Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New “Gold Standard”?
Abstract
:1. Introduction
2. Type of Devices
3. Volume Displacement vs. Rotary Blood Pumps
4. Rotary Blood Pumps: Axial or Centrifugal?
5. Ventricular Interdependence during Mechanical Circulatory Support
6. Vascular Pulsatility during LVAD Support
7. Pulsatile or Continuous Flow?
8. Control of Rotary Blood Pumps and Current Developments
9. The Role of Computational Fluid Dynamics in Thrombosis Modelling and Optimization
10. The Impact of Acquired von Willebrand Syndrome in VAD-Patients
11. Discussion
12. Conclusions
Conflicts of Interest
Abbreviations
REMATCH | Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure |
ROADMAP | Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device (LVAD) and Medical Management in Ambulatory Heart Failure Patients |
REVIVE-IT | Randomized Evaluation of VAD Intervention before Inotropic Therapy |
TETS | Transcutaneous Energy Transfer System |
LVAD | Left Ventricular Assist Device |
RVAD | Right Ventricular Assist Device |
References
- Rose, E.A.; Moskowitz, A.J.; Packer, M.; Sollano, J.A.; Williams, D.L.; Tierney, A.R.; Heitjan, D.F.; Meier, P.; Ascheim, D.D.; Levitan, R.G.; et al. The REMATCH Trial: Rationale, Design, and End Points. Ann. Thorac. Surg. 1999, 67, 723–730. [Google Scholar] [CrossRef]
- Rose, E.A.; Gelijns, A.C.; Moskowitz, A.J.; Heitjan, D.F.; Stevenson, L.W.; Dembitsky, W.; Long, J.W.; Ascheim, D.D.; Tierney, A.R.; Levitan, R.G.; et al. Long-Term Use Of A Left Ventricular Assist Device For End-Stage Heart Failure. N. Engl. J. Med. 2001, 345, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Tector, A.; Piccioni, W.; Raines, E.; Gelijns, A.; Moskowitz, A.; Rose, E.; Holman, W.; Furukawa, S.; Frazier, O.H.; et al. Left ventricular assist devices as destination therapy: A new look at survival. J. Thorac. Cardiovasc. Surg. 2005, 129, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, M.S.; Rogers, J.G.; Milano, C.A.; Russell, S.D.; Conte, J.V.; Feldman, D.; Sun, B.; Tatooles, A.J.; Delgado, R.M., III; Long, J.W.; et al. Advanced Heart Failure Treated with Continuous-Flow Left Ventricular Assist Device. N. Engl. J. Med. 2009, 361, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.J.; Ascheim, D.D.; Russo, M.J.; Kormos, R.L.; John, R.; Naka, Y.; Gelijns, A.C.; Hong, K.N.; Teuteberg, J.J. Clinical outcomes for continuous flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J. Heart Lung Transplant. 2011, 30, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Naftel, D.C.; Pagani, F.D.; Kormos, R.L.; Stevenson, L.; Miller, M.; Young, J.B. Long-term mechanical circulatory support (destination therapy): On track to compete with heart transplantation? J. Thorac. Cardiovasc. Surg. 2012, 144, 584–603. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Naftel, D.C.; Kormos, R.L.; Stevenson, L.W.; Pagani, F.D.; Miller, M.A.; Baldwin, J.T.; Young, J.B. Fifth INTERMACS annual report: Risk factor analysis from more than 6,000 mechanical circulatory support patients. J. Heart Lung Transplant. 2013, 32, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Holman, W.L.; Naftel, D.C.; Eckert, C.E.; Kormos, R.L.; Goldstein, D.J.; Kirklin, J.K. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support INTERMACS) 2006 to 2011. J. Thorac. Cardiovasc. Surg. 2013, 146, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Naftel, D.C.; Pagani, F.D.; Kormos, R.L.; Stevenson, L.W.; Blume, E.D.; Miller, M.A.; Baldwin, J.T.; Young, J.B. Sixth INTERMACS annual report: A 10,000-patient database. J. Heart Lung Transplant. 2014, 33, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Birks, E.J.; Tansley, P.D.; Yacoub, M.H.; Bowles, C.T.; Hipkin, M.; Hardy, J.; Banner, N.R.; Khaghani, A. Incidence and Clinical Management of Life-Threatening Left Ventricular Assist Device Failure. J. Heart Lung Transplant. 2004, 23, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Pagani, F.D.; Long, J.W.; Dembitsky, W.P.; Joyce, L.D.; Miller, L.W. Improved Mechanical Reliability of the HeartMate XVE Left Ventricular Assist System. Ann. Thorac. Surg. 2006, 82, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.W.; Pagani, F.D.; Russell, S.D.; John, R.; Boyle, A.J.; Aaronson, K.D.; Conte, J.V.; Naka, Y.; Mancini, D.; Delgado, R.M.; et al. Use of a Continuous-Flow Device in Patients Awaiting Heart Transplantation. N. Engl. J. Med. 2007, 357, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Pagani, F.D.; Miller, L.W.; Russell, S.D.; Aaronson, K.D.; John, R.; Boyle, A.J.; Conte, J.V.; Bogaev, R.C.; MacGillivray, T.E.; Naka, Y.; et al. Extended Mechanical Circulatory Support with a Continuous-Flow Rotary Left Ventricular Assist Device. J. Am. Coll. Cardiol. 