Central Adiposity Assessed with Body Roundness Index and Mortality: The Seguimiento Universidad de Navarra Prospective Cohort
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. BRI Definition
2.3. Outcome
2.4. Ethical Principles
2.5. Other Covariates
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. BRI and Incident Death
3.3. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AUC | Area Under the Curve |
| BMI | Body Mass Index |
| BRI | Body Roundness Index |
| CI | Confidence Interval |
| HR | Hazard Ratio |
| MED | Mediterranean |
| MET | Metabolic Equivalent of Task |
| NHANES | National Health and Nutrition Examination Survey |
| Q | Quartile |
| ROC | Receiver Operating Characteristic |
| SD | Standard Deviation |
| SUN | Seguimiento Universidad de Navarra |
| WC | Waist circumference |
| WtHR | Waist-to-height ratio |
References
- Boutari, C.; Mantzoros, C.S. A 2022 update on the epidemiology of obesity and a call to action: As its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef]
- Silvestrini, B.; Silvestrini, M. Physiopathology and Treatment of Obesity and Overweight: A Proposal for a New Anorectic. J. Obes. 2024, 2024, 9587300. [Google Scholar] [CrossRef]
- Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Masters, R.K. Sources and severity of bias in estimates of the BMI-mortality association. Popul. Stud. 2023, 77, 35–53. [Google Scholar] [CrossRef]
- Visaria, A.; Setoguchi, S. Body mass index and all-cause mortality in a 21st century U.S. population: A National Health Interview Survey analysis. PLoS ONE 2023, 18, e0287218. [Google Scholar] [CrossRef]
- Yoo, H.J. Body Mass Index and Mortality. J. Obes. Metab. Syndr. 2017, 26, 3–9. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed]
- McGee, D.L.; Diverse Populations, C. Body mass index and mortality: A meta-analysis based on person-level data from twenty-six observational studies. Ann. Epidemiol. 2005, 15, 87–97. [Google Scholar] [CrossRef]
- Tobias, D.K.; Hu, F.B. Does being overweight really reduce mortality? Obesity 2013, 21, 1746–1749. [Google Scholar] [CrossRef] [PubMed]
- Berrington de Gonzalez, A.; Hartge, P.; Cerhan, J.R.; Flint, A.J.; Hannan, L.; MacInnis, R.J.; Moore, S.C.; Tobias, G.S.; Anton-Culver, H.; Freeman, L.B.; et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 2010, 363, 2211–2219. [Google Scholar] [CrossRef] [PubMed]
- Global BMI Mortality Collaboration; Di Angelantonio, E.; Bhupathiraju Sh, N.; Wormser, D.; Gao, P.; Kaptoge, S.; Berrington de Gonzalez, A.; Cairns, B.J.; Huxley, R.; Jackson Ch, L.; et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef]
- Neeland, I.J.; Ross, R.; Despres, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Lee, H.; Rhee, T.M.; Choi, J.M.; Choi, S.Y.; Kim, D.W. The Close Link Between Obesity and Cardiovascular Disease: Current Insights and Remaining Challenges. Endocrinol. Metab. Clin. N. Am. 2025, 54, 175–192. [Google Scholar] [CrossRef]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 2014, 56, 426–433. [Google Scholar] [CrossRef]
- Khan, I.; Chong, M.; Le, A.; Mohammadi-Shemirani, P.; Morton, R.; Brinza, C.; Kiflen, M.; Narula, S.; Akhabir, L.; Mao, S.; et al. Surrogate Adiposity Markers and Mortality. JAMA Netw. Open 2023, 6, e2334836. [Google Scholar] [CrossRef]
- Lee, S.W.; Son, J.Y.; Kim, J.M.; Hwang, S.S.; Han, J.S.; Heo, N.J. Body fat distribution is more predictive of all-cause mortality than overall adiposity. Diabetes Obes. Metab. 2018, 20, 141–147. [Google Scholar] [CrossRef]
