Age-Dependent Risk of Long-Term All-Cause Mortality in Patients Post-Myocardial Infarction and Acute Kidney Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Follow-Up and Outcome
2.3. Data Collection and Definitions
2.4. Statistical Analysis
3. Results
3.1. Study Population and Strata
3.2. Follow-Up and Outcomes
3.3. Multivariable Analysis
3.4. Sub-Group Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ismail, Y.; Kasmikha, Z.; Green, H.L.; McCullough, P.A. Cardio-Renal Syndrome Type 1: Epidemiology, Pathophysiology, and Treatment. Semin. Nephrol. 2012, 32, 18–25. [Google Scholar] [PubMed]
- Rodrigues, F.B.; Bruetto, R.G.; Torres, U.S.; Otaviano, A.P.; Zanetta, D.M.T.; Burdmann, E.A. Incidence and Mortality of Acute Kidney Injury After Myocardial Infarction: A Comparison Between Kdigo and Rifle Criteria. PLoS ONE 2013, 23, e69998. [Google Scholar]
- Wang, C.; Pei, Y.Y.; Ma, Y.H.; Ma, X.L.; Liu, Z.W.; Zhu, J.H.; Li, C.S. Risk factors for acute kidney injury in patients with acute myocardial infarction. Chin. Med. J. 2019, 132, 1660–1665. [Google Scholar] [PubMed]
- Skalsky, K.; Shiyovich, A.; Steinmetz, T.; Kornowski, R. Chronic Renal Failure and Cardiovascular Disease: A Comprehensive Appraisal. J. Clin. Med. 2022, 11, 1335. [Google Scholar] [CrossRef]
- Ronco, C.; Bellasi, A.; Di Lullo, L. Cardiorenal Syndrome: An Overview. Adv. Chronic Kidney Dis. 2018, 25, 382–390. [Google Scholar] [CrossRef]
- Chen, S.L.; Zhang, J.; Yei, F.; Zhu, Z.; Liu, Z.; Lin, S.; Chu, J.; Yan, J.; Zhang, R.; Kwan, T.W. Clinical outcomes of contrast-induced nephropathy in patients undergoing percutaneous coronary intervention: A prospective, multicenter, randomized study to analyze the effect of hydration and acetylcysteine. Int. J. Cardiol. 2008, 126, 407–413. [Google Scholar]
- Skalsky, K.; Shiyovich, A.; Shechter, A.; Gilutz, H.; Plakht, Y. Recovery from Acute Kidney Injury and Long-Term Prognosis following Acute Myocardial Infarction. Biomedicines 2024, 12, 1490. [Google Scholar] [CrossRef]
- Odutayo, A.; Wong, C.X.; Farkouh, M.; Altman, D.G.; Hopewell, S.; Emdin, C.A.; Hunn, B.H. AKI and Long-Term Risk for Cardiovascular Events and Mortality. J. Am. Soc. Nephrol. 2017, 28, 377–387. [Google Scholar] [PubMed]
- Skalsky, K.; Levi, A.; Bental, T.; Vaknin-Assa, H.; Assali, A.; Steinmetz, T.; Kornowski, R.; Perl, L. The Definition of “Acute Kidney Injury” Following Percutaneous Coronary Intervention and Cardiovascular Outcomes. Am. J. Cardiol. 2021, 156, 39–43. [Google Scholar] [CrossRef]
- Chalikias, G.; Serif, L.; Kikas, P.; Thomaidis, A.; Stakos, D.; Makrygiannis, D.; Chatzikyriakou, S.; Papoulidis, N.; Voudris, V.; Lantzouraki, A.; et al. Long-term impact of acute kidney injury on prognosis in patients with acute myocardial infarction. Int. J. Cardiol. 2019, 283, 48–54. [Google Scholar]