2009, 54, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, F.H.; Russell, S.D. HeartMate® II continuous-flow left ventricular assist system. Expert Rev. Med. Devices 2011, 8, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Tuzun, E.; Roberts, K.; Cohn, W.E.; Sargin, M.; Gemmato, C.J.; Radovancevic, B.; Frazier, O.H. In Vivo Evaluation of the HeartWare Centrifugal Ventricular Assist Device. Tex. Heart Inst. J. 2007, 34, 406–411. [Google Scholar] [PubMed]
- Morshuis, M.; El-Banayosy, A.; Arusoglu, L.; Koerfer, R.; Hetzer, R.; Wieselthaler, G.; Pavie, A.; Nojiri, C. European experience of Duraheart™ magnetically levitated centrifugal left ventricular assist system. Eur. J. Cardiothorac. Surg. 2009, 35, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Wieselthaler, G.M.; O’Driscoll, G.; Jansz, P.; Khaghani, A.; Strueber, M.; HVAD Clinical Investigators. Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J. Heart Lung Transplant. 2010, 29, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Strueber, M.; O’Driscoll, G.; Jansz, P.; Khaghani, A.; Levy, W.C.; Wieselthaler, G.M.; HeartWare Investigators. Multicenter Evaluation of an Intrapericardial Left Ventricular Assist System. J. Am. Coll. Cardiol. 2011, 57, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Netuka, I.; Sood, P.; Pya, Y.; Zimpfer, D.; Krabatsch, T.; Garbade, J.; Rao, V.; Morshuis, M.; Marasco, S.; Beyersdorf, F.; et al. Fully Magnetically Levitated Left Ventricular Assist System for Treating Advanced HF. A Multicenter Study. J. Am. Coll. Cardiol. 2015, 66, 2579–2589. [Google Scholar] [CrossRef] [PubMed]
- Antaki, J.F.; Poirier, V.; Pagani, F.D. Engineering Concepts in the Design of Mechanical Circulatory Support. In Mechanical Circulatory Support; Frazier, O.H., Kirklin, J.K., Eds.; ISHLT Monograph Series; Elsevier: New York, NY, USA, 2006; pp. 33–52. [Google Scholar]
- Siess, T.; Reul, H. Basic Design Criteria for Rotary Blood Pumps. In Rotary Blood Pumps. New Developments and Current Applications; Matsuda, H., Ed.; Springer: Tokyo, Japan, 2000; pp. 69–83. [Google Scholar]
- Arnold, W.S.; Bourque, K. The engineer and the clinician: Understanding the work output and troubleshooting of the HeartMate II rotary flow pump. J. Thorac. Cardiovasc. Surg. 2013, 145, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Post, S. Fluid Dynamics. In Applied and Computational Fluid Mechanics; Post, S., Ed.; Jones and Bartlett Publishers: Sudbury, MA, USA, 2011; pp. 81–155. [Google Scholar]
- Wood, H.G.; Throckmorton, A.L.; Untaroiu, A.; Song, X. The medical physics of ventricular assist devices. Rep. Prog. Phys. 2005, 68, 545–576. [Google Scholar] [CrossRef]
- Moazami, N.; Fukamachi, K.; Kobayashi, M.; Smedira, N.G.; Hoercher, K.J.; Massiello, A.; Lee, S.; Horvath, D.J.; Starling, R.C. Axial and centrifugal continuous-flow rotary pumps: A translation from pump mechanics to clinical practice. J. Heart Lung Transplant. 2013, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sénage, T.; Février, D.; Michel, M.; Pichot, E.; Duveau, D.; Tsui, S.; Trochu, J.N.; Roussel, J.C. A Mock Circulatory System to Assess the Performance of Continuous-Flow Left Ventricular Assist Devices (LVADs): Does Axial Flow Unload Better Than Centrifugal LVAD? ASAIO J. 2014, 60, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, G.A.; Koenig, S.C.; Slaughter, M.S. Do Axial-Flow LVADs Unload Better than Centrifugal-Flow LVADs? ASAIO J. 2014, 60, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, M.S.; Bartoli, C.R.; Sobieski, M.A.; Pantalos, G.M.; Giridharan, G.A.; Dowling, R.D.; Prabhu, S.D.; Farrar, D.J.; Koenig, S.C. Intraoperative evaluation of the HeartMate II flow estimator. J. Heart Lung Transplant. 2009, 28, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Pennings, K.A.M.A.; Martina, J.R.; Rodermans, B.F.M.; Lahpor, J.R.; van de Vosse, F.N.; De Mol, B.A.J.M.; Rutten, M.C.M. Pump Flow Estimation From Pressure Head and Power Uptake for the HeartAssist5, HeartMate II and HeartWare VADs. ASAIO J. 2013, 59, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Salamonsen, R.F.; Mason, D.G.; Ayre, P.J. Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart. Artif. Organs 2011, 35, E47–E53. [Google Scholar] [CrossRef] [PubMed]
