thompson, M. Comments regarding “Predictors of Stroke and Paraplegia in Thoracic Aortic Endovascular Intervention”. Eur. J. Vasc. Endovasc. Surg. 2011, 42, 127. [Google Scholar] [CrossRef] [Green Version]
- Brescia, A.A.; Fukuhara, S. Commentary: Zone 0 thoracic endovascular aortic repair stroke risk remains too high. JTCVS Tech. 2020, 5, 12. [Google Scholar] [CrossRef]
- Chung, J.; Kasirajan, K.; Veeraswamy, R.K.; Dodson, T.F.; Salam, A.A.; Chaikof, E.L.; Corriere, M.A. Left subclavian artery coverage during thoracic endovascular aortic repair and risk of perioperative stroke or death. J. Vasc. Surg. 2011, 54, 979–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, R.J.; Ahanchi, S.S.; Powell, O.; Larion, S.; Brandt, C.; Soult, M.C.; Panneton, J.M. Left subclavian artery revascularization in zone 2 thoracic endovascular aortic repair is associated with lower stroke risk across all aortic diseases. J. Vasc. Surg. 2017, 65, 1270–1279. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, K.; Washiyama, N.; Takahashi, D.; Shiiya, N. Functional brain isolation technique for stroke prevention in thoracic endovascular aortic repair. Eur. J. Cardio-Thoracic Surg. 2021, 60, 420–422. [Google Scholar] [CrossRef]
- Varkevisser, R.R.B.; Swerdlow, N.J.; De Guerre, L.E.V.M.; Dansey, K.; Li, C.; Liang, P.; Latz, C.A.; Mota, M.T.C.; Verhagen, H.J.M.; Schermerhorn, M.L. Thoracic Endovascular Aortic Repair With Left Subclavian Artery Coverage Is Associated With a High 30-Day Stroke Incidence With or Without Concomitant Revascularization. J. Endovasc. Ther. 2020, 27, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Leemingsawat, P.; Kongsayreepong, S.; Komoltri, C.; Prayoonwiwat, N.; Nilanont, Y. Incidence and risk factors of perioperative stroke in Siriraj Hospital. J. Med Assoc. Thail. Chotmaihet Thangphaet 2012, 95, 1167–1172. [Google Scholar]
- Selim, M. Perioperative stroke. N. Engl. J. Med. 2007, 356, 706–713. [Google Scholar] [CrossRef]
- Sanders, R.D.; Grocott, H.P. Perioperative stroke: Time to redefine the impact of age? Stroke 2012, 43, 3–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerr, M.K.J.; Furnary, A.P.; Grunkemeier, G.L.; Bookin, S.; Kanhere, V.; Starr, A. Glucose Control Lowers the Risk of Wound Infection in Diabetics After Open Heart Operations. Ann. Thorac. Surg. 1997, 63, 356–361. [Google Scholar] [CrossRef]
- American Diabetes Association Workgroup on Hypoglycemia Defining and Reporting Hypoglycemia in Diabetes. Diabetes Care 2005, 28, 1245–1249. [CrossRef] [Green Version]
- Canet, J.; Gallart, L. Postoperative respiratory failure: Pathogenesis, prediction, and prevention. Curr. Opin. Crit. Care 2014, 20, 56–62. [Google Scholar] [CrossRef]
- Gutsche, J.T.; Cheung, A.T.; McGarvey, M.L.; Moser, W.G.; Szeto, W.; Carpenter, J.P.; Fairman, R.M.; Pochettino, A.; Bavaria, J.E. Risk Factors for Perioperative Stroke After Thoracic Endovascular Aortic Repair. Ann. Thorac. Surg. 2007, 84, 1195–1200. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 10 December 2019).
- Kongkamol, C. DiagnosisMed: For Medical Students, Version 1.0; 2010. Available online: http://medinfo2.psu.ac.th/commed/R (accessed on 3 October 2017).
- Chongsuvivatwong, V. Epicalc: Epidemiological Calculator. R Package Version 2.15.1.0. Available online: http://CRAN.R-project.org/package=epicalc (accessed on 3 October 2017).
- Epidemiology Unit, Faculty of Medicine, Prince of Songkhla University. Epid: Functions for Epidemiology, Version 2.11.0.1. 2010. Available online: http://www.r-ice-project.net (accessed on 3 October 2017).