- Fox, C.S.; Muntner, P.; Chen, A.Y.; Alexander, K.P.; Roe, M.T.; Wiviott, S.D. Short-Term Outcomes of Acute Myocardial Infarction in Patients with Acute Kidney Injury: A Report from the National Cardiovascular Data Registry. Circulation 2012, 125, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.; Kogan, E.; Hammerman, H.; Markiewicz, W.; Aronson, D. The impact of transient and persistent acute kidney injury on long-term outcomes after acute myocardial infarction. Kidney Int. 2009, 76, 900–906. [Google Scholar] [CrossRef]
- Yokota, L.G.; Sampaio, B.M.; Rocha, E.P.; Balbi, A.L.; Prado, I.R.S.; Ponce, D. Acute kidney injury in elderly patients: Narrative review on incidence, risk factors, and mortality. Int. J. Nephrol. Renov. Dis. 2018, 11, 217–224. [Google Scholar]
- Coca, S.G. Acute Kidney Injury in Elderly Persons. Am. J. Kidney Dis. 2010, 56, 122–131. [Google Scholar]
- Miao, B.; Hernandez, A.V.; Alberts, M.J.; Mangiafico, N.; Roman, Y.M.; Coleman, C.I. Incidence and Predictors of Major Adverse Cardiovascular Events in Patients with Established Atherosclerotic Disease or Multiple Risk Factors. J. Am. Heart Assoc. 2020, 9, e014402. [Google Scholar] [CrossRef]
- Nakazato, R.; Arsanjani, R.; Achenbach, S.; Gransar, H.; Cheng, V.Y.; Dunning, A.; Lin, F.Y.; Al-Mallah, M.; Budoff, M.J.; Callister, T.Q.; et al. Age-related risk of major adverse cardiac event risk and coronary artery disease extent and severity by coronary CT angiography: Results from 15 187 patients from the International Multisite CONFIRM Study. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 586–594. [Google Scholar] [PubMed]
- Megna, R.; Petretta, M.; Nappi, C.; Assante, R.; Zampella, E.; Gaudieri, V.; Mannarino, T.; D’Antonio, A.; Green, R.; Cantoni, V.; et al. Age-Specific Cardiovascular Risk Factors for Major Adverse Cardiac Events in Patients Undergoing Myocardial Perfusion Imaging. J. Cardiovasc. Dev. Dis. 2023, 10, 395. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). Glob. Heart 2018, 13, 305–338. [Google Scholar]
- Centers for Disease Control. Defining Adult Overweight and Obesity. 2020. Available online: https://www.lb7.uscourts.gov/documents/19-927URL1defining.pdf (accessed on 30 March 2025).
- Berberich, A.J.; Hegele, R.A. A Modern Approach to Dyslipidemia. Endocr. Rev. 2021, 43, 611–653. [Google Scholar]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-MNM-11.1 (accessed on 30 March 2025).
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Terker, A.S.; Sasaki, K.; Arroyo, J.P.; Niu, A.; Wang, S.; Fan, X.; Zhang, Y.; Nwosisi, S.; Zhang, M.Z.; Harris, R.C. Activation of hypoxia-sensing pathways promotes renal ischemic preconditioning following myocardial infarction. Am. J. Physiol-Ren. Physiol. 2021, 320, F569–F577. [Google Scholar] [CrossRef] [PubMed]
