Catheter Ablation of Septal Accessory Pathways in Children: A 12-Year Experience at a Tertiary Care Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Electrophysiologic Study
- Anteroseptal (AS): defined by earliest ventricular activation during anterograde conduction or retrograde atrial activation during pacing in the upper third of the triangle of Koch, with a His bundle potential (≥0.1 mV) at the ablation site.
- Midseptal (MS): identified when earliest activation occurs in the middle third of the triangle of Koch.
- Posteroseptal (PS): located near the CS ostium or proximal CS (right-PS). If on the left septal side opposite the right-PS, it is classified as left-PS AP. Ablations conducted through the CS and middle cardiac vein were categorized under a separate heading as “epicardial ablations”.
2.3. Catheter Ablation
2.4. Definition of Procedural Endpoints, Complications, and Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Accessory Pathway and Procedure Characteristics
3.3. Overview of Initial and Redo Procedures Based on AP Location
3.3.1. Anteroseptal Accessory Pathways
Initial Procedure
Redo Procedure
3.3.2. Midseptal Accessory Pathways
Initial Procedure
Redo Procedure
3.3.3. Posteroseptal Accessory Pathways
Initial Procedure
Redo Procedure
3.4. Recurrence After a Second Procedure and Multiple (≥3) Procedures
3.5. Complications
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aps | Accessory pathways |
WPW | Wolff–Parkinson–White |
RFA | Radiofrequency ablation |
References
- Haghjoo, M.; Kharazi, A.; Fazelifar, A.F.; Alizadeh, A.; Emkanjoo, Z.; Sadr-Ameli, M.A. Electrocardiographic and electrophysiologic characteristics of anteroseptal, midseptal, and posteroseptal accessory pathways. Heart Rhythm 2007, 4, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.E.; Kriebel, T.; Gravenhorst, V.D.; Paul, T. Incidence of coronary artery injury immediately after catheter ablation for supraventricular tachycardias in infants and children. Heart Rhythm 2009, 6, 461–467. [Google Scholar]
- Katritsis, D.G.; Boriani, G.; Cosio, F.G.; Hindricks, G.; Jais, P.; Josephson, M.E. European Heart Rhythm Association (EHRA) consensus document on the management of supraventricular arrhythmias, endorsed by Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardiaca y Electrofisiologia (SOLAECE). Europace 2017, 19, 465–511. [Google Scholar]
- Schaffer, M.S.; Silka, M.J.; Ross, B.A.; Kugler, J.D. Inadvertent atrioventricular block during radiofrequency catheter ablation. Results of the Pediatric Radiofrequency Ablation Registry. Circulation 1996, 94, 3214–3220. [Google Scholar]
- Bastani, H.; Insulander, P.; Schwieler, J.; Tabrizi, F.; Braunschweig, F.; Kennebäck, G.; Drca, N.; Jensen-Urstad, M. Cryoablation of superoparaseptal and septal accessory pathways: A single centre experience. Europace 2010, 12, 972–977. [Google Scholar] [PubMed]
