Inverse Correlation Between Grip Strength and Serum Phosphorus: A Retrospective Observational Study in Japanese Elderly with Poorly Controlled Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Participants
2.2. Patients’ Characteristics
2.3. Clinical Parameters: Diabetic Microangiopathy and Atherosclerosis
2.4. Laboratory Parameters
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morley, J.E.; Vellas, B.; van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.C.; Doehner, W.; Evans, J.; et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013, 14, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Umegaki, H. Sarcopenia and frailty in older patients with diabetes mellitus. Geriatr. Gerontol. Int. 2016, 16, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Backholer, K.; Gearon, E.; Harding, J.; Freak-Poli, R.; Stevenson, C.; Peeters, A. Diabetes and risk of physical disability in adults: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2013, 1, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Yanase, T.; Yanagita, I.; Muta, K.; Nawata, H. Frailty in elderly diabetes patients. Endocr. J. 2018, 65, EJ17–0390. [Google Scholar] [CrossRef] [Green Version]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; de Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; Newman, A.B. Decreased muscle strength and quality in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes 2006, 55, 1813–1818. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.P.; Hazuda, H.P. Better glycemic control is associated with maintenance of lower-extremity function over time in Mexican American and European American older adults with diabetes. Diabetes Care 2011, 34, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Haneda, M.; Noda, M.; Origasa, H.; Noto, H.; Yabe, D.; Fujita, Y.; Goto, A.; Kondo, T.; Araki, E. Japanese Clinical Practice Guideline for Diabetes 2016. J. Diabetes Investig. 2018, 9, 1–45. [Google Scholar] [CrossRef]
- Haneda, M.; Utsunomiya, K.; Koya, D.; Babazono, T.; Moriya, T.; Makino, H.; Kimura, K.; Suzuki, Y.; Wada, T.; Ogawa, S.; et al. A new Classification of Diabetic Nephropathy 2014: A report from Joint Committee on Diabetic Nephropathy. J. Diabetes Investig. 2015, 6, 242–246. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Clouston, S.A.; Brewster, P.; Kuh, D.; Richards, M.; Cooper, R.; Hardy, R.; Rubin, M.S.; Hofer, S.M. The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiol. Rev. 2013, 35, 33–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, M.Y.; Nishita, Y.; Nakagawa, T.; Tange, C.; Tomida, M.; Shimokata, H.; Otsuka, R.; Chen, L.K.; Arai, H. Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr. 2019, 19, 186. [Google Scholar] [CrossRef] [PubMed]
