Prognostic Implication of Preoperative Anemia in Redo Cardiac Surgery: A Single-Center Propensity-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample, Design, and Aims
2.2. Data Mining and Surgical and Clinical Care
2.3. Baseline Data and Clinical Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miceli, A.; Romeo, F.; Glauber, M.; de Siena, P.M.; Caputo, M.; Angelini, G.D. Preoperative anemia increases mortality and postoperative morbidity after cardiac surgery. J. Cardiothorac. Surg. 2014, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.A.; Collier, T.J.; Brar, M.S.; Evans, C.; Hallward, G.; Fletcher, S.N.; Richards, T.; Association of Cardiothoracic Anaesthetists (ACTA). The incidence and importance of anaemia in patients undergoing cardiac surgery in the UK—The first Association of Cardiothoracic Anaesthetists national audit. Anaesthesia 2016, 71, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Hazen, Y.J.J.M.; Noordzij, P.G.; Gerritse, B.M.; Scohy, T.V.; Houterman, S.; Bramer, S.; Berendsen, R.R.; Bouwman, R.A.; Eberl, S.; Haenen, J.S.E.; et al. Preoperative anaemia and outcome after elective cardiac surgery: A Dutch national registry analysis. Br. J. Anaesth. 2022, 128, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Jabagi, H.; Boodhwani, M.; Tran, D.T.; Sun, L.; Wells, G.; Rubens, F.D. The Effect of Preoperative Anemia on Patients Undergoing Cardiac Surgery: A Propensity-Matched Analysis. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 157–163. [Google Scholar] [CrossRef]
- Greenhouse, D.G.; Schwann, T.A.; Engelman, D.T. Preoperative Anemic Patients Have Poor Outcomes; How Can We Optimize These Patients Prior to Surgery? Semin. Thorac. Cardiovasc. Surg. 2019, 31, 164–165. [Google Scholar] [CrossRef] [PubMed]
- Kloeser, R.; Buser, A.; Bolliger, D. Treatment Strategies in Anemic Patients Before Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2023, 37, 266–275. [Google Scholar] [CrossRef]
- Boer, C.; Meesters, M.I.; Milojevic, M.; Benedetto, U.; Bolliger, D.; von Heymann, C.; Jeppsson, A.; Koster, A.; Osnabrugge, R.L.; Ranucci, M.; et al. 2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery. Eur. J. Cardiothorac. Surg. 2018, 53, 79–111. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, H.; Siau, K.; Curtis, J.; Ng, A.; Menon, S.; Luckraz, H.; Brookes, M.J. Preoperative Anemia and Outcomes in Cardiovascular Surgery: Systematic Review and Meta-Analysis. Ann. Thorac. Surg. 2019, 108, 1840–1848. [Google Scholar] [CrossRef]
- Bianco, V.; Kilic, A.; Gleason, T.G.; Aranda-Michel, E.; Habertheuer, A.; Wang, Y.; Navid, F.; Kacin, A.; Sultan, I. Reoperative Cardiac Surgery Is a Risk Factor for Long-Term Mortality. Ann. Thorac. Surg. 2020, 110, 1235–1242. [Google Scholar] [CrossRef]
- Kindzelski, B.A.; Bakaeen, F.G.; Tong, M.Z.; Roselli, E.E.; Soltesz, E.G.; Johnston, D.R.; Wierup, P.; Pettersson, G.B.; Houghtaling, P.L.; Blackstone, E.H.; et al. Modern practice and outcomes of reoperative cardiac surgery. J. Thorac. Cardiovasc. Surg. 2022, 164, 1755–1766.e16. [Google Scholar] [CrossRef]
- De Santo, L.S.; Bancone, C.; Santarpino, G.; Romano, G.; De Feo, M.; Scardone, M.; Galdieri, N.; Cotrufo, M. Microbiologically documented nosocomial infections after cardiac surgery: An 18-month prospective tertiary care centre report. Eur. J. Cardiothorac. Surg. 2008, 33, 666–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Santo, L.; Romano Go Della Corte, A.; de Simone, V.; Grimaldi, F.; Cotrufo, M.; de Feo, M. Preoperative anemia in patients undergoing coronary artery bypass grafting predicts acute kidney injury. J. Thorac. Cardiovasc. Surg. 2009, 138, 965–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Santo, L.S.; Amarelli, C.; Della Corte, A.; Scardone, M.; Bancone, C.; Carozza, A.; Grassia, M.G.; Romano, G. Blood transfusion after on-pump coronary artery bypass grafting: Focus on modifiable risk factors. Eur. J. Cardiothorac. Surg. 2013, 43, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.U.; Yonan, N. Does preoperative computed tomography reduce the risks associated with re-do cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 2009, 9, 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, T.; Bocchini, G.; Rossi, G.; Sica, G.; Davison, H.; Scaglione, M. MDCT prior to median re-sternotomy in cardiovascular surgery: Our experiences, infrequent findings and the crucial role of radiological report. Br. J. Radiol. 2019, 92, 20170980. [Google Scholar] [CrossRef]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention, and Control: 2001. Available online: http://whqlibdoc.who.int/hq/2001/WHO_NHD_01.3.pdf (accessed on 10 February 2023).