- Travis, A.R.; Giridharan, G.A.; Pantalos, G.M.; Dowling, R.D.; Prabhu, S.D.; Slaughter, M.S.; Sobieski, M.; Undar, A.; Farrar, D.J.; Koenig, S.C. Vascular pulsatility in patients with a pulsatile- or continuous-flow ventricular assist device. J. Thorac. Cardiovasc. Surg. 2007, 133, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, C.R.; Giridharan, G.A.; Litwak, K.N.; Sobieski, M.; Prabhu, S.D.; Slaughter, M.S.; Koenig, S.C. Hemodynamic Responses to Continuous versus Pulsatile Mechanical Unloading of the Failing Left Ventricle. ASAIO J. 2010, 56, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Soucy, K.G.; Koenig, S.C.; Giridharan, G.A.; Sobieski, M.A.; Slaughter, M.S. Defining pulsatility during continuous-flow ventricular assist device support. J. Heart Lung Transplant. 2013, 32, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Soucy, K.G.; Koenig, S.C.; Giridharan, G.A.; Sobieski, M.A.; Slaughter, M.S. Rotary pumps and diminished pulsatility: Do we need a pulse? ASAIO J. 2013, 59, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, F.; Boyle, A.; Liao, K.; Colvin-Adams, M.; Joyce, L.; John, R. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J. Heart Lung Transplant. 2009, 28, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.J.; Compton, P.G.; Hershon, J.J.; Fonger, J.D.; Hill, J.D. Right Heart Interaction with the Mechanically Assisted Left Heart. World J. Surg. 1985, 9, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.J. Ventricular interaction during mechanical circulatory support. Semin. Thorac. Cardiovasc. Surg. 1994, 6, 163–168. [Google Scholar] [PubMed]
- Santamore, W.P.; Gray, L.A., Jr. Left Ventricular Contributions to Right Ventricular Systolic Function during LVAD Support. Ann. Thorac. Surg. 1996, 61, 350–356. [Google Scholar] [CrossRef]
- McCarthy, P.M. Hemodynamic and physiologic changes during support with an implantable left ventricular assist device. J. Thorac. Cardiovasc. Surg. 1995, 109, 409–418. [Google Scholar] [CrossRef]
- Dang, N.C.; Topkara, V.K.; Mercando, M.; Kay, J.; Kruger, K.H.; Aboodi, M.S.; Oz, M.C.; Naka, Y. Right Heart Failure After Left Ventricular Assist Device Implantation in Patients with Chronic Congestive Heart Failure. J. Heart Lung Transplant. 2006, 25, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kavarana, M.N.; Pessin-Minsley, M.S.; Urtecho, J.; Catanese, K.A.; Flannery, M.; Oz, M.C.; Naka, Y. Right Ventricular Dysfunction and Organ Failure in Left Ventricular Assist Device Recipients: A Continuing Problem. Ann. Thorac. Surg. 2002, 73, 745–750. [Google Scholar] [CrossRef]
- Drakos, S.G.; Janicki, L.; Horne, B.D.; Kfoury, A.G.; Reid, B.B.; Clayson, S.; Horton, K.; Haddad, F.; Li, D.Y.; Renlund, D.G.; et al. Risk Factors Predictive of Right Ventricular Failure After Left Ventricular Assist Device Implantation. Am. J. Cardiol. 2010, 105, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Kormos, R.L.; Teuteberg, J.J.; Pagani, F.D.; Russell, S.D.; John, R.; Miller, L.W.; Massey, T.; Milano, C.A.; Moazami, N.; Sundareswaran, K.S.; et al. Right ventricular failure in patients with HeartMate II continuous-flow left ventricular assist device: Incidence, risk factors, and effect on outcomes. J. Thorac. Cardiovasc. Surg. 2010, 139, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.D.M.; Smedira, N.G.; Starling, R.C.; Marwick, T.H. Independent and Incremental Role of Quantitative Right Ventricular Evaluation for the Prediction of Right Ventricular Failure After Left Ventricular Assist Device Implantation. J. Am. Coll. Cardiol. 2012, 60, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.J.; Hill, J.D.; Pennington, D.G.; McBride, L.R.; Holman, W.L.; Kormos, R.L.; Esmore, D.; Gray, L.A., Jr.; Seifert, P.E.; Schoettle, G.P.; et al. Preoperative and Postoperative Comparison of Patients with Univentricular and Biventricular Support with the Thoratec Ventricular Assist Device as a Bridge to Cardiac Transplantation. J. Thorac. Cardiovasc. Surg. 1997, 113, 202–209. [Google Scholar] [CrossRef]