- Afzal, S.; Tybjaerg-Hansen, A.; Jensen, G.B.; Nordestgaard, B.G. Change in Body Mass Index Associated With Lowest Mortality in Denmark, 1976–2013. JAMA 2016, 315, 1989–1996. [Google Scholar] [CrossRef]
- Caleyachetty, R.; Barber, T.M.; Mohammed, N.I.; Cappuccio, F.P.; Hardy, R.; Mathur, R.; Banerjee, A.; Gill, P. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: A population-based cohort study. Lancet Diabetes Endocrinol. 2021, 9, 419–426. [Google Scholar] [CrossRef]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Dahlqvist Leinhard, O. Advanced body composition assessment: From body mass index to body composition profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Suliga, E.; Ciesla, E.; Gluszek-Osuch, M.; Rogula, T.; Gluszek, S.; Koziel, D. The Usefulness of Anthropometric Indices to Identify the Risk of Metabolic Syndrome. Nutrients 2019, 11, 2598. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef]
- Ashwell, M.; Lejeune, S.; McPherson, K. Ratio of waist circumference to height may be better indicator of need for weight management. BMJ 1996, 312, 377. [Google Scholar] [CrossRef]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef]
- Nelson, C.P.; Hamby, S.E.; Saleheen, D.; Hopewell, J.C.; Zeng, L.; Assimes, T.L.; Kanoni, S.; Willenborg, C.; Burgess, S.; Amouyel, P.; et al. Genetically determined height and coronary artery disease. N. Engl. J. Med. 2015, 372, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Rico-Martin, S.; Calderon-Garcia, J.F.; Sanchez-Rey, P.; Franco-Antonio, C.; Martinez Alvarez, M.; Sanchez Munoz-Torrero, J.F. Effectiveness of body roundness index in predicting metabolic syndrome: A systematic review and meta-analysis. Obes. Rev. 2020, 21, e13023. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, L.; Wu, Q.; Zhou, Y.; Jin, Z.; Li, Z.; Zhu, Y. Body roundness index is a superior indicator to associate with the cardio-metabolic risk: Evidence from a cross-sectional study with 17,000 Eastern-China adults. BMC Cardiovasc. Disord. 2021, 21, 97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H. The association of body roundness index and body mass index with frailty and all-cause mortality: A study from the population aged 40 and above in the United States. Lipids Health Dis. 2025, 24, 30. [Google Scholar] [CrossRef]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campa, A.; Martinez-Gonzalez, M.A.; Ruiz-Canela, M. Mediterranean Diet and Health Outcomes in the SUN Cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef]
- Segui-Gomez, M.; de la Fuente, C.; Vazquez, Z.; de Irala, J.; Martinez-Gonzalez, M.A. Cohort profile: The ‘Seguimiento Universidad de Navarra’ (SUN) study. Int. J. Epidemiol. 2006, 35, 1417–1422. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Sanchez-Villegas, A.; De Irala, J.; Marti, A.; Martinez, J.A. Mediterranean diet and stroke: Objectives and design of the SUN project. Seguimiento Universidad de Navarra. Nutr. Neurosci. 2002, 5, 65–73. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A. The SUN cohort study (Seguimiento University of Navarra). Public Health Nutr. 2006, 9, 127–131. [Google Scholar] [CrossRef]
- Bes-Rastrollo, M.; Valdivieso, J.R.P.; Sanchez-Villegas, A.; Alonso, A.; Martinez-Gonzalez, M.A. Validación del peso e índice de masa corporal auto-declarados de los participantes de una cohorte de graduados universitarios. Rev. Esp. Obes. 2005, 3, 7. [Google Scholar]