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative workgroup. Acute renal failure -definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care. 2004, 8, R204–R212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D.; Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. Circulation 2012, 126, 2020–2035. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, M.; Amarelli, C.; Scardone, M.; Caiazzo, A.; Petrone, G.; Majello, L.; Santé, P.; Nappi, G.; Della Corte, A. Cerebral perfusion issues in acute type A aortic dissection without preoperative malperfusion: How do surgical factors affect outcomes? Eur. J. Cardiothorac. Surg. 2016, 50, 652–659. [Google Scholar] [CrossRef]
- Austin, P.C. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm. Stat. 2011, 10, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scrascia, G.; Guida, P.; Caparrotti, S.M.; Capone, G.; Contini, M.; Cassese, M.; Fanelli, V.; Martinelli, G.; Mazzei, V.; Zaccaria, S.; et al. Incremental value of anemia in cardiac surgical risk prediction with the European System for Cardiac Operative Risk Evaluation (EuroSCORE) II model. Ann. Thorac. Surg. 2014, 98, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Karkouti, K.; Djaiani, G.; Borger, M.A.; Beattie, W.S.; Fedorko, L.; Wijeysundera, D.; Ivanov, J.; Karski, J. Low Hematocrit During Cardiopulmonary Bypass is Associated with Increased Risk of Perioperative Stroke in Cardiac Surgery. Ann. Thorac. Surg. 2005, 80, 1381–1387. [Google Scholar] [CrossRef]
- Wang, Y.; Bellomo, R. Cardiac surgery-associated acute kidney injury: Risk factors, pathophysiology and treatment. Nat. Rev. Nephrol. 2017, 13, 697–711. [Google Scholar] [CrossRef]
- Zakkar, M.; Bruno, V.D.; Guida, G.; Angelini, G.D.; Chivasso, P.; Suleiman, M.S.; Bryan, A.J.; Ascione, R. Postoperative acute kidney injury defined by RIFLE criteria predicts early health outcome and long-term survival in patients undergoing redo coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg. 2016, 152, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Li, Y.; Pan, G.; Xu, J.; Liu, S.; Xiao, Y. Risk Factors for Postoperative Acute Kidney Injury in Patients Undergoing Redo Cardiac Surgery Using Cardiopulmonary Bypass. J. Cardiovasc. Dev. Dis. 2022, 9, 244. [Google Scholar] [CrossRef]
- Murphy, G.J.; Reeves, B.C.; Rogers, C.A.; Rizvi, S.I.; Culliford, L.; Angelini, G.D. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation 2007, 116, 2544–2552. [Google Scholar] [CrossRef] [Green Version]