- Miyamoto, A.T.; Tanaka, S.; Matloff, J.M. Right ventricular function during left heart bypass. J. Thorac. Cardiovasc. Surg. 1983, 85, 49–53. [Google Scholar] [PubMed]
- Farrar, D.J.; Compton, P.G.; Dajee, H.; Fonger, J.D.; Hill, J.D. Right heart function during left heart assist and the effects of volume loading in a canine preparation. Circulation 1984, 70, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Fukamachi, K.; Asou, T.; Nakamura, Y.; Toshima, Y.; Oe, M.; Mitani, A.; Sakamoto, M.; Kishizaki, K.; Sunagawa, K.; Tokunaga, K. Effects of left heart bypass on right ventricular performance. Evaluation of the right ventricular end-systolic and end-diastolic pressure-volume relation in the in situ normal canine heart. J. Thorac. Cardiovasc. Surg. 1990, 99, 725–734. [Google Scholar] [PubMed]
- Elbeery, J.R.; Owen, C.H.; Savitt, M.A.; Davis, J.W.; Feneley, M.P.; Rankin, J.S.; VanTrigt, P. Effects of the left ventricular assist device on right ventricular function. J. Thorac. Cardiovasc. Surg. 1990, 99, 809–816. [Google Scholar] [PubMed]
- Moon, M.R.; Castro, L.J.; DeAnda, A.; Tomizawa, Y.; Daughters, G.T.; Ingels, N.B.; Miller, D.C. Right ventricular dynamics during left ventricular assistance in closed-chest dogs. Ann. Thorac. Surg. 1993, 56, 54–67. [Google Scholar] [CrossRef]
- Nishigaki, K.; Matsuda, H.; Hirose, H.; Nakano, S.; Ohtani, M.; Ohkubo, N.; Matsuwaka, R.; Kawashima, Y. The Effect of Left Ventricular Bypass on the Right Ventricular Function: Experimental Analysis of the Effects of Ischemic Injuries to the Right Ventricular Free Wall and Interventricular Septum. Artif. Organs 1990, 14, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.J.; Chow, E.; Compton, P.G.; Foppiano, L.; Woodard, J.; Hill, J.D. Effects of acute right ventricular ischemia on ventricular interactions during prosthetic left ventricular support. J. Thorac. Cardiovasc. Surg. 1991, 102, 588–595. [Google Scholar] [PubMed]
- Chow, E.; Farrar, D.J. Right heart function during prosthetic left ventricular assistance in a porcine model of congestive heart failure. J. Thorac. Cardiovasc. Surg. 1992, 104, 569–578. [Google Scholar] [PubMed]
- Farrar, D.J.; Compton, P.G.; Hershon, J.J.; Hill, J.D. Right ventricular function in an operating room model of mechanical left ventricular assistance and its effects in patients with depressed left ventricular function. Circulation 1985, 72, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Rushmer, R.F.; Crystal, D.K.; Wagner, C. The functional anatomy of ventricular contraction. Circ. Res. 1953, 1, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Santamore, W.P.; Meier, G.D.; Bove, A.A. Effects of hemodynamic alterations on wall motion in the canine right ventricle. Am. J. Physiol. Heart Circ. Physiol. 1979, 236, H254–H262. [Google Scholar]
- Wilson, S.R.; Givertz, M.M.; Stewart, G.C.; Mudge, G.H., Jr. Ventricular Assist Devices. The Challenges of Outpatient Management. J. Am. Coll. Cardiol. 2009, 54, 1647–1659. [Google Scholar] [CrossRef] [PubMed]
- Griffith, B.P.; Kormos, R.L.; Borovetz, H.S.; Litwak, K.; Antaki, J.F.; Poirier, V.L.; Butler, K.C. HeartMate II Left Ventricular Assist System: From Concept to First Clinical Use. Ann. Thorac. Surg. 2001, 71, S116–S120. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Mcdonald, P.; Spratt, P.; O’Rourke, M. Pulse Wave Analysis in the Assessment of Patients with Left Ventricular Assist Device. J. Heart Lung Transplant. 2001, 20, 98–102. [Google Scholar] [CrossRef]
- Martina, J.R.; Westerhof, B.E.; de Jonge, N.; van Goudoever, J.; Westers, P.; Chamuleau, S.; van Dijk, D.; Rodermans, B.F.M.; de Mol, B.A.J.M.; Lahpor, J.R. Noninvasive Arterial Blood Pressure Waveforms in Patients with Continuous-Flow Left Ventricular Assist Devices. ASAIO J. 2014, 60, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Shepard, R.B.; Simpson, D.C.; Sharp, J.F. Energy equivalent pressure. Arch. Surg. 1966, 93, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Wright, G. Hemodynamic analysis could resolve the pulsatile blood flow controversy. Ann. Thorac. Surg. 1994, 58, 1199–1204. [Google Scholar] [CrossRef]
- Wright, G. Mechanical simulation of cardiac function by means of pulsatile blood pumps. J. Cardiothorac. Vasc. Anesth. 1997, 11, 299–309. [Google Scholar] [CrossRef]