- Ruparelia, N.; Digby, J.E.; Jefferson, A.; Medway, D.J.; Neubauer, S.; Lygate, C.A.; Choudhury, R.P. Myocardial infarction causes inflammation and leukocyte recruitment at remote sites in the myocardium and in the renal glomerulus. Inflamm. Res. 2013, 62, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Sriperumbuduri, S.; Clark, E.; Hiremath, S. New Insights into Mechanisms of Acute Kidney Injury in Heart Disease. Can. J. Cardiol. 2019, 35, 1158–1169. [Google Scholar] [CrossRef]
- Han, S.J.; Lee, H.T. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res. Clin. Pract. 2019, 38, 427–440. [Google Scholar] [CrossRef]
- Sudarsky, D.; Nikolsky, E. Contrast-induced nephropathy in interventional cardiology. Int. J. Nephrol. Renov. Dis. 2011, 4, 85–99. [Google Scholar]
- Cosentino, N.; Resta, M.L.; Somaschini, A.; Campodonico, J.; Lucci, C.; Moltrasio, M.; Bonomi, A.; Cornara, S.; Camporotondo, R.; Demarchi, A.; et al. Acute kidney injury and in-hospital mortality in patients with ST-elevation myocardial infarction of different age groups. Int. J. Cardiol. 2021, 344, 8–12. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.; McMurray, J.J.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
Variable | Age < 65 Years | Age ≥ 65 Years | Homogeneity p | ||||
---|---|---|---|---|---|---|---|
n = 6132 | n = 4379 | ||||||
Non-AKI | AKI | p | Non-AKI | AKI | p | ||
n = 5444 | n = 688 | n = 3465 | n = 914 | ||||
Demographics | |||||||
Age, years—mean (SD) | 52.48 (7.723) | 54.77 (6.906) | <0.001 | 75.03 (7.31) | 75.06 (7.00) | 0.915 | <0.001 |
Sex, males | 4680 (86.0) | 564 (82.0) | 0.005 | 2185 (63.1) | 569 (62.3) | 0.654 | 0.045 |
Ethnicity, minorities | 1363 (25.0) | 146 (21.2) | 0.029 | 405 (11.7) | 105 (11.5) | 0.867 | 0.199 |
Cardiac diseases | |||||||
Cardiomegaly | 240 (4.4) | 67 (9.7) | <0.001 | 330 (9.5) | 127 (13.9) | <0.001 | 0.02 |
Supraventricular arrhythmias | 253 (4.6) | 59 (8.6) | <0.001 | 708 (20.4) | 250 (27.4) | <0.001 | 0.115 |
CHF | 343 (6.3) | 128 (18.6) | <0.001 | 582 (16.8) | 284 (31.1) | <0.001 | 0.003 |
Pulmonary heart disease | 121 (2.2) | 29 (4.2) | 0.001 | 370 (10.7) | 128 (14.0) | 0.005 | 0.138 |
s/p MI | 476 (8.7) | 141 (20.5) | <0.001 | 471 (13.6) | 217 (23.7) | <0.001 | 0.028 |
CIHD | 4819 (88.5) | 639 (92.9) | 0.001 | 2661 (76.8) | 789 (86.3) | <0.001 | 0.519 |
s/p PCI | 594 (10.9) | 154 (22.4) | <0.001 | 477 (13.8) | 177 (19.4) | <0.001 | 0.001 |
s/p CABG | 183 (3.4) | 49 (7.1) | <0.001 | 346 (10.0) | 81 (8.9) | 0.308 | <0.001 |
AV block | 107 (2.0) | 24 (3.5) | 0.009 | 168 (4.8) | 40 (4.4) | 0.551 | 0.016 |
Cardiovascular risk factors | |||||||
Diabetes mellitus | 1627 (29.9) | 314 (45.6) | <0.001 | 1423 (41.1) | 474 (51.9) | <0.001 | 0.029 |
Dyslipidemia | 4679 (85.9) | 593 (86.2) | 0.862 | 2755 (79.5) | 740 (81.0) | 0.33 | 0.635 |