- Du Pont-Thibodeau, G.; Harrington, K.; Lacroix, J. Anemia and red blood cell transfusion in critically ill cardiac patients. Ann. Intensive Care 2014, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Ranucci, M.; Romitti, F.; Isgrò, G.; Cotza, M.; Brozzi, S.; Boncilli, A.; Ditta, A. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann. Thorac. Surg. 2005, 80, 2213–2220. [Google Scholar] [CrossRef]
- Karkouti, K.; Wijeysundera, D.N.; Yau, T.M.; McCluskey, S.A.; Chan, C.T.; Wong, P.Y.; Beattie, W.S. Influence of erythrocyte transfusion on the risk of acute kidney injury after cardiac surgery differs in anemic and nonanemic patients. Anesthesiology 2011, 115, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Panchal, P.; Gilotra, K.; Wilfred, A.M.; Hou, W.; Siegal, D.; Whitlock, R.P.; Belley-Cote, E.P. Intravenous iron therapy for patients with preoperative iron deficiency or anaemia undergoing cardiac surgery reduces blood transfusions: A systematic review and meta-analysis. Interact. CardioVasc. Thorac. Surg. 2020, 31, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall Series | Propensity Score Matched Pairs | ||||||
---|---|---|---|---|---|---|---|---|
No Anemia (n = 170) | Anemia (n = 239) | p | Standardized Differences | No Anemia (n = 145) | Anemia (n = 145) | p | Standardized Differences | |
Age | 60.5 ± 12.3 | 63.5 ± 12.1 | 0.015 | 0.24 | 61.8 ± 11.9 | 62.9 ± 12.7 | 0.40 | 0.09 |
Age ≥ 70 | 41 (24.1) | 69 (28.9) | 0.29 | 0.10 | 40 (28.0) | 43 (30.0) | 0.78 | 0.05 |
Female | 79 (46.5) | 114 (47.7) | 0.81 | 0.03 | 72 (50.4) | 71 (49.7) | >0.99 | 0.01 |
Height | 165.6 ± 0.8 | 164.6 ± 9.2 | 0.30 | 0.11 | 164.8 ± 9.4 | 164.1 ± 8.8 | 0.51 | 0.08 |
Weight | 74.8 ± 12.6 | 73.2 ± 14.3 | 0.25 | 0.13 | 73.7 ± 12.3 | 73.5 ± 14.6 | 0.93 | 0.01 |
BSA | 1.85 ± 0.19 | 1.82 ± 0.20 | 0.17 | 0.15 | 1.83 ± 0.19 | 1.82 ± 0.19 | 0.73 | 0.04 |
BMI | 27.2 ± 4.2 | 27.0 ± 5.0 | 0.56 | 0.06 | 27.0 ± 4.1 | 27.3 ± 5.4 | 0.58 | 0.06 |
Hemoglobin | 14.3 ± 1.2 | 10.6 ± 1.6 | <0.001 | 2.65 | 14.2 ± 1.1 | 10.9 ± 1.6 | <0.001 | 2.29 |
Diabetes mellitus | 23 (13.5) | 57 (23.9) | 0.009 | 0.26 | 23 (16.1) | 24 (16.8) | >0.99 | 0.02 |
Serum creatinine | 0.9 ± 0.3 | 1.1 ± 0.6 | <0.001 | 0.46 | 0.9 ± 0.3 | 1.0 ± 0.4 | 0.36 | 0.07 |
eGFR | 92.2 ± 57.3 | 73.7 ± 36.0 | <0.001 | 0.39 | 86.6 ± 58.7 | 82.0 ± 37.0 | 0.39 | 0.10 |