- Ündar, A. The ABCs of research on pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass. Med. Sci. Monit. 2002, 8, ED21–ED24. [Google Scholar] [PubMed]
- Ündar, A.; Frazier, O.H.; Fraser, C.D., Jr. Defining pulsatile perfusion: Quantification in terms of energy equivalent pressure. Artif. Organs 1999, 23, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Ündar, A.; Eichstaedt, H.C.; Masai, T.; Yang, S.-Q.; Bigley, J.E.; McGarry, M.C.; Mueller, M.; Vaughn, W.K.; Fraser, C.D. Comparison of six pediatric cardiopulmonary bypass pumps during pulsatile and nonpulsatile perfusion. J. Thorac. Cardiovasc. Surg. 2001, 122, 827–829. [Google Scholar] [CrossRef] [PubMed]
- Ündar, A. Fundamentals of pulsatile versus nonpulsatile flow during chronic support. ASAIO J. 2003, 49, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Ündar, A. Myths and Truths of Pulsatile and Nonpulsatile Perfusion during Acute and Chronic Cardiac Support. Artif. Organs 2004, 28, 439–443. [Google Scholar] [PubMed]
- Ündar, A.; Rosenberg, G.; Myers, J.L. Major Factors in the Controversy of Pulsatile Versus Nonpulsatile Flow during Acute and Chronic Cardiac Support. ASAIO J. 2005, 51, 173–175. [Google Scholar] [PubMed]
- Ündar, A.; Zapanta, C.M.; Reibson, J.D.; Souba, M.; Lukic, B.; Weiss, W.J.; Snyder, A.J.; Kunselman, A.R.; Pierce, W.S.; Rosenberg, G.; et al. Precise Quantification of Pressure Flow Waveforms of a Pulsatile Ventricular Assist Device. ASAIO J. 2005, 51, 56–59. [Google Scholar] [PubMed]
- Undar, A.; Masai, T.; Frazier, O.H.; Fraser, C.D., Jr. Pulsatile and non-pulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons. ASAIO J. 1999, 45, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Ündar, A.; Myers, J.L. Arterial pressure and pump flow rate during chronic pulsatile and non-pulsatile cardiac support. Ann. Thorac. Surg. 2005, 79, 1093–1094. [Google Scholar] [CrossRef] [PubMed]
- Kawahito, S.; Takano, T.; Nakata, K.; Maeda, T.; Nonaka, K.; Linneweber, J.; Schulte-Eistrup, S.; Sato, T.; Mikami, M.; Gluek, J.; et al. Analysis of the Arterial Blood Pressure Waveform during Left Ventricular Nonpulsatile Assistance in Animal Models. Artif. Organs 2000, 24, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Kawahito, S.; Nakata, K.; Nonaka, K.; Sato, T.; Yoshikawa, M.; Takano, T.; Maeda, T.; Linneweber, J.; Schulte-Eistrup, S.; Flowers, D.; et al. Analysis of the Arterial Blood Pressure Waveform Using Fast Fourier Transform Technique during Left Ventricular Nonpulsatile Assistance: In Vitro Study. Artif. Organs 2000, 24, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Grossi, E.A.; Connolly, M.W.; Krieger, K.H.; Nathan, I.M.; Hunter, C.E.; Colvin, S.B.; Baumann, F.G.; Spencer, F.C. Quantification of pulsatile flow during cardiopulmonary bypass to permit direct comparison of the effectiveness of various types of “pulsatile” and “nonpulsatile” flow. Surgery 1985, 98, 547–554. [Google Scholar] [PubMed]
- Potapov, E.V.; Loebe, M.; Nasseri, B.A.; Sinawski, H.; Koster, A.; Kuppe, H.; Noon, G.P.; DeBakey, M.E.; Hetzer, R. Pulsatile Flow in Patients with a Novel Nonpulsatile Implantable Ventricular Assist Device. Circulation 2000, 102, Iii-183–Iii-187. [Google Scholar] [CrossRef]
- Saito, S.; Westaby, S.; Piggot, D.; Dudnikov, S.; Robson, D.; Catarino, P.A.; Clelland, C.; Nojiri, C. End-Organ Function during Chronic Nonpulsatile Circulation. Ann. Thorac. Surg. 2002, 74, 1080–1085. [Google Scholar] [CrossRef]
- Koenig, S.C.; Pantalos, G.M.; Gillars, K.J.; Ewert, D.L.; Litwak, K.N.; Etoch, S.W. Haemodynamic and Pressure-Volume Responses to Continuous and Pulsatile Ventricular Assist in an Adult Mock Circulation. ASAIOJ 2004, 50, 15–24. [Google Scholar] [CrossRef]
- Garcia, S.; Kandar, F.; Boyle, A.; Colvin-Adams, M.; Lliao, K.; Joyce, L.; John, R. Effects of Pulsatile- and Continuous-flow Left Ventricular Assist Devices on Left Ventricular Unloading. J. Heart Lung Transplant. 2008, 27, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Klotz, S.; Deng, M.C.; Stypmann, J.; Roetker, J.; Wilhelm, M.J.; Hammel, D.; Scheld, H.H.; Schmid, C. Left Ventricular Pressure and Volume Unloading during Pulsatile Versus Nonpulsatile Left Ventricular Assist Device Support. Ann. Thorac. Surg. 2004, 77, 143–150. [Google Scholar] [CrossRef]