Hypertension | 2206 (40.5) | 368 (53.5) | <0.001 | 2409 (69.5) | 688 (75.3) | 0.001 | 0.046 |
Obesity | 1452 (26.7) | 204 (29.7) | 0.097 | 605 (17.5) | 193 (21.1) | 0.011 | 0.493 |
Smoking | 3727 (68.5) | 434 (63.1) | 0.004 | 984 (28.4) | 248 (27.1) | 0.449 | 0.137 |
PVD | 294 (5.4) | 82 (11.9) | <0.001 | 393 (11.3) | 185 (20.2) | <0.001 | 0.278 |
Family history of IHD | 1030 (18.9) | 111 (16.1) | 0.077 | 88 (2.5) | 32 (3.5) | 0.113 | 0.26 |
Other disorders | |||||||
COPD | 193 (3.5) | 47 (6.8) | <0.001 | 389 (11.2) | 123 (13.5) | 0.062 | 0.015 |
Neurological disorders | 327 (6.0) | 93 (13.5) | <0.001 | 694 (20.0) | 212 (23.2) | 0.036 | <0.001 |
Malignancy | 69 (1.3) | 13 (1.9) | 0.181 | 183 (5.3) | 66 (7.2) | 0.024 | 0.832 |
Anemia | 1362 (25.0) | 416 (60.5) | <0.001 | 1590 (45.9) | 611 (66.8) | <0.001 | <0.001 |
Schizophrenia/psychosis | 58 (1.1) | 17 (2.5) | 0.002 | 55 (1.6) | 26 (2.8) | 0.012 | 0.48 |
Alcohol/drug addiction | 181 (3.3) | 27 (3.9) | 0.413 | 52 (1.5) | 12 (1.3) | 0.674 | 0.423 |
History of malignancy | 103 (1.9) | 21 (3.1) | 0.042 | 261 (7.5) | 63 (6.9) | 0.511 | 0.037 |
Administrative characteristics of the hospitalization | |||||||
LOS, >7 days | 1950 (35.8) | 568 (82.6) | <0.001 | 1762 (50.9) | 804 (88.0) | <0.001 | 0.221 |
STEMI | 3524 (64.7) | 385 (56.0) | <0.001 | 1401 (40.4) | 366 (40.0) | 0.831 | 0.002 |
Results of echocardiography | |||||||
Echocardiography performance | 4888 (89.8) | 578 (84.0) | <0.001 | 2560 (73.9) | 696 (76.1) | 0.163 | <0.001 |
Severe LV dysfunction | 323 (6.6) | 109 (18.9) | <0.001 | 284 (11.1) | 123 (17.7) | <0.001 | <0.001 |
LV hypertrophy | 141 (2.9) | 23 (4.0) | 0.145 | 163 (6.4) | 34 (4.9) | 0.146 | 0.039 |
Mitral regurgitation | 79 (1.6) | 25 (4.3) | <0.001 | 172 (6.7) | 57 (8.2) | 0.178 | 0.004 |
Tricuspid regurgitation | 27 (0.6) | 10 (1.7) | 0.001 | 109 (4.3) | 40 (5.7) | 0.095 | 0.041 |
Pulmonary hypertension | 67 (1.4) | 26 (4.5) | <0.001 | 230 (9.0) | 89 (12.8) | 0.003 | 0.002 |
Results of angiography | |||||||
Angiography performance | 4722 (86.7) | 559 (81.3) | <0.001 | 2252 (65.0) | 603 (66.0) | 0.58 | 0.001 |
Measure of CAD, none or non-significant | 170 (3.6) | 13 (2.3) | <0.001 | 121 (5.4) | 10 (1.7) | <0.001 | |
One vessel | 1699 (36.0) | 94 (16.8) | 504 (22.4) | 70 (11.6) | |||
Two vessels | 1476 (31.3) | 114 (20.4) | 637 (28.3) | 110 (18.2) | |||
Three vessels/LM | 1377 (29.2) | 338 (60.5) | 990 (44.0) | 413 (68.5) | |||
Type of treatment | |||||||
Noninvasive | 404 (7.4) | 39 (5.7) | <0.001 | 1049 (30.3) | 208 (22.8) | <0.001 | |
PCI | 4373 (80.3) | 270 (39.2) | 2107 (60.8) | 289 (31.6) | |||
CABG | 667 (12.3) | 379 (55.1) | 309 (8.9) | 417 (45.6) | |||
eGFR < 90 mL/min/1.73 m2 | 2341 (43.0) | 345 (50.1) | <0.001 | 2506 (72.3) | 666 (72.9) | 0.744 | 0.025 |