0 | 33 (19.4) | 97 (40.6) | <0.001 | 0.46 | 33 (22.8) | 44 (30.3) | 0.12 | 0.17 |
COPD | 30 (17.7) | 52 (21.8) | 0.31 | 0.10 | 26 (18.2) | 26 (18.2) | >0.99 | 0 |
Extracardiac arteriopathy | 8 (4.7) | 20 (8.4) | 0.15 | 0.18 | 7 (4.9) | 11 (7.7) | 0.45 | 0.12 |
LVEF | 54.1 ± 9.9 | 53.3 ± 0.1 | 0.39 | 0.08 | 53.5 ± 10.3 | 53.3 ± 9.8 | 0.88 | 0.02 |
PAPs | 36.0 ± 13.3 | 39.3 ± 15.0 | 0.022 | 0.25 | 33.4 ± 13.3 | 38.1 ± 13.0 | 0.61 | 0.05 |
Pathology | <0.001 | 0.66 | 0.58 | 0.06 | ||||
Endocarditis | 4 (2.4) | 48 (20.1) | 4 (2.8) | 5 (3.5) | ||||
Failed repair/SVD | 82 (48.2) | 118 (49.4) | 78 (54.6) | 77 (53.9) | ||||
End-stage HF | 5 (2.9) | 6 (2.5) | 5 (3.5) | 6 (4.2) | ||||
Miscellaneous | 79 (46.5) | 67 (28.0) | 56 (39.2) | 55 (38.5) | ||||
Aortic dissection | 11 (6.5) | 11 (4.6) | 0.41 | 0.10 | 9 (6.3) | 8 (5.6) | >0.99 | 0.03 |
Preoperative intubation | 4 (2.4) | 12 (5.0) | 0.17 | 0.14 | 4 (2.8) | 5 (3.5) | >0.99 | 0.04 |
Preoperative stroke | 4 (2.4) | 15 (6.3) | 0.06 | 0.19 | 4 (2.8) | 6 (4.2) | 0.75 | 0.07 |
Ischemic cardiomyopathy | 23 (13.5) | 30 (12.6) | 0.78 | 0.04 | 15 (10.5) | 17 (11.9) | 0.85 | 0.04 |
Previous CABG | 27 (15.9) | 31 (13.0) | 0.41 | 0.10 | 21 (14.7) | 22 (15.4) | >0.99 | 0.01 |
Heart failure | 26 (15.3) | 69 (28.9) | 0.001 | 0.35 | 24 (16.8) | 24 (16.8) | >0.99 | 0 |
Status | 0.018 | 0.30 | 0.80 | 0.04 | ||||
Election | 134 (79.3) | 162 (67.4) | 112 (78.3) | 112 (78.3) | ||||
Urgent | 22 (13.0) | 57 (23.9) | 20 (14.0) | 19 (13.3) | ||||
Emergency | 13 (7.7) | 21 (8.8) | 11 (7.7) | 12 (8.4) |
Details | Overall Series | Propensity Score Matched Pairs | ||||
---|---|---|---|---|---|---|
No Anemia (n = 170) | Anemia (n = 239) | p | No Anemia (n = 145) | Anemia (n = 145) | p | |
Presternotomy CPB | 53 (31.2) | 76 (31.9) | 0.87 | 45 (31.5) | 39 (27.5) | 0.55 |
Preoperative arterial cannulation | 0.33 | 0.47 | ||||
No | 110 (64.7) | 147 (62.8) | 93 (65.0) | 96 (67.6) | ||
Femoral | 56 (32.9) | 81 (34.0) | 47 (32.9) | 40 (28.2) | ||
Axillary | 3 (1.8) | 10 (4.2) | 3 (2.1) | 6 (4.2) | ||
Subclavian | 1 (0.6) | 0 | - | - | ||
Preoperative venous cannulation | 0.50 | 0.82 | ||||
No | 114 (67.1) | 152 (63.9) | 96 (67.1) | 98 (69.0) | ||
Femoral | 56 (32.9) | 86 (3) | 47 (32.9) | 44 (31.0) | ||
CPB [min] | 153.9 ± 116.4 | 174.0 ± 86.1 | 0.045 | 160.0 ± 122.3 | 165.7 ± 84.9 | 0.51 |
XCT [min] | 84.4 ± 44.4 | 99.3 ± 51.4 | 0.002 | 85.5 ± 44.2 | 94.5 ± 49.0 | 0.12 |
DHCA | 11 (6.5) | 11 (4.6) | 0.42 | 9 (6.3) | 9 (6.3) | >0.99 |