- Stenholm, S.; Sainio, P.; Rantanen, T.; Koskinen, S.; Jula, A.; Heliovaara, M.; Aromaa, A. High body mass index and physical impairments as predictors of walking limitation 22 years later in adult Finns. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Suzuki, T.; Kim, M.; Kojima, N.; Yoshida, Y.; Hirano, H.; Saito, K.; Iwasa, H.; Shimada, H.; Hosoi, E.; et al. Incidence and predictors of sarcopenia onset in community-dwelling elderly Japanese women: 4-year follow-up study. J. Am. Med. Dir. Assoc. 2015, 16, 85.e1–85.e8. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, R.E.; Lang, I.A.; Llewellyn, D.J.; Rockwood, K. Frailty, body mass index, and abdominal obesity in older people. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuoka, Y.; Narita, T.; Fujita, H.; Morii, T.; Sato, T.; Sassa, M.H.; Yamada, Y. Importance of physical evaluation using skeletal muscle mass index and body fat percentage to prevent sarcopenia in elderly Japanese diabetes patients. J. Diabetes Investig. 2019, 10, 322–330. [Google Scholar] [CrossRef]
- Andersen, H.; Nielsen, S.; Mogensen, C.E.; Jakobsen, J. Muscle strength in type 2 diabetes. Diabetes 2004, 53, 1543–1548. [Google Scholar] [CrossRef] [Green Version]
- Almurdhi, M.M.; Reeves, N.D.; Bowling, F.L.; Boulton, A.J.; Jeziorska, M.; Malik, R.A. Reduced Lower-Limb Muscle Strength and Volume in Patients with Type 2 Diabetes in Relation to Neuropathy, Intramuscular Fat, and Vitamin D Levels. Diabetes Care 2016, 39, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Gundmi, S.; Maiya, A.G.; Bhat, A.K.; Ravishankar, N.; Hande, M.H.; Rajagopal, K.V. Hand dysfunction in type 2 diabetes mellitus: Systematic review with meta-analysis. Ann. Phys. Rehabil. Med. 2018, 61, 99–104. [Google Scholar] [CrossRef]
- Lima, K.C.A.; Borges, L.D.S.; Hatanaka, E.; Rolim, L.C.; de Freitas, P.B. Grip force control and hand dexterity are impaired in individuals with diabetic peripheral neuropathy. Neurosci. Lett. 2017, 659, 54–59. [Google Scholar] [CrossRef]
- Moon, H.; Chin, H.J.; Na, K.Y.; Joo, K.W.; Kim, Y.S.; Kim, S.; Han, S.S. Hyperphosphatemia and risks of acute kidney injury, end-stage renal disease, and mortality in hospitalized patients. BMC Nephrol. 2019, 20, 362. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.G.; Westerblad, H. Role of phosphate and calcium stores in muscle fatigue. J. Physiol. 2001, 536, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Dahlstedt, A.J.; Katz, A.; Westerblad, H. Role of myoplasmic phosphate in contractile function of skeletal muscle: Studies on creatine kinase-deficient mice. J. Physiol. 2001, 533, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Kao, T.W.; Chou, C.W.; Wu, C.J.; Yang, H.F.; Lai, C.H.; Wu, L.W.; Chen, W.L. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia. Sci. Rep. 2018, 8, 3573. [Google Scholar] [CrossRef] [PubMed]
- Lederer, E. Regulation of serum phosphate. J. Physiol. 2014, 592, 3985–3995. [Google Scholar] [CrossRef]