- Thohan, V.; Stetson, S.J.; Nagueh, S.F.; Rivas-Gotz, C.; Koerner, M.M.; Lafuente, J.A.; Loebe, M.; Noon, G.P.; Torre-Amione, G. Cellular and Haemodynamics Responses of Failing Myocardium to Continuous Flow Mechanical Circulatory Support Using the DeBakey-Noon Left Ventricular Assist Device: A Comparative Analysis with Pulsatile-Type Devices. J. Heart Lung Transplant. 2005, 24, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Letsou, G.V.; Pate, T.D.; Gohean, J.R.; Kurusz, M.; Longoria, R.G.; Kaiser, L.; Smalling, R.W. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. J. Thorac. Cardiovasc. Surg. 2010, 140, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Gohean, J.R.; George, M.J.; Pate, T.D.; Kurusz, M.; Longoria, R.G.; Smalling, R.W. Verification of a Computational Cardiovascular System Model Comparing the Haemodynamics of a Continuous Flow to a Synchronous Valveless Pulsatile Flow Left Ventricular Assist Device. ASAIO J. 2013, 59, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Krabatsch, T.; Schweiger, M.; Dandel, M.; Stepanenko, A.; Drews, T.; Potapov, E.; Pasic, M.; Weng, Y.-G.; Huebler, M.; Hetzer, R. Is Bridge to Recovery More Likely with Pulsatile Left Ventricular Assist Devices Than with Nonpulsatile-Flow Systems? Ann. Thorac. Surg. 2011, 91, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.S.; Chokshi, A.; Singh, P.; Khawaja, T.; Cheema, F.; Akashi, H.; Shahzad, K.; Iwata, S.; Homma, S.; Takayama, H.; et al. Effects of Continuous-Flow Versus Pulsatile-Flow Left Ventricular Assist Devices on Myocardial Unloading and Remodelling. Circ. Heart Fail. 2011, 4, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Ootaki, Y.; Kamohara, K.; Akiyama, M.; Zahr, F.; Kopcak, M.W., Jr.; Dessoffy, R.; Fukamachi, K. Phasic coronary blood flow pattern during a continuous flow left ventricular assist support. Eur. J. Cardiothorac. Surg. 2005, 28, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, G.A.; Ewert, D.L.; Pantalos, G.M.; Gillars, K.J.; Litwak, K.N.; Gray, L.A.; Koenig, S.C. Left Ventricular and Myocardial Perfusion Responses to Volume Unloading and Afterload Reduction in a Computer Simulation. ASAIO J. 2004, 50, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Takano, H.; Taenaka, Y.; Mori, H.; Takaichi, S.; Noda, H.; Tatsumi, E.; Yagura, A.; Sekii, H.; Akutsu, T. Cardiac Disuse Atrophy during LVAD Pumping. ASAIO Trans. 1988, 34, 208–212. [Google Scholar] [PubMed]
- Cheng, A.; Williamitis, C.A.; Slaughter, M.S. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: Is there an advantage to pulsatility? Ann. Cardiothorac. Surg. 2014, 3, 573–581. [Google Scholar] [PubMed]
- Lim, E.; Dokos, S.; Cloherty, S.L.; Salamonsen, R.F.; Mason, D.G.; Reizes, J.A.; Lovell, N.H. Parameter-Optimized Model of Cardiovascular-Rotary Blood Pump Interactions. IEEE Trans. Biomed. Eng. 2010, 57, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Dokos, S.; Salamonsen, R.F.; Rosenfeldt, F.L.; Ayre, P.J.; Lovell, N.H. Numerical Optimization Studies of Cardiovascular-Rotary Blood Pump Interaction. Artif. Organs 2012, 36, E110–E124. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Dokos, S.; Salamonsen, R.F.; Rosenfeldt, F.L.; Ayre, P.J.; Lovell, N.H. Effect of Parameter Variations on the Hemodynamic Response Under Rotary Blood Pump Assistance. Artif. Organs 2012, 36, E125–E137. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.G.E.; Loerakker, S.; Rutten, M.C.M.; de Mol, B.A.J.M.; van de Vosse, F.N. A Mathematical Model to Evaluate Control Strategies for Mechanical Circulatory Support. Artif. Organs 2009, 33, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Bovendeerd, P.H.M.; Borsje, P.; Arts, T.; van De Vosse, F.N. Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study. Ann. Biomed. Eng. 2006, 34, 1833–1845. [Google Scholar] [CrossRef] [PubMed]
- AlOmari, A.-H.H.; Savkin, A.V.; Stevens, M.; Mason, D.G.; Timms, D.L.; Salamonsen, R.F.; Lovell, N.H. Developments in control systems for rotary left ventricular assist devices for heart failure patients: A review. Physiol. Meas. 2013, 34, R1–R27. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Gu, K.; Gao, B.; Wan, F.; Chang, Y.; Zeng, Y. Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: A numerical study. Med. Sci. Monit. 2014, 20, 733–741. [Google Scholar] [PubMed]