DHCA [min] | 35.5 ± 29.9 | 42.5 ± 30.7 | 0.65 | 38.6 ± 33.0 | 47.1 ± 31.8 | 0.58 |
Cerebral perfusion | 0.42 | 0.87 | ||||
Kazui | 7 (4.1) | 10 (4.2) | 6 (4.2) | 8 (5.6) | ||
Axillary only | 1 (0.6) | 0 | 1 (0.7) | 0 | ||
Axillary + left carotid | 1 (0.6) | 0 | - | - | ||
Cardioplegia | 0.22 | 0.90 | ||||
St. Thomas | 149 (87.7) | 205 (85.8) | 125 (87.4) | 125 (87.4) | ||
Custodiol | 11 (6.5) | 26 (10.9) | 11 (7.7) | 11 (7.7) | ||
Celsior | 4 (2.4) | 5 (2.1) | 4 (2.8) | 5 (3.5) | ||
Blood | 2 (1.2) | 0 | - | - | ||
Length of surgery | 314.3 ± 95.8 | 347.1 ± 120.7 | 0.003 | 318.8 ± 95.2 | 336.6 ± 123.6 | 0.19 |
Nadir DO2i | 289.0 ± 76.9 | 240.2 ± 65.4 | <0.001 | 284.4 ± 78.0 | 246.7 ± 62.8 | <0.001 |
Nadir DO2i ≤ 262 | 47 (28.0) | 137 (57.8) | <0.001 | 42 (29.6) | 74 (52.5) | <0.001 |
Nadir Hb | 8.7 ± 1.4 | 7.2 ± 1.1 | <0.001 | 8.6 ± 1.4 | 7.4 ± 1.1 | <0.001 |
Nadir Hct | 26.4 ± 4.1 | 21.8 ± 3.3 | <0.001 | 26.0 ± 4.1 | 22.5 ± 3.3 | <0.001 |
PRC during CPB | 0.4 ± 1.1 | 1.9 ± 2.0 | <0.001 | 0.5 ± 1.2 | 1.5 ± 2.0 | <0.001 |
PRC after CPB | 0.4 ± 0.9 | 1.0 ± 1.5 | <0.001 | 0.4 ± 1.0 | 0.8 ± 1.3 | <0.001 |
PRC total | 1.2 ± 2.0 | 3.4 ± 3.3 | <0.001 | 1.3 ± 2.0 | 2.8 ± 3.1 | <0.001 |
Details | Overall Series | Propensity Score Matched Pairs | ||||
---|---|---|---|---|---|---|
No Anemia (n = 170) | Anemia (n = 239) | p | No Anemia (n = 145) | Anemia (n = 145) | p | |
Peak creatinine | 1.3 ± 0.7 | 1.7 ± 1.0 | <0.001 | 1.3 ± 0.7 | 1.5 ± 0.8 | 0.049 |
Nadir eGFR | 73.0 ± 44.4 | 57.1 ± 38.4 | <0.001 | 68.1 ± 40.2 | 60.1 ± 33.2 | 0.08 |
AKI | 0.001 | 0.06 | ||||
No | 108 (64.7) | 123 (54.4) | 89 (62.7) | 81 (59.6) | ||
Risk | 33 (20.0) | 36 (15.9) | 31 (21.8) | 22 (16.2) | ||
Injury | 14 (8.4) | 17 (7.5) | 12 (8.5) | 10 (7.4) | ||
Failure | 12 (7.2) | 50 (22.1) | 10 (7.0) | 23 (16.9) | ||
CVVH | 7 (4.2) | 46 (20.4) | <0.001 | 6 (4.2) | 19 (14.0) | 0.006 |
AKI injury-failure | 26 (15.6) | 67 (29.7) | 0.001 | 22 (15.5) | 33 (24.3) | 0.10 |
Cardiac morbidity | 59 (34.7) | 133 (55.7) | <0.001 | 50 (34.5) | 67 (46.2) | 0.056 |
ECMO | 3 (1.8) | 11 (4.6) | 0.12 | 2 (1.4) | 3 (2.1) | >0.99 |
IABP | 8 (4.7) | 18 (7.5) | 0.25 | 7 (4.8) | 9 (6.3) | 0.80 |
High-dose inotropes | 56 (32.9) | 127 (53.1) | <0.001 | 46 (32.2) | 67 (46.9) | 0.011 |
Simdax | 8 (4.7) | 29 (12.3) | 0.02 | 8 (5.6) | 18 (12.6) | 0.013 |
Prolonged mechanical ventilation | 12 (7.2) | 41 (18.1) | 0.002 | 9 (6.3) | 20 (14.7) | 0.035 |