In-hospital course | |||||||
Cardiac arrest | 12 (0.2) | 7 (1.0) | <0.001 | 5 (0.1) | 11 (1.2) | <0.001 | 0.403 |
Cardiogenic shock | 43 (0.8) | 26 (3.8) | <0.001 | 33 (1.0) | 35 (3.8) | <0.001 | 0.617 |
Intra-aortic balloon pulsation | 97 (1.8) | 63 (9.2) | <0.001 | 54 (1.6) | 73 (8.0) | <0.001 | 0.957 |
Any form of pacing | 45 (0.8) | 21 (3.1) | <0.001 | 68 (2.0) | 28 (3.1) | 0.043 | 0.011 |
Mechanical ventilation | 85 (1.6) | 79 (11.5) | <0.001 | 74 (2.1) | 118 (12.9) | <0.001 | 0.401 |
Gastrointestinal bleeding | 56 (1.0) | 21 (3.1) | <0.001 | 59 (1.7) | 45 (4.9) | <0.001 | 0.968 |
Blood transfusion | 291 (5.3) | 242 (32.5) | <0.001 | 329 (9.5) | 375 (41.0) | <0.001 | 0.005 |
Sepsis | 6 (0.1) | 10 (1.5) | <0.001 | 17 (0.5) | 44 (4.8) | <0.001 | 0.652 |
Variable | Age < 65 Years | Age ≥ 65 Years | p-for-Interaction | ||||
---|---|---|---|---|---|---|---|
AdjHR | (95% CI) | p | AdjHR | (95% CI) | p | ||
AKI (yes vs. no) | 1.634 | (1.363–1.959) | <0.001 | 1.278 | (1.154–1.415) | <0.001 | 0.020 |
Age, years (1-year increase) | 1.043 | (1.032–1.054) | <0.001 | 1.053 | (1.047–1.059) | <0.001 | 0.128 |
Ethnicity (minorities vs. others) | 1.314 | (1.125–1.535) | <0.001 | 1.095 | (0.965–1.243) | 0.160 | 0.075 |
Cardiomegaly | 1.549 | (1.241–1.932) | <0.001 | 1.082 | (0.957–1.224) | 0.210 | 0.005 |
Supraventricular arrhythmias | 1.413 | (1.141–1.749) | 0.002 | 1.274 | (1.165–1.393) | <0.001 | 0.382 |
CHF | 1.304 | (1.071–1.588) | 0.008 | 1.291 | (1.174–1.420) | <0.001 | 0.911 |
Pulmonary heart disease | 1.074 | (0.787–1.466) | 0.651 | 1.236 | (1.088–1.405) | 0.001 | 0.404 |
CIHD | 0.943 | (0.748–1.188) | 0.617 | 0.891 | (0.797–0.996) | 0.042 | 0.659 |
s/p MI | 1.298 | (1.081–1.558) | 0.005 | 1.215 | (1.094–1.349) | <0.001 | 0.544 |
Diabetes mellitus | 1.712 | (1.483–1.977) | <0.001 | 1.271 | (1.172–1.378) | <0.001 | <0.001 |
Dyslipidemia | 0.764 | (0.641–0.910) | 0.003 | 0.892 | (0.811–0.981) | 0.018 | 0.125 |
Smoking | 1.129 | (0.975–1.309) | 0.106 | 1.138 | (1.029–1.257) | 0.012 | 0.943 |
PVD | 1.607 | (1.320–1.956) | <0.001 | 1.437 | (1.291–1.600) | <0.001 | 0.317 |
COPD | 2.320 | (1.874–2.872) | <0.001 | 1.691 | (1.509–1.896) | <0.001 | 0.009 |
Neurological disorders | 1.945 | (1.620–2.336) | <0.001 | 1.437 | (1.314–1.572) | <0.001 | 0.003 |
Malignancy | 3.265 | (2.318–4.598) | <0.001 | 1.872 | (1.621–2.163) | <0.001 | 0.003 |
Anemia | 1.398 | (1.204–1.622) | <0.001 | 1.315 | (1.212–1.428) | <0.001 | 0.478 |
Schizophrenia/psychosis | 1.783 | (1.214–2.619) | 0.003 | 2.058 | (1.621–2.612) | <0.001 | 0.555 |
Alcohol/drug addiction | 3.470 | (2.736–4.401) | <0.001 | 1.873 | (1.392–2.521) | <0.001 | 0.001 |
Type of AMI (NSTEMI vs. STEMI) | 0.823 | (0.715–0.948) | 0.007 | 0.858 | (0.788–0.936) | <0.001 | 0.621 |