- Feezor, R.J.; Martin, T.D.; Hess, P.J.; Klodell, C.T.; Beaver, T.M.; Huber, T.S.; Seeger, J.M.; Lee, W.A. Risk factors for perioperative stroke during thoracic endovascular aortic repairs (TEVAR). J. Endovasc. Ther. 2007, 14, 568–573. [Google Scholar] [CrossRef]
- Yoshitake, A.; Hachiya, T.; Okamoto, K.; Kitahara, H.; Kawaguchi, S.; Nakatsuka, S.; Inoue, M.; Jinzaki, M.; Shimizu, H. Postoperative Stroke after Debranching with Thoracic Endovascular Aortic Repair. Ann. Vasc. Surg. 2016, 36, 132–138. [Google Scholar] [CrossRef]
- De Rango, P.; Ferrer, C.; Coscarella, C.; Musumeci, F.; Verzini, F.; Pogany, G.; Montalto, A.; Cao, P. Contemporary comparison of aortic arch repair by endovascular and open surgical reconstructions. J. Vasc. Surg. 2015, 61, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonker, F.H.W.; Verhagen, H.J.M.; Heijmen, R.H.; Lin, P.H.; Trimarchi, S.; Lee, W.A.; Moll, F.L.; Athamneh, H.; Muhs, B.E. Endovascular Repair of Ruptured Thoracic Aortic Aneurysms: Predictors of Procedure-Related Stroke. Ann. Vasc. Surg. 2011, 25, 3–8. [Google Scholar] [CrossRef] [PubMed]
- von Allmen, R.S.; Gahl, B.; Powell, J.T. Incidence of Stroke Following Thoracic Endovascular Aortic Repair for Descending Aortic Aneurysm: A Systematic Review of the Literature with Meta-analysis. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Schoenhoff, F.S.; Carrel, T.P. Commentary: Stroke after thoracic endovascular aortic repair: Can you “plug” the problem? J. Thorac. Cardiovasc. Surg. 2019, 157, 1348–1349. [Google Scholar] [CrossRef] [Green Version]
- Lyons, O.; Schmidli, J. Preventing stroke due to intervention in the aortic arch. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 246–247. [Google Scholar] [CrossRef]
- Clough, R.; Modarai, B.; Topple, J.; Bell, R.; Carrell, T.; Zayed, H.; Waltham, M.; Taylor, P. Predictors of Stroke and Paraplegia in Thoracic Aortic Endovascular Intervention. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, J.S.; Rizvi, A.Z. Left subclavian artery revascularization: Society for Vascular Surgery® Practice Guidelines. J. Vasc. Surg. 2010, 52, 65S–70S. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, R.; Niessner, A.; Kypta, A.; Steinwender, C.; Kammler, J.; Kerschner, K.; Grund, M.; Leisch, F.; Huber, K. Risk Score for Peri-Interventional Complications of Carotid Artery Stenting. Stroke 2006, 37, 2557–2561. [Google Scholar] [CrossRef] [PubMed]
- Hamandi, M.; Farber, A.J.; Tatum, J.K.; Brinkman, W.T.; Brown, D.L.; Lawrence, M.E.; Mack, M.J. Acute stroke intervention after transcatheter aortic valve replacement. Bayl. Univ. Med. Cent. 2018, 3, 490–492. [Google Scholar] [CrossRef] [PubMed]
Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|
Variable | PIS (n = 9) | Non-PIS (n = 36) | p Value | OR (95% CI) | p Value |
Pre-intervention | |||||
Sex, male | 7 (77.8) | 23 (63.9) | 0.695 1 | ||