Tracheostomy | 3 (1.8) | 10 (4.4) | 0.15 | 2 (1.4) | 7 (5.2) | 0.18 |
Readmission to ICU | 4 (2.4) | 10 (4.4) | 0.38 | 4 (2.8) | 5 (3.4) | 0.82 |
Bleeding requiring reoperation | 6 (3.6) | 6 (2.7) | 0.59 | 4 (2.8) | 4 (2.8) | >0.99 |
Postoperative stroke | 1 (0.6) | 10 (4.4) | 0.023 | 1 (0.7) | 7 (5.1) | 0.0097 |
ICU stay | 4.3 ± 5.4 | 8.2 ± 15.9 | 0.003 | 4.6 ± 5.8 | 7.3 ± 16.5 | 0.08 |
Postoperative stay | 14.9 ± 11.1 | 18.8 ± 17.4 | 0.012 | 15.6 ± 11.7 | 17.9 ± 16.5 | 0.21 |
Outcomes | Unadjusted | Propensity Score Adjusted | ||||
---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | |
AKI-Failure | 3.23 | 1.61–6.48 | 0.001 | 2.07 | 1.02–4.37 | 0.047 |
CVVH | 5.10 | 2.18–1.94 | <0.001 | 2.62 | 1.05–6.54 | 0.039 |
Stroke | 7.13 | 1.86–58.58 | 0.032 | 6.97 | 1.79–60.91 | 0.047 |
Prolonged mechanical ventilation | 2.77 | 1.36–5.62 | 0.005 | 1.95 | 1.91–4.16 | 0.046 |
Cardiac mordibity | 2.18 | 1.40–3.38 | <0.001 | 1.78 | 1.11–2.86 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubino, A.S.; De Santo, L.S.; Montella, A.P.; Golini Petrarcone, C.; Palmieri, L.; Galbiati, D.; Galdieri, N.; De Feo, M. Prognostic Implication of Preoperative Anemia in Redo Cardiac Surgery: A Single-Center Propensity-Matched Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 160. https://doi.org/10.3390/jcdd10040160
Rubino AS, De Santo LS, Montella AP, Golini Petrarcone C, Palmieri L, Galbiati D, Galdieri N, De Feo M. Prognostic Implication of Preoperative Anemia in Redo Cardiac Surgery: A Single-Center Propensity-Matched Analysis. Journal of Cardiovascular Development and Disease. 2023; 10(4):160. https://doi.org/10.3390/jcdd10040160
Chicago/Turabian StyleRubino, Antonino Salvatore, Luca Salvatore De Santo, Antonio Pio Montella, Caterina Golini Petrarcone, Lucrezia Palmieri, Denise Galbiati, Nicola Galdieri, and Marisa De Feo. 2023. "Prognostic Implication of Preoperative Anemia in Redo Cardiac Surgery: A Single-Center Propensity-Matched Analysis" Journal of Cardiovascular Development and Disease 10, no. 4: 160. https://doi.org/10.3390/jcdd10040160
APA StyleRubino, A. S., De Santo, L. S., Montella, A. P., Golini Petrarcone, C., Palmieri, L., Galbiati, D., Galdieri, N., & De Feo, M. (2023). Prognostic Implication of Preoperative Anemia in Redo Cardiac Surgery: A Single-Center Propensity-Matched Analysis. Journal of Cardiovascular Development and Disease, 10(4), 160. https://doi.org/10.3390/jcdd10040160