- Kuro-o, M. A potential link between phosphate and aging—Lessons from Klotho-deficient mice. Mech. Ageing Dev. 2010, 131, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Beben, T.; Ix, J.H.; Shlipak, M.G.; Sarnak, M.J.; Fried, L.F.; Hoofnagle, A.N.; Chonchol, M.; Kestenbaum, B.R.; de Boer, I.H.; Rifkin, D.E. Fibroblast Growth Factor-23 and Frailty in Elderly Community-Dwelling Individuals: The Cardiovascular Health Study. J. Am. Geriatr. Soc. 2016, 64, 270–276. [Google Scholar] [CrossRef]
- Visser, M.; Deeg, D.J.; Lips, P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): The Longitudinal Aging Study Amsterdam. J. Clin. Endocrinol. Metab. 2003, 88, 5766–5772. [Google Scholar] [CrossRef]
LHGS Group (n = 21) | HHGS Group (n = 20) | p-Value | |
---|---|---|---|
Age (years) | 75.8 ± 7.1 | 77.4 ± 6.7 | 0.47 |
Male sex (n, %) | 13, 62% | 12, 60% | 1 |
Grip strength (kg) | 18.3 ± 4.6 | 26.5 ± 5.4 | <0.001 |
Grip strength in males (kg) | 20.9 ± 3.8 | 30.1 ± 3.0 | <0.001 |
Grip strength in females (kg) | 14.0 ± 1.5 | 21.0 ± 2.7 | <0.001 |
MMSE score | 24.3 ± 3.7 (n = 20) | 26.5 ± 3.2 (n = 13) | 0.04 |
Body mass index (kg/m2) | 24.2 ± 3.5 | 25.5 ± 4.1 | 0.30 |
Waist circumference (cm) | 90.4 ± 8.9 | 95.1 ± 12.5 | 0.18 |
Duration of DM (years) | 18.7 ± 13.3 | 16.3 ± 11.25 | 0.52 |
Family history of DM (n, %) | 12, 57% | 13, 65% | 0.75 |
Current smoking (n, %) | 3, 14% | 3, 15% | 1 |
Habitual alcohol use (n, %) | 1, 5% | 3, 15% | 0.34 |
Insulin use (n, %) | 6, 29% | 3, 15% | 0.45 |
Statin use (n, %) | 13, 62% | 11, 55% | 0.76 |
Hypertension (n, %) | 15, 71% | 15, 75% | 1 |
Systolic BP (mmHg) | 131.4 ± 15.4 | 133.2 ± 13.4 | 0.71 |
Diastolic BP (mmHg) | 71.8 ± 8.7 | 68.4 ± 12.9 | 0.32 |
Dyslipidemia (n, %) | 16, 76% | 15, 75% | 1 |
History of cardiovascular disease (n, %) | 4, 19% | 2, 10% | 0.66 |
History of cerebrovascular disease (n, %) | 2, 10% | 2, 10% | 1 |
History of peripheral artery disease (n, %) | 4, 19% | 2, 10% | 0.66 |
LHGS Group (n = 21) | HHGS Group (n = 20) | p-Value | |
---|---|---|---|
DPN (n, %) | 16, 76% | 8, 40% | 0.03 |
CVR-R (%) | 2.85 ± 2.75 (n = 18) | 3.03 ± 2.00 (n = 18) | 0.83 |
CVR-R < 2% (n, %) | 10, 56% (n = 18) | 5, 27% (n = 18) | 0.18 |
Retinopathy (n, %) | 10, 50% (n = 20) | 6, 30% | 0.27 |
Nephropathy | |||
Stage 1, pre-nephropathy (n, %) Urinary albumin < 30 mg/gcre or mg/day | 4, 19% | 8, 40% | 0.18 |
Stage 2, incipient nephropathy (n, %) Urinary albumin 30–299 mg/gcre or mg/day | 13, 62% | 8, 40% | 0.22 |
Stage 3, overt nephropathy (n, %) Urinary albumin ≥ 300 mg/gcre or mg/day Urinary protein ≥ 0.5 g/gcre or g/day | 1, 5% | 2, 10% | 0.61 |
Stage 4, kidney failure (n, %) eGFR < 30 mL/min/1.73 m2 | 3, 14% | 2, 10% | 1 |
Stage 5, dialysis therapy (n, %) | 0, 0% | 0, 0% | 1 |
Maximum IMT (mm) | 2.45 ± 1.18 | 2.42 ± 0.84 | 0.92 |
Minimal ABI | 1.01 ± 0.19 | 1.05 ± 0.16 | 0.54 |
Average ABI | 1.04 ± 0.16 | 1.08 ± 0.15 | 0.49 |
Average CAVI | 9.83 ± 1.43 | 9.82 ± 1.10 | 0.99 |
LHGS Group (n = 21) | HHGS Group (n = 20) | p-Value | |
---|---|---|---|
HbA1c (%) | 8.8 ± 1.5 | 8.9 ± 1.4 | 0.87 |