- Gaita, F.; Haissaguerre, M.; Giustetto, C.; Grossi, S.; Caruzzo, E.; Bianchi, F.; Richiardi, E.; Riccardi, R.; Hocini, M.; Jais, P. Safety and efficacy of cryoablation of accessory pathways adjacent to the normal conduction system. J. Cardiovasc. Electrophysiol. 2003, 14, 825–829. [Google Scholar]
- Bar-Cohen, Y.; Cecchin, F.; Alexander, M.E.; Berul, C.I.; Triedman, J.K.; Walsh, E.P. Cryoablation for accessory pathways located near normal conduction tissues or within the coronary venous system in children and young adults. Heart Rhythm 2006, 3, 253–258. [Google Scholar] [PubMed]
- Tuzcu, V. Cryoablation of accessory pathways in children. Pacing Clin. Electrophysiol. 2007, 30, 1129–1135. [Google Scholar] [CrossRef]
- Liberman, L.; Spar, D.S.; Nash, M.C.; Silver, E.S. Cryoablation of anteroseptal accessory pathways with a His bundle electrogram on the ablation catheter. Indian Pacing Electrophysiol. J. 2014, 6, 284–290. [Google Scholar]
- Philip Saul, J.; Kanter, R.J.; Abrams, D.; Asirvatham, S.; Bar-Cohen, Y.; Blaufox, A.D.; Cannon, B.; Clark, J.; Dick, M.; WRITING COMMITTEE; et al. PACES/HRS expert consensus statement on the use of catheter ablation in children and patients with congenital heart disease. Heart Rhythm 2016, 6, e251–e289. [Google Scholar] [CrossRef]
- Karagueuzian, H.S. Consensus Statement from the Cardiac Nomenclature Study Group of Arrhythmias of the European Society of Cardiology, and the Task Force on Cardiac Nomenclature from the North American Society of Pacing and Electrophysiology on Living Anatomy of the Atrioventricular Junction. J. Cardiovasc. Electrophysiol. 2000, 11, 1297. [Google Scholar]
- Brugada, J.; Katritsis, D.G.; Arbelo, E.; Arribas, F.; Bax, J.J.; Blomström-Lundqvist, C.; Calkins, H.; Corrado, D.; Deftereos, S.G.; Diller, G.P.; et al. ESC Guidelines for the management of patients with supraventricular tachycardia. Eur. Heart J. 2019, 8, ehz827. [Google Scholar]
- Cohen, M.I.; Triedman, J.K.; Cannon, B.C.; Davis, A.M.; Pediatric and Congenital Electrophysiology Society (PACES); Heart Rhythm Society (HRS); American College of Cardiology Foundation (ACCF); American Heart Association (AHA); American Academy of Pediatrics (AAP); Canadian Heart Rhythm Society (CHRS); et al. PACES/HRS expert consensus statement on the management of the asymptomatic young patient with a Wolf–Parkinson–White (WPW, ventricular preexcitation) electrocardiographic pattern: Developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology Foundation (ACCF), the American Heart Association (AHA), the American Academy of Pediatrics (AAP), and the Canadian Heart Rhythm Society (CHRS). Heart Rhythm 2012, 9, 1006–1024. [Google Scholar] [CrossRef]
- Etheridge, S.P.; Escudero, C.A.; Blaufox, A.D.; Law, I.H.; DechertCrooks, B.E.; Stephenson, E.A.; Dubin, A.M.; Ceresnak, S.R.; Motonaga, K.S.; Skinner, J.R.; et al. Life threatening event risk in children with Wolf–Parkinson–White Syndrome: A multicenter international study. JACC Clin. Electrophysiol. 2018, 4, 433–444. [Google Scholar] [CrossRef]