Severe LV dysfunction | 1.681 | (1.373–2.056) | <0.001 | 1.569 | (1.378–1.787) | <0.001 | 0.558 |
LV hypertrophy | 1.170 | (0.840–1.628) | 0.353 | 1.312 | (1.091–1.578) | 0.004 | 0.54 |
Mitral regurgitation | 2.109 | (1.556–2.859) | <0.001 | 1.232 | (1.042–1.457) | 0.015 | 0.002 |
Pulmonary hypertension | 1.121 | (0.785–1.601) | 0.528 | 1.204 | (1.027–1.411) | 0.022 | 0.736 |
Type of treatment: | |||||||
Noninvasive | 1 (ref.) | 1 (ref.) | |||||
PCI | 0.549 | (0.436–0.692) | <0.001 | 0.524 | (0.468–0.586) | <0.001 | 0.740 |
CABG | 0.330 | (0.248–0.441) | <0.001 | 0.341 | (0.291–0.399) | <0.001 | 0.820 |
Sub-Population * | Age < 65 Years | Age ≥ 65 Years | p-for-Interaction | ||||
---|---|---|---|---|---|---|---|
AdjHR | (95% CI) | p | AdjHR | (95% CI) | p | ||
Women | 2.167 | (1.437–3.268) | <0.001 | 1.337 | (1.138–1.570) | <0.001 | 0.001 |
Men | 1.489 | (1.211–1.831) | <0.001 | 1.242 | (1.087–1.419) | 0.001 | 0.005 |
NSTEMI | 1.673 | (1.287–2.174) | <0.001 | 1.227 | (1.080–1.393) | 0.002 | <0.001 |
STEMI | 1.552 | (1.197–2.013) | <0.001 | 1.446 | (1.212–1.724) | <0.001 | 0.178 |
Non-invasive | 1.506 | (0.920–2.466) | 0.103 | 1.298 | (1.104–1.525) | 0.002 | 0.084 |
PCI | 1.618 | (1.258–2.082) | <0.001 | 1.217 | (1.034–1.434) | 0.019 | 0.003 |
CABG | 1.615 | (1.149–2.270) | 0.006 | 1.423 | (1.108–1.827) | 0.006 | 0.401 |
One-year follow-up | 2.310 | (1.561–3.419) | <0.001 | 1.660 | (1.385–1.991) | <0.001 | 0.046 |
Two–ten-year follow-up ** | 1.499 | (1.220–1.842) | <0.001 | 1.129 | (0.999–1.277) | 0.053 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skalsky, K.; Romi, M.; Shiyovich, A.; Shechter, A.; Grinberg, T.; Gilutz, H.; Plakht, Y. Age-Dependent Risk of Long-Term All-Cause Mortality in Patients Post-Myocardial Infarction and Acute Kidney Injury. J. Cardiovasc. Dev. Dis. 2025, 12, 133. https://doi.org/10.3390/jcdd12040133
Skalsky K, Romi M, Shiyovich A, Shechter A, Grinberg T, Gilutz H, Plakht Y. Age-Dependent Risk of Long-Term All-Cause Mortality in Patients Post-Myocardial Infarction and Acute Kidney Injury. Journal of Cardiovascular Development and Disease. 2025; 12(4):133. https://doi.org/10.3390/jcdd12040133
Chicago/Turabian StyleSkalsky, Keren, Mashav Romi, Arthur Shiyovich, Alon Shechter, Tzlil Grinberg, Harel Gilutz, and Ygal Plakht. 2025. "Age-Dependent Risk of Long-Term All-Cause Mortality in Patients Post-Myocardial Infarction and Acute Kidney Injury" Journal of Cardiovascular Development and Disease 12, no. 4: 133. https://doi.org/10.3390/jcdd12040133
APA StyleSkalsky, K., Romi, M., Shiyovich, A., Shechter, A., Grinberg, T., Gilutz, H., & Plakht, Y. (2025). Age-Dependent Risk of Long-Term All-Cause Mortality in Patients Post-Myocardial Infarction and Acute Kidney Injury. Journal of Cardiovascular Development and Disease, 12(4), 133. https://doi.org/10.3390/jcdd12040133