- Martinez-Gonzalez, M.A.; Lopez-Fontana, C.; Varo, J.J.; Sanchez-Villegas, A.; Martinez, J.A. Validation of the Spanish version of the physical activity questionnaire used in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Public. Health Nutr. 2005, 8, 920–927. [Google Scholar] [CrossRef]
- Alonso, A.; Beunza, J.J.; Delgado-Rodriguez, M.; Martinez-Gonzalez, M.A. Validation of self reported diagnosis of hypertension in a cohort of university graduates in Spain. BMC Public Health 2005, 5, 94. [Google Scholar] [CrossRef]
- Fernandez-Montero, A.; Beunza, J.J.; Bes-Rastrollo, M.; Barrio, M.T.; de la Fuente-Arrillaga, C.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A. Validity of self-reported metabolic syndrome components in a cohort study. Gac. Sanit. 2011, 25, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villegas, A.; Schlatter, J.; Ortuno, F.; Lahortiga, F.; Pla, J.; Benito, S.; Martinez-Gonzalez, M.A. Validity of a self-reported diagnosis of depression among participants in a cohort study using the Structured Clinical Interview for DSM-IV (SCID-I). BMC Psychiatry 2008, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef]
- Furbatto, M.; Lelli, D.; Antonelli Incalzi, R.; Pedone, C. Mediterranean Diet in Older Adults: Cardiovascular Outcomes and Mortality from Observational and Interventional Studies-A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 3947. [Google Scholar] [CrossRef]
- Tang, C.; Wang, X.; Qin, L.Q.; Dong, J.Y. Mediterranean Diet and Mortality in People with Cardiovascular Disease: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 2623. [Google Scholar] [CrossRef]
- Becerra-Tomas, N.; Blanco Mejia, S.; Viguiliouk, E.; Khan, T.; Kendall, C.W.C.; Kahleova, H.; Rahelic, D.; Sievenpiper, J.L.; Salas-Salvado, J. Mediterranean diet, cardiovascular disease and mortality in diabetes: A systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 1207–1227. [Google Scholar] [CrossRef]
- Prentice, A.M.; Jebb, S.A. Beyond body mass index. Obes. Rev. 2001, 2, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhu, J.; Liang, W.; Yang, X.; Ning, W.; Zhao, Z.; Chen, J.; He, Q. Association of body roundness index with cardiovascular disease in patients with cardiometabolic syndrome: A cross-sectional study based on NHANES 2009-2018. Front. Endocrinol. 2025, 16, 1524352. [Google Scholar] [CrossRef]
- Cornier, M.A.; Despres, J.P.; Davis, N.; Grossniklaus, D.A.; Klein, S.; Lamarche, B.; Lopez-Jimenez, F.; Rao, G.; St-Onge, M.P.; Towfighi, A.; et al. Assessing adiposity: A scientific statement from the American Heart Association. Circulation 2011, 124, 1996–2019. [Google Scholar] [CrossRef]
- Xue, R.; Li, Q.; Geng, Y.; Wang, H.; Wang, F.; Zhang, S. Abdominal obesity and risk of CVD: A dose-response meta-analysis of thirty-one prospective studies. Br. J. Nutr. 2021, 126, 1420–1430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rimm, E.B.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 2005, 81, 555–563. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Bautista, L.; Franzosi, M.G.; Commerford, P.; Lang, C.C.; Rumboldt, Z.; Onen, C.L.; Lisheng, L.; et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet 2005, 366, 1640–1649. [Google Scholar] [CrossRef]
- Pillay, P.; Lewington, S.; Taylor, H.; Lacey, B.; Carter, J. Adiposity, Body Fat Distribution, and Risk of Major Stroke Types Among Adults in the United Kingdom. JAMA Netw. Open 2022, 5, e2246613. [Google Scholar] [CrossRef]
- Sheng, G.; Qiu, J.; Kuang, M.; Peng, N.; Xie, G.; Chen, Y.; Zhang, S.; Zou, Y. Assessing temporal differences of baseline body mass index, waist circumference, and waist-height ratio in predicting future diabetes. Front. Endocrinol. 2022, 13, 1020253. [Google Scholar] [CrossRef]