- Corcia, M.C.G.; Stuart, G.; Walsh, M.; Radulescu, C.; Spera, F.; Tijskens, M.; Heidbuchel, H.; Sarkozy, A. Redo accessory pathway ablation in the pediatric population. J. Interv. Card Electrophysiol. 2022, 63, 639–649. [Google Scholar] [CrossRef]
- Ergul, Y.; Tola, H.T.; Kiplapinar, N.; Akdeniz, C.; Saygi, M.; Tuzcu, V. Cryoablation of anteroseptal accessory pathways in children with limited fluoroscopy exposure. Pediatr. Cardiol. 2013, 34, 802–808. [Google Scholar] [CrossRef]
- Bravo, L.; Atienza, F.; Eidelman, G.; Ávila, P.; Pelliza, M.; Castellanos, E.; Loughlin, G.; Datino, T.; Torrecilla, E.G.; Almendral, J.; et al. Safety and efficacy of cryoablation vs. radiofrequency ablation of septal accessory pathways: Systematic review of the literature and meta-analyses. Europace 2018, 20, 1334–1342. [Google Scholar] [CrossRef]
- Walsh, M.A.; Gonzalez, C.M.; Uzun, O.J.; McMahon, C.J.; Sadagopan, S.N.; Yue, A.M.; Seller, N.; Hares, D.L.; Bhole, V.; Till, J.; et al. Outcomes From Pediatric Ablation: A Review of 20 Years of National Data. JACC Clin. Electrophysiol. 2021, 7, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, C.; Akdeniz, C.; Turan, O.; Tuzcu, V. Cryoablation of septal accessory pathways in children: Midterm results. Pacing Clin. Electrophysiol. 2014, 37, 1095–1099. [Google Scholar] [CrossRef]
- Kamali, H.; Kafali, H.C.; Caran, B.; Sulu, A.; Ergul, Y. Coronary sinus ablations in pediatric patients with supraventricular arrhythmias. J. Interv. Card Electrophysiol. 2023, 66, 2153–2164. [Google Scholar] [CrossRef]
- Drago, F.; Tamborrino, P.P.; Pazzano, V.; Di Mambro, C.; Silvetti, M.S. 3D transvenous radiofrequency ablation of manifest epicardial posterior-septal accessory pathways in children: Can technology innovations improve the outcome? Cardiol. Young 2022, 32, 1229–1234. [Google Scholar] [PubMed]
- Collins, K.; Rhee, E.; Kirsh, J.; Cannon, B.; Fish, F.; Dubin, A.; Van Hare, G. Pediatric and Congenital Electrophysiology Society’s Working Group on Cryoablation. Cryoablation of accessory pathways in the coronary sinus in young patients: A multicenter study from the Pediatric and Congenital Electrophysiology Society’s Working Group on Cryoablation. J. Cardiovasc. Electrophysiol. 2007, 18, 592–597. [Google Scholar]
- Selvaraj, R.; Sarin, K.; Raj Singh, V.; Satheesh, S.; Ananthakrishna Pillai, A.; Kumar, M.; Balachander, J. Radiofrequency ablation of posteroseptal accessory pathways associated with coronary sinus diverticula. J. Interv. Card Electrophysiol. 2016, 47, 253–259. [Google Scholar] [PubMed]
- Raatikainen, M.J.; Pedersen, A.K. Catheter ablation of a difficult accessory pathway guided by coronary sinus venography and 3D electroanatomical mapping. Europace 2010, 12, 1200–1201. [Google Scholar] [CrossRef] [PubMed]
- Alazard, M.; Lacotte, J.; Horvilleur, J.; Ait Said, M.; Salerno, F.; Manenti, V.; Piechaud, J.F.; Garot, J.; Bonnet, D.; Maltret, A. Preventing the risk of coronary injury in posteroseptal accessory pathway ablation in children: Different strategies and advantages of fluoroscopy integrated 3D-mapping system (CARTO-UNIVUTM). J. Interv. Card Electrophysiol. 2018, 52, 127–135. [Google Scholar]