GA (%) | 25.6 ± 5.7 | 26.3 ± 6.5 | 0.73 |
TLC (/µL) | 1651 ± 544 | 1639 ± 580 | 0.95 |
Hemoglobin (g/dL) | 12.5 ± 1.4 | 13.0 ± 1.3 | 0.21 |
Albumin (g/dL) | 4.0 ± 0.5 | 4.1 ± 0.4 | 0.61 |
AST (U/L) | 25.8 ± 18.2 | 25.3 ± 12.7 | 0.91 |
ALT (U/L) | 22.2 ± 22.5 | 20.9 ± 12.9 | 0.82 |
UA (mg/dL) | 5.0 ± 1.4 | 4.9 ± 1.3 | 0.84 |
Total cholesterol (mg/dL) | 169.0 ± 43.2 | 174.6 ± 33.8 | 0.65 |
HDL cholesterol (mg/dL) | 48.9 ± 12.7 | 51.1 ± 12.3 | 0.58 |
Directly measured LDL cholesterol (mg/dL) | 92.8 ± 35.7 | 97.3 ± 30.4 | 0.66 |
Calculated LDL cholesterol (mg/dL) | 94.5 ± 36.9 | 101.5 ± 33.7 | 0.53 |
Triglyceride (mg/dL) | 127.9 ± 57.8 | 110.1 ± 44.7 | 0.28 |
Creatinine (mg/dL) | 0.91 ± 0.49 | 0.96 ± 0.49 | 0.74 |
eGFR (mL/min/1.73 m2) | 66.7 ± 23.1 | 62.3 ± 22.9 | 0.54 |
Sodium (mEq/L) | 140.2 ± 4.6 | 141.4 ± 2.4 | 0.30 |
Potassium (mEq/L) | 4.2 ± 0.6 | 4.4 ± 0.4 | 0.31 |
Chloride (mEq/L) | 102.7 ± 4.7 | 105.0 ± 2.2 | 0.05 |
Corrected calcium (mg/dL) | 9.1 ± 0.5 | 9.0 ± 0.4 | 0.49 |
Phosphorus (mg/dL) | 3.8 ± 0.4 | 3.3 ± 0.5 | <0.01 |
β-Value | p-Value | t-Statistic | 95% Confidence Interval | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Phosphorus (mg/dL) | −7.10 | <0.001 | −3.82 | −10.88 | −3.33 |
eGFR (mL/min/1.73 m2) | −0.07 | 0.10 | −1.69 | −0.16 | 0.01 |
Age (years) | −0.22 | 0.16 | −1.43 | −0.52 | 0.09 |
BMI (kg/m2) | 0.28 | 0.24 | 1.19 | −0.20 | 0.79 |
HbA1c (%) | −0.12 | 0.85 | −0.19 | −1.42 | 1.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, S.; Takubo, M.; Kohno, G.; Kushimoto, M.; Ikeda, J.; Ogawa, K.; Suzuki, Y.; Abe, M.; Ishihara, H.; Fujishiro, M. Inverse Correlation Between Grip Strength and Serum Phosphorus: A Retrospective Observational Study in Japanese Elderly with Poorly Controlled Type 2 Diabetes. Geriatrics 2020, 5, 33. https://doi.org/10.3390/geriatrics5020033
Tanaka S, Takubo M, Kohno G, Kushimoto M, Ikeda J, Ogawa K, Suzuki Y, Abe M, Ishihara H, Fujishiro M. Inverse Correlation Between Grip Strength and Serum Phosphorus: A Retrospective Observational Study in Japanese Elderly with Poorly Controlled Type 2 Diabetes. Geriatrics. 2020; 5(2):33. https://doi.org/10.3390/geriatrics5020033
Chicago/Turabian StyleTanaka, Sho, Masahiro Takubo, Genta Kohno, Masaru Kushimoto, Jin Ikeda, Katsuhiko Ogawa, Yutaka Suzuki, Masanori Abe, Hisamitsu Ishihara, and Midori Fujishiro. 2020. "Inverse Correlation Between Grip Strength and Serum Phosphorus: A Retrospective Observational Study in Japanese Elderly with Poorly Controlled Type 2 Diabetes" Geriatrics 5, no. 2: 33. https://doi.org/10.3390/geriatrics5020033
APA StyleTanaka, S., Takubo, M., Kohno, G., Kushimoto, M., Ikeda, J., Ogawa, K., Suzuki, Y., Abe, M., Ishihara, H., & Fujishiro, M. (2020). Inverse Correlation Between Grip Strength and Serum Phosphorus: A Retrospective Observational Study in Japanese Elderly with Poorly Controlled Type 2 Diabetes. Geriatrics, 5(2), 33. https://doi.org/10.3390/geriatrics5020033