- Jayedi, A.; Soltani, S.; Zargar, M.S.; Khan, T.A.; Shab-Bidar, S. Central fatness and risk of all cause mortality: Systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ 2020, 370, m3324. [Google Scholar] [CrossRef]
- Cai, X.; Song, S.; Hu, J.; Zhu, Q.; Yang, W.; Hong, J.; Luo, Q.; Yao, X.; Li, N. Body roundness index improves the predictive value of cardiovascular disease risk in hypertensive patients with obstructive sleep apnea: A cohort study. Clin. Exp. Hypertens. 2023, 45, 2259132. [Google Scholar] [CrossRef]
- Wu, L.; Pu, H.; Zhang, M.; Hu, H.; Wan, Q. Non-linear relationship between the body roundness index and incident type 2 diabetes in Japan: A secondary retrospective analysis. J. Transl. Med. 2022, 20, 110. [Google Scholar] [CrossRef]
- Wu, M.; Yu, X.; Xu, L.; Wu, S.; Tian, Y. Associations of longitudinal trajectories in body roundness index with mortality and cardiovascular outcomes: A cohort study. Am. J. Clin. Nutr. 2022, 115, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.R.S.; Libardi, M.C.; do Prado, C.B.; Zandonade, E.; Bezerra, O.; Salaroli, L.B. Predicting metabolic syndrome by lipid accumulation product, visceral adiposity index and body roundness index in Brazilian rural workers. BMC Public Health 2025, 25, 544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, W.; Ren, R.; Liu, Y.; Li, B.; Wang, A.; Tang, X.; Yan, L.; Luo, Z.; Qin, G.; et al. Body roundness index is related to the low estimated glomerular filtration rate in Chinese population: A cross-sectional study. Front. Endocrinol. 2023, 14, 1148662. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Hou, X.; Yu, W.; Gao, C.; Gou, S.; Fu, P. Association between anthropometric indices and chronic kidney disease: Insights from NHANES 2009–2018. PLoS ONE 2025, 20, e0311547. [Google Scholar] [CrossRef]
- Gan, J.; Yang, X.; Wu, J.; Mo, P.; Deng, Y.; Liu, Y.; Wu, Y.; Liu, P.; Ji, L.; Jiang, H.; et al. Association between body roundness index and stroke results from the 1999-2018 NHANES. J. Stroke Cerebrovasc. Dis. 2025, 34, 108243. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Jin, L.; Li, D.; Zhang, Y.; Zhao, W.; Zhao, Y.; Gao, J.; Zhou, L.; Chen, P.; Dong, G. The association between the body roundness index and the risk of colorectal cancer: A cross-sectional study. Lipids Health Dis. 2023, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.; Zheng, X.; Liu, T.; Liu, C.; Lin, S.; Xie, H.; Shi, J.; Liu, X.; Ma, X.; et al. Body Roundness Index Trajectories and the Risk of Cancer: A Cohort Study. Cancer Med. 2024, 13, e70447. [Google Scholar] [CrossRef]
- Ding, J.; Chen, X.; Shi, Z.; Bai, K.; Shi, S. Association of body roundness index and its trajectories with all-cause and cardiovascular mortality among a Chinese middle-aged and older population: A retrospective cohort study. Front. Public Health 2023, 11, 1107158. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Zeng, Q.; Li, S.; Lu, J.; Cheng, N. Evaluating body roundness index and systemic immune inflammation index for mortality prediction in MAFLD patients. Sci. Rep. 2025, 15, 330. [Google Scholar] [CrossRef]
- Hu, F.B.; Drescher, G.; Trichopoulou, A.; Willett, W.C.; Martinez-Gonzalez, M.A. Three decades of the Mediterranean diet pyramid: A narrative review of its history, evolution, and advances. Am. J. Clin. Nutr. 2025, 122, 17–28. [Google Scholar] [CrossRef]