- Telishevska, M.; Faelchle, J.; Buiatti, A.; Busch, S.; Reents, T.; Bourier, F.; Semmler, V.; Kaess, B.; Horndasch, M.; Kornmayer, M.; et al. Irrigated-tip catheters for radiofrequency ablation of right-sided accessory pathways in adolescents. Pacing Clin. Electrophysiol. 2017, 40, 1167–1172. [Google Scholar] [CrossRef]
- Gulletta, S.; Tsiachris, D.; Radinovic, A.; Bisceglia, C.; Mazzone, P.; Trevisi, N.; Paglino, G.; Bellini, B.; Sala, S.; Della Bella, P. Safety and efficacy of open irrigated-tip catheter ablation of Wolff-Parkinson-White syndrome in children and adolescents. Pacing Clin. Electrophysiol. 2013, 36, 486–490. [Google Scholar]
- Yamane, T.; Jaïs, P.; Shah, D.; Hocini, M.; Peng, J.T.; Deisenhofer, I.; Clémenty, J.; Haïssaguerre, M. Efficacy and safety of an irrigated-tip catheter for the ablation of accessory pathways resistant to conventional radiofrequency ablation. Circulation 2000, 102, 2565–2568. [Google Scholar] [CrossRef]
- Mandapati, R.; Berul, C.I.; Triedman, J.K.; Alexander, M.E.; Walsh, E.P. Radiofrequency catheter ablation of septal accessory pathways in the pediatric age group. Am. J. Cardiol. 2003, 92, 947–950. [Google Scholar]
- Iturralde, P.; Guevara-Valdivia, M.; Rodriguez-Chavez, L.; Medeiros, A.; Colin, L. Radiofrequency ablation of multiple accessory pathways. Europace 2002, 3, 273–280. [Google Scholar]
Characteristics | |
---|---|
Age (years) | 11.8 ± 4.9 |
Gender (M/F) | 171/120 |
Weight (kg) | 48.8 ± 27.3 |
Echocardiogram findings | |
VSD | 2 |
Ebstein’s anomaly | 7 |
TOF | 2 |
D-TGA | 1 |
CAVSD | 1 |
Dextrcardia/Tricuspit atresia/DOLV/PB | 1 |
Bicuspit aorta/Aortic insufficiency | 4 |
HCM | 2 |
DCM | 1 |
Indications of procedure (ECG findings) | |
SVT | 79 (27.1%) |
WPW pattern (asymptomatic) | 71 (24.5%) |
WPW syndrome | |
WPW–SVT (AVRT) | 140 (48.1%) |
Pre-excited AF | 1 (0.3%) |
Prior EPS (at another center) | 10 (3.4%) |
Follow-up time (months) | 88.5 ± 33.0 |
Characteristics | n (%) |
---|---|
Multiple AP * | 7 (2.4%) |
AP characteristics (n) | 298 |
Manifest AP | 225 (75.5%) |
Concealed AP | 71 (23.8%) |
PJRT | 2 (0.7%) |
Risk classification of AP | 225 |
APERP, SPERRI, and SPPCL ≤ 250 msn | 61 (28%) |
APERP, SPERRI, and SPPCL = 251–300 msn | 77 (34.5%) |
APERP, SPERRI, and SPPCL ≥ 300 msn | 82 (36.5%) |
Unknown | 5 (1%) |
APERP | 294.4 ± 5.3 |
Adenosine-responsive | 90 (40%) |
Septal AP locations | 291 |
Anteroseptal | 86 (29.5%) |
Midseptal | 46 (15.9%) |
Posteroseptal | 159 |
Right | 128 (43.9%) |
Left | 31 (10.7%) |
Epicardial ablation | 32 (11.1%) |
Second arrhythmia substrate (AVNRT) | 22 (7.5%) |
Use of fluoroscopy (n) | 39 (13.4%) |
Transseptal puncture | 22 |
Other reasons | 17 |
Overall fluoroscopy time (min) | 5.2 ± 3.7 (0.3–18.3) |
Overall procedure time (min) | 154 ± 54 (54–340) |
SEPTAL APs | ||||
---|---|---|---|---|
Anteroseptal | Midseptal | Posteroseptal | ||
(n) | (n) | (n) | ||