Age, years, mean (SD) | 71.8 (8.8) | 62.5 (13.2) | 0.053 2 * | 2.38 (1.78–2.98) | 0.067 |
BMI, kg/m2, mean (SD) | 20.8 (2.3) | 23.3 (3.9) | 0.704 2 | ||
Hypertension | 6 (66.7) | 26 (72.2) | 0.793 1 | ||
Diabetes mellitus | 1 (11.1) | 3 (8.3) | 0.267 3 | ||
Dyslipidemia | 6 (66.7) | 15 (41.7) | 0.698 1 | ||
Renal insufficiency | 2 (22.2) | 12 (33.3) | 0.409 3 | ||
Peripheral arterial disease | 0 (0.0) | 2 (5.5) | 0.614 3 | ||
Coronary artery disease | 2 (22.2) | 5 (13.9) | 0.469 3 | ||
Atrial fibrillation | 0 (0.0) | 2 (5.5) | 0.651 3 | ||
Previous stroke/TIA | 2 (22.2) | 6 (16.6) | 0.284 3 | ||
COPD | 1 (11.1) | 3 (8.3) | 0.793 3 | ||
Antiplatelet(s) used | 4 (44.4) | 12 (33.3) | 0.569 1 | ||
Anticoagulant(s) used | 0 (0.0) | 1 (2.7) | 0.613 3 | ||
Smoking | 6 (66.7) | 16 (44.4) | 0.014 1 * | 1.34 (0.14–12.98) | 0.916 |
Previous cardiac surgery | 0 (0.0) | 8 (22.2) | 0.179 3 | ||
Pre-intervention inotropic drug | 0 (0.0) | 3 (8.3) | 0.370 3 | ||
Pre-int SBP mmHg, mean (SD) | 120 (15.64) | 130 (18.12) | 0.148 2 | ||
Site of maximal atheromatous thickness | 0.770 1 | ||||
Aortic arch | 3 (33.3) | 13 (36.1) | |||
Descending thoracic aorta | 0 (0.0) | 3 (8.3) | |||
Descending abdominal aorta | 3(33.3) | 8 (22.2) | |||
Grading of atheroma thickness | 0.219 1 | ||||
I | 0 (0.0) | 7 (19.4) | |||
II | 1 (11.1) | 9 (25.0) | |||
III | 3 (33.3) | 9 (25.0) | |||
IV | 5 (55.6) | 10 (27.8) | |||
Aortic arch atheroma | 7 (77.8) | 35 (97.2) | 0.036 1 * | 0.10 (0.01–1.26) | 0.288 |
Grading of aortic arch atheroma | 0.032 1 * | 0.18 (0.04-0.73) | 0.169 | ||
I | 0 (0.0) | 8 (22.2) | |||
II | 0 (0.0) | 9 (25.0) | |||
III | 3 (33.3) | 13 (36.1) | |||
IV | 4 (44.4) | 5 (13.9) | |||
Diagnosis | 0.659 1 | ||||
Aortic aneurysm | 8 (88.8) | 27 (75) | |||
Aortic dissection | 1 (11.1) | 9 (25) | |||
Location of aorta | 0.827 1 | ||||
Aortic arch | 2 (22.2) | 9 (25) | |||
Descending aorta | 8 (88.8) | 31 (86.1) | |||
Ruptured aortic aneurysm | 2 (22.2) | 4 (11.1) | 0.537 3 | ||
Intra-intervention | |||||
Surgeon | 0.885 1 | ||||
No. 1 | 3 (33.3) | 8 (22.2) | |||
No. 2 | 2 (22.2) | 8 (22.2) | |||
No. 3 | 2 (22.2) | 8 (22.2) | |||
No. 4 | 2 (22.2) | 12 (33.3) | |||
Emergency surgery | 6 (66.7) | 24 (66.7) | > 0.999 1 | ||
General anesthesia | > 0.999 1 | ||||
Target control infusion | 9 (100.0) | 33 (91.7) | |||
Total intravenous anesthesia | 0 (0.0) | 3 (8.3) | |||
Intervention time, min, median (IQR) | 420 (142–570) | 175 (121–288) | 0.047 4 * | 2.07 (1.87–2.27) | 0.402 |
Hypotension, | 8 (88.9) | 26 (72.2) | 0.416 1 | ||
Blood loss, mL, median (IQR) | 1400 (600–1600) | 360 (250–1900) | 0.016 4 * | 1.99 (1.88–21.12) | <0.001 * |
LSCA coverage and bypass | 5 (55.5) | 12 (33.3) | 0.265 1 | ||
Chimney graft used | 0 (0) | 3 (8.3) | >0.999 3 | ||
Hypoglycemia | 0 (0.0) | 0 (0.0) | >0.999 3 | ||
Hyperglycemia | 2 (22.2) | 1 (2.8) | 0.097 3 * | 10 (0.79, 126.03) | 0.289 |