- Pirbodaghi, T.; Axiak, S.; Weber, A.; Gempp, T.; Vandenberghe, S. Pulsatile control of rotary blood pumps: Does the modulation waveform matter? J. Thorac. Cardiovasc. Surg. 2012, 144, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Pirbodaghi, T.; Weber, A.; Axiak, S.; Carrel, T.; Vandenberghe, S. Asymmetric speed modulation of a rotary blood pump affects ventricular unloading. Eur. J. Cardiothorac. Surg. 2013, 43, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.; Salamonsen, R.F.; Lim, E.; Akmeliawati, R.; Lovell, N.H. Preload-Based Starling-Like Control for Rotary Blood Pumps: Numerical Comparison with Pulsatility Control and Constant Speed Operation. PLoS ONE 2015, 10, e0121413. [Google Scholar] [CrossRef] [PubMed]
- Salamonsen, R.F.; Lim, E.; Gaddum, N.; AlOmari, A.-H.H.; Gregory, S.D.; Stevens, M.; Mason, D.G.; Fraser, J.F.; Timms, D.; Karunanithi, M.K.; et al. Theoretical Foundations of a Starling-Like Controller for Rotary Blood Pumps. Artif. Organs 2012, 36, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Bluestein, D. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev. Med. Devices 2004, 1, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Fraser, K.H.; Taskin, M.E.; Griffith, B.P.; Wu, Z.J. The use of computational fluid dynamics in the development of ventricular assist devices. Med. Eng. Phys. 2011, 33, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Grigioni, M.; Morbiducci, U.; D’Avenio, G.; Di Benedetto, G.; Del Gaudio, C. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model. Mechanbiol. 2005, 4, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Carswell, D.; McBride, D.; Croft, T.N.; Slone, A.K.; Cross, M.; Foster, G. A CFD model for the prediction of haemolysis in micro axial left ventricular assist devices. Appl. Math. Model. 2013, 37, 4199–4207. [Google Scholar] [CrossRef]
- Bazilevs, Y.; Gohean, J.R.; Hughes, T.J.R.; Moser, R.D.; Zhang, Y. Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Engrgy 2009, 198, 3534–3550. [Google Scholar] [CrossRef]
- Sheriff, J.; Soares, J.S.; Xenos, M.; Jesty, J.; Bluestein, D. Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices. Ann. Biomed. Eng. 2013, 41, 1279–1296. [Google Scholar] [CrossRef] [PubMed]
- Bluestein, D.; Chandran, K.B.; Manning, K.B. Towards Non-thrombogenic Performance of Blood Recirculating Devices. Ann. Biomed. Eng. 2010, 38, 1236–1256. [Google Scholar] [CrossRef] [PubMed]
- Girdhar, G.; Xenos, M.; Alemu, Y.; Chiu, W.-C.; Lynch, B.E.; Jesty, J.; Einav, S.; Slepian, M.J.; Bluestein, D. Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance. PLoS ONE 2012, 7, e32463. [Google Scholar] [CrossRef] [PubMed]
- Nobili, M.; Sheriff, J.; Morbiducci, U.; Redaelli, A.; Bluestein, D. Platelet Activation Due to Haemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements. ASAIO J. 2008, 54, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Jesty, J.; Bluestein, D. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets elimination of the feedback activation of platelets by thrombin. Anal. Biochem. 1999, 272, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Alemu, Y.; Bluestein, D. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: Numerical studies. Artif. Organs 2007, 31, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Hellums, J.D. 1993 Whitaker Lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 1994, 22, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Apel, J.; Paul, R.; Klaus, S.; Siess, T.; Reul, H. Assessment of haemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif. Organs 2001, 25, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Alemu, Y.; Girdhar, G.; Xenos, M.; Sheriff, J.; Jesty, J.; Einav, S.; Bluestein, D. Design Optimization of a Mechanical Heart Valve for Reducing Valve Thrombogenicity—A Case Study with ATS Valve. ASAIO J. 2010, 56, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Xenos, M.; Girdhar, G.; Alemu, Y.; Jesty, J.; Slepian, M.; Einav, S.; Bluestein, D. Device Thrombogenicity Emulator (DTE)—Design Optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs. J. Biomech. 2010, 43, 2400–2409. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yun, B.M.; Fallon, A.M.; Hanson, S.R.; Aidun, C.K.; Yoganathan, A.P. Numerical Investigation of the Effects of Channel Geometry on Platelet Activation and Blood Damage. Ann. Biomed. Eng. 2011, 39, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Eckman, P.M.; John, R. Bleeding and Thrombosis in Patients with Continuous-Flow Ventricular Assist Devices. Circulation 2012, 125, 3038–3047. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.L.; Malehsa, D.; Bara, C.; Budde, U.; Slaughter, M.S.; Haverich, A.; Strueber, M. Acquired von Willebrand Syndrome in Patients with an Axial Flow Left Ventricular Assist Device. Circ. Heart Fail. 2010, 3, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Dassanayaka, S.; Slaughter, M.S.; Bartoli, C.R. Mechanistic Pathway(s) of Acquired Von Willebrand Syndrome with a Continuous-Flow Ventricular Assist Device: In Vitro Findings. ASAIO J. 2013, 59, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Naka, Y.; Uriel, N.; Goldstein, D.J.; Cleveland, J.C., Jr.; Colombo, P.C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Jorde, U.P.; et al. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. N. Engl. J. Med. 2016. [Google Scholar] [CrossRef]
- Netuka, I.; Kvasnička, T.; Kvasnička, J.; Hrachovinová, I.; Ivák, P.; Mareček, F.; Bílková, J.; Malíková, I.; Jančová, M.; Malý, J.; et al. Evaluation of von Willebrand factor with a fully magnetically levitated centrifugal continuous-flow left ventricular assist device in advanced heart failure. J. Heart Lung Transplant. 2016, 35, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.L.; Malehsa, D.; Budde, U.; Bara, C.; Haverich, A.; Strueber, M. Acquired von Willebrand Syndrome in Patients with a Centrifugal or Axial Continuous Flow Left Ventricular Assist Device. J. Am. Coll. Cardiol. HF 2014, 2, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Jorde, U.P. Relative preservation of high molecular weight von Willebrand factor multimers during HM 3 support—Plain physics or a matter of clinical consequence? J. Heart Lung Transplant. 2016, 35, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Moiseyev, G.; Bar-Yoseph, P.Z. Computational modeling of thrombosis as a tool in the design and optimization of vascular implants. J. Biomech. 2013, 46, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Westaby, S. Cardiac transplant or rotary blood pump: Contemporary evidence. J. Thorac. Cardiovasc. Surg. 2013, 145, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Westaby, S.; Deng, M. Continuous flow blood pumps: The new gold standard for advanced heart failure? Eur. J. Cardiothorac. Surg. 2013, 44, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Westaby, S.; Frazier, O.H. Long-term biventricular support with rotary blood pumps: Prospects and pitfalls. Eur. J. Cardiothorac. Surg. 2012, 42, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Krabatsch, T.; Potapov, E.; Knosalla, C.; Hetzer, R. Ventricular assist devices for all? Eur. J. Cardiothorac. Surg. 2012, 42, 918–919. [Google Scholar] [CrossRef] [PubMed]
- Hetzer, R.; Kaufmann, F.; Potapov, E.; Krabatsch, T.; Delmo Walter, E.M. Rotary Blood Pumps as Long-Term Mechanical Circulatory Support: A Review of a 15-Year Berlin Experience. Semin. Thorac. Cardiovasc. Surg. 2016, 28, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Waters, B.; Sample, A.; Smith, J.; Bonde, P. Toward Total Implantability Using Free-Range Resonant Electrical Energy Delivery System: Achieving Untethered Ventricular Assist Device Operation Over Large Distances. Cardiol. Clin. 2011, 29, 609–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Smith, J.R.; Bonde, P. Energy Transmission and Power Sources for Mechanical Circulatory Support Devices to Achieve Total Implantability. Ann. Thorac. Surg. 2014, 97, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capoccia, M. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New “Gold Standard”? J. Cardiovasc. Dev. Dis. 2016, 3, 35. https://doi.org/10.3390/jcdd3040035
Capoccia M. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New “Gold Standard”? Journal of Cardiovascular Development and Disease. 2016; 3(4):35. https://doi.org/10.3390/jcdd3040035
Chicago/Turabian StyleCapoccia, Massimo. 2016. "Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New “Gold Standard”?" Journal of Cardiovascular Development and Disease 3, no. 4: 35. https://doi.org/10.3390/jcdd3040035
APA StyleCapoccia, M. (2016). Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New “Gold Standard”? Journal of Cardiovascular Development and Disease, 3(4), 35. https://doi.org/10.3390/jcdd3040035