Initial Procedures | Right-PS | Left-PS | ||
EPS (291; %) | 86 (29.6) | 46 (15.8) | 128 (43.9) | 31(10.7) |
Ablations (288; %) | 86(29.9) | 43 (14.9) | 128 (44.5) | 31(10.7) |
Ablation source (n; %) | ||||
Cryo (190; 66%) | 81(94.1) | 35 (81.4) | 68(53.1) | 6 (19.3) |
RF (30; 10.4%) | 0 | 2 (4.7) | 10 (7.8) | 18 (58) |
Cryo + RF (62; 21.5%) | 5 (5.8) | 6 (13.9) | 46 (35.9) | 5 (16.1) |
Irrigated tip RF (6; 2%) | 0 | 0 | 4 (3.1) | 2 (6.4) |
Transient complete AV block (4.8%) | 8 (9.3) | 3 (6.9) | 3 (2.3) | 0 |
Acute success rate (89.6%) | 81 (94.1%) | 41 (95.3%) | 109 (85.1%) | 27 (87.0%) |
Recurrence rate (11.3%) | 6 (6.9%) | 4 (9.1%) | 21 (16.4%) | 2 (6.4%) |
REDO PROCEDURES (Initial procedure failure + recurrences) | ||||
EPS (45; %) | 5 (11.1) | 6 (13.3) | 31 (68.8) | 3 (6.6) |
Ablations (44; %) | 5 (11.3) | 6 (13.6) | 30 (68.1) | 3 (6.8) |
Ablation source (n; %) | ||||
Cryo (13; 29.5%) | 5 (100) | 3 (50) | 5 (15.1) | 0 |
RF (9; 20.4%) | 0 | 2 (33.3) | 5 (16.6) | 2 (66.6) |
Cryo + RF (2; 4.5%) | 0 | 1 (16.6) | 1 (3.3) | 0 |
Irrigated RF (20; 45.4%) | 0 | 0 | 19 (63.3) | 1 (33.3) |
Transient complete AV block (4.6%) | 2 (40) | 0 | 0 | 0 |
Acute success rate (95.3%) | 5 (100%) | 5 (83.3%) | 28 (93.3%) | 3 (100%) |
Long-term success rate (99%) | 100% | 97.6% | 98.4% | 100% |
Anteroseptal | Midseptal | Posteroseptal | p1 | p2 | p3 | p4 | |
---|---|---|---|---|---|---|---|
Initial procedure acute success | 81 (94.1%) | 41 (95.3%) | 136 (85.5%) | 0.110 | 0.056 | 0.02 * | 0.232 |
Initial procedure recurrence a | 6 (6.9%) | 4 (9.1%) | 23 (14.4%) | 0.171 | 0.083 | 0.308 | 0.739 |
Long-term success | 86/86 (100%) | 45/46 (97.6%) | 157/159 (98.7%) | 0.356 | 0.861 | 0.762 | 0.873 |
Factor | OR | 95% CI |
---|---|---|
Reference | 1.0 | - |
Female Gender * | 2.2 | (1.097–4.386) |
Age < 8 | 2.1 | (0.642–6.860) |
Weight < 30 kg | 1.8 | (0.579–5.696) |
Cryo Catheter * | 10.7 | (1.008–113.365) |
Posteroseptal AP * | 3.2 | (1.168–8.972) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turan, O.; Akdeniz, C.; Tuzcu, V. Catheter Ablation of Septal Accessory Pathways in Children: A 12-Year Experience at a Tertiary Care Center. J. Cardiovasc. Dev. Dis. 2025, 12, 111. https://doi.org/10.3390/jcdd12040111
Turan O, Akdeniz C, Tuzcu V. Catheter Ablation of Septal Accessory Pathways in Children: A 12-Year Experience at a Tertiary Care Center. Journal of Cardiovascular Development and Disease. 2025; 12(4):111. https://doi.org/10.3390/jcdd12040111
Chicago/Turabian StyleTuran, Ozlem, Celal Akdeniz, and Volkan Tuzcu. 2025. "Catheter Ablation of Septal Accessory Pathways in Children: A 12-Year Experience at a Tertiary Care Center" Journal of Cardiovascular Development and Disease 12, no. 4: 111. https://doi.org/10.3390/jcdd12040111
APA StyleTuran, O., Akdeniz, C., & Tuzcu, V. (2025). Catheter Ablation of Septal Accessory Pathways in Children: A 12-Year Experience at a Tertiary Care Center. Journal of Cardiovascular Development and Disease, 12(4), 111. https://doi.org/10.3390/jcdd12040111