Atrial fibrillation | 1 (11.1) | 1 (2.8) | 0.364 3 | ||
Post-intervention | |||||
Hypotension | 2 (22.2) | 3 (8.3) | 0.258 3 | ||
Atrial fibrillation | 1 (11.1) | 0 (0.0) | 0.200 3 | ||
Hypoglycemia | 0 (0.0) | 1 (2.8) | >0.999 3 | ||
Hyperglycemia | 4 (44.4) | 3 (8.3) | 0.027 3 * | 8.69 (1.51–50.08) | 0.080 |
Respiratory failure | 6 (66.7) | 12 (33.3) | 0.126 1 | ||
Re-operation(s) | 1 (11.1) | 1 (2.8) | 0.364 3 | ||
Acute coronary syndrome | 0 (0.0) | 0 (0.0) | >0.999 3 | ||
Congestive heart failure | 0 (0.0) | 1 (2.8) | >0.999 3 |
Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|
Variables | PIS (n = 8) | Non-PIS (n = 32) | p Value | OR (95 CI) | p Value |
Pre-intervention | |||||
Sex, male | 7 (87.5) | 28 (87.5) | >0.999 1 | ||
Age, years, mean (SD) | 70.3 (5.2) | 71.9 (8.3) | 0.589 2 | ||
BMI, kg/m2, mean (SD) | 20.9 (3.4) | 22.4 (3.4) | 0.278 2 | ||
Hypertension | 7 (87.5) | 27 (84.4) | 0.825 1 | ||
Diabetes mellitus | 2 (25.0) | 5 (15.6) | 0.533 3 | ||
Dyslipidemia | 4 (50.0) | 20 (62.5) | 0.519 1 | ||
Renal insufficiency | 3 (37.5) | 17 (53.1) | 0.429 1 | ||
Peripheral arterial disease | 1 (12.5) | 0 (0.0) | 0.200 3 | ||
Coronary artery disease | 1 (12.5) | 1 (3.1) | 0.277 3 | ||
Atrial fibrillation | 0 (0.0) | 1 (3.1) | 0.613 3 | ||
Previous stroke/TIA | 3 (37.5) | 0 (0.0) | 0.006 3 * | 1.03 (0.84–1.21) | 0.999 |
COPD | 2 (25.0) | 3 (9.4) | 0.006 3 * | ||
Antiplatelet used | 6 (75.0) | 15 (46.9) | 0.232 1 | ||
Anticoagulant used | 0 (0.0) | 0 (0.0) | 0.241 3 | ||
Smoking | 5 (62.5) | 17 (53.1) | >0.999 1 | 0.90 (0.22–3.67) | 0.550 |
Previous cardiac surgery | 2 (25.0) | 1 (3.1) | 0.090 3 * | 10.33 (0.80–132.96) | 0.190 |
Preintervention inotropic drug | 1 (12.5) | 2 (6.3) | 0.096 3 * | ||
Pre-int SBP mmHg, mean (SD) | 121.0 (29.3) | 130.5 (17.7) | 0.498 2 | ||
Sites of the maximal atheromatous thickness | 0.133 1 | ||||
Aortic arch | 3 (37.5) | 12 (37.5) | |||
Descending thoracic | 1 (12.5) | 0 (0.0) | |||
Descending abdominal aorta | 1 (12.5) | 12 (37.5) | |||
Grading of atheroma thickness | 0.919 1 | ||||
I | 0 (0.0) | 1 (3.1) | |||
II | 1 (12.5) | 3 (9.4) | |||
III | 2 (25.0) | 6 (18.8) | |||
IV | 4 (50.0) | 14 (43.8) | |||
Aortic arch atheroma | 7 (87.5) | 24 (75.0) | 0.449 1 | ||
Grading of aortic arch atheroma | 0.789 1 | ||||
I | 0 (0.0) | 1 (3.1) | |||
II | 1 (12.5) | 4 (12.5) | |||
III | 3 (37.5) | 6 (18.5) | |||
IV | 4 (37.5) | 13 (40.6) | |||
Diagnosis | >0.999 1 | ||||
Aortic Aneurysm | 8 (100) | 32 (100) | |||
Aortic dissection | 0 (0.0) | 0 (0.0) | |||
Location of abdominal aorta | 0.574 1 | ||||
Suprarenal | 0 (0.0) | 1 (3.1) | |||
Infrarenal | 8 (100.0) | 28 (87.5) | |||
Rupture aortic aneurysm | 1 (12.5) | 8 (25) | 0.442 1 | ||
Intra-intervention | |||||
Surgeon | 0.310 1 | ||||
No. 1 | 4 (50.0) | 9 (28.1) | |||
No. 2 | 3 (37.5) | 8 (25.0) | |||
No. 3 | 0 (0.0) | 8 (25.0) | |||
No. 4 | 1 (12.5) | 7 (21.9) | |||
Emergency surgery | 7 (87.5) | 24 (75.0) | 0.655 1 | ||
General anesthesia | 0.495 1 | ||||
Target control infusion | 6 (75.0) | 24 (75.0) | |||
Total intravenous anesthesia | 2 (25.0) | 8 (25.0) | |||
Intervention time, min, median (IQR) | 300 (160–540) | 160 (120–210) | 0.053 4 * | 2.16 (1.95–2.37) | 0.010 * |
Hypotension, | 6 (75.0) | 17 (53.1) | 0.428 1 | ||
blood loss, mL, median (IQR) | 425 (125,1900) | 125 (50–300) | 0.130 4 | ||
Chimney graft used | 3 (37.5) | 2 (6.2) | 0.047 3 * | 1.38 (0.42–2.56) | 0.596 |
Hypoglycemia | 0 (0.0) | 0 (0.0) | >0.999 3 | ||
Hyperglycemia | 0 (0.0) | 0 (0.0) | >0.999 3 | ||
Atrial fibrillation | 0 (0.0) | 1 (3.1) | >0.999 3 | ||
Post-intervention | |||||
Hypotension | 0 (0.0) | 1 (3.1) | >0.999 3 | ||
Atrial fibrillation | 4 (50.0) | 0 (0.0) | 0.001 3 * | 1.29 (0.25–22.92) | 0.709 |
Hypoglycemia | 0 (0.0) | 1 (3.1) | >0.999 3 | ||
Hyperglycemia | 3 (37.5) | 1 (3.1) | 0.020 3 * | 18.60 (1.60–216.06) | 0.001 * |
Respiratory failure | 4 (50.0) | 6 (18.8) | 0.089 1 * | 4.33 (0.84–22.47) | 0.608 |
Re-operations | 0 (0.0) | 0 (0.0) | >0.999 3 | ||
Acute coronary syndrome | 0 (0.0) | 0 (0.0) | >0.999 3 | ||
Congestive heart failure | 0 (0.0) | 0 (0.0) | >0.999 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chusooth, J.; Kongkamol, C.; Suwannanon, R.; Premprabha, D.; Chittithavorn, V.; Benjhawaleemas, P.; Sriplung, H.; Sathirapanya, P. A Single Center Study on the Risks of Peri-Intervention Stroke in Thoracic Endovascular Aortic Repair (TEVAR) and Endovascular Abdominal Aortic Repair (EVAR). J. Cardiovasc. Dev. Dis. 2022, 9, 10. https://doi.org/10.3390/jcdd9010010
Chusooth J, Kongkamol C, Suwannanon R, Premprabha D, Chittithavorn V, Benjhawaleemas P, Sriplung H, Sathirapanya P. A Single Center Study on the Risks of Peri-Intervention Stroke in Thoracic Endovascular Aortic Repair (TEVAR) and Endovascular Abdominal Aortic Repair (EVAR). Journal of Cardiovascular Development and Disease. 2022; 9(1):10. https://doi.org/10.3390/jcdd9010010
Chicago/Turabian StyleChusooth, Jirayoot, Chanon Kongkamol, Ruedeekorn Suwannanon, Dhanakom Premprabha, Voravit Chittithavorn, Pannawit Benjhawaleemas, Hutcha Sriplung, and Pornchai Sathirapanya. 2022. "A Single Center Study on the Risks of Peri-Intervention Stroke in Thoracic Endovascular Aortic Repair (TEVAR) and Endovascular Abdominal Aortic Repair (EVAR)" Journal of Cardiovascular Development and Disease 9, no. 1: 10. https://doi.org/10.3390/jcdd9010010
APA StyleChusooth, J., Kongkamol, C., Suwannanon, R., Premprabha, D., Chittithavorn, V., Benjhawaleemas, P., Sriplung, H., & Sathirapanya, P. (2022). A Single Center Study on the Risks of Peri-Intervention Stroke in Thoracic Endovascular Aortic Repair (TEVAR) and Endovascular Abdominal Aortic Repair (EVAR). Journal of Cardiovascular Development and Disease, 9(1), 10. https://doi.org/10.3390/jcdd9010010