- Ambikapathi, R.; Schneider, K.R.; Davis, B.; Herrero, M.; Winters, P.; Fanzo, J.C. Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. Nat. Food 2022, 3, 764–779. [Google Scholar] [CrossRef]
- Rosi, A.; Scazzina, F.; Giampieri, F.; Alvarez-Cordova, L.; Abdelkarim, O.; Ammar, A.; Aly, M.; Frias-Toral, E.; Pons, J.; Vazquez-Araujo, L.; et al. Lifestyle Factors Associated with Children’s and Adolescents’ Adherence to the Mediterranean Diet Living in Mediterranean Countries: The DELICIOUS Project. Nutrients 2024, 17, 26. [Google Scholar] [CrossRef]
- Malenfant, J.H.; Batsis, J.A. Obesity in the geriatric population—A global health perspective. J. Glob. Health Rep. 2019, 3, e2019045. [Google Scholar] [CrossRef]
- Shetty, P. Grey matter: Ageing in developing countries. Lancet 2012, 379, 1285–1287. [Google Scholar] [CrossRef] [PubMed]
- Samper-Ternent, R.; Al Snih, S. Obesity in Older Adults: Epidemiology and Implications for Disability and Disease. Rev. Clin. Gerontol. 2012, 22, 10–34. [Google Scholar] [CrossRef]
- Drame, M.; Godaert, L. The Obesity Paradox and Mortality in Older Adults: A Systematic Review. Nutrients 2023, 15, 1780. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.B.; Gallagher, D.; Heo, M.; Pi-Sunyer, F.X.; Heymsfield, S.B. Body mass index and all-cause mortality among people age 70 and over: The Longitudinal Study of Aging. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 424–431. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Streja, E.; Kovesdy, C.P.; Oreopoulos, A.; Noori, N.; Jing, J.; Nissenson, A.R.; Krishnan, M.; Kopple, J.D.; Mehrotra, R.; et al. The obesity paradox and mortality associated with surrogates of body size and muscle mass in patients receiving hemodialysis. Mayo Clin. Proc. 2010, 85, 991–1001. [Google Scholar] [CrossRef]
- Brown, R.E.; Kuk, J.L. Consequences of obesity and weight loss: A devil’s advocate position. Obes. Rev. 2015, 16, 77–87. [Google Scholar] [CrossRef]
- Porter Starr, K.N.; McDonald, S.R.; Weidner, J.A.; Bales, C.W. Challenges in the Management of Geriatric Obesity in High Risk Populations. Nutrients 2016, 8, 262. [Google Scholar] [CrossRef]
- Kalinkovich, A.; Livshits, G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 2017, 35, 200–221. [Google Scholar] [CrossRef]
- Veronese, N.; Demurtas, J.; Soysal, P.; Smith, L.; Torbahn, G.; Schoene, D.; Schwingshackl, L.; Sieber, C.; Bauer, J.; Cesari, M.; et al. Sarcopenia and health-related outcomes: An umbrella review of observational studies. Eur. Geriatr. Med. 2019, 10, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Koyanagi, A.; Cereda, E.; Maggi, S.; Barbagallo, M.; Dominguez, L.J.; Smith, L. Sarcopenia reduces quality of life in the long-term: Longitudinal analyses from the English longitudinal study of ageing. Eur. Geriatr. Med. 2022, 13, 633–639. [Google Scholar] [CrossRef]
- Maniscalco, L.; Veronese, N.; Ragusa, F.S.; Vernuccio, L.; Dominguez, L.J.; Smith, L.; Matranga, D.; Barbagallo, M. Sarcopenia using muscle mass prediction model and cognitive impairment: A longitudinal analysis from the English longitudinal study on ageing. Arch. Gerontol. Geriatr. 2024, 117, 105160. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Batsis, J.A.; Coutinho, T.; Somers, V.K.; Hodge, D.O.; Carter, R.E.; Sochor, O.; Kragelund, C.; Kanaya, A.M.; Zeller, M.; et al. Normal-Weight Central Obesity and Mortality Risk in Older Adults With Coronary Artery Disease. Mayo Clin. Proc. 2016, 91, 343–351. [Google Scholar] [CrossRef]
- Ahmed, K.Y.; Mondal, U.K.; Huda, M.M.; Aychiluhm, S.B.; Newman, J.; Thapa, S.; Gibbs, P.; Mahmood, S.; Astawesegn, F.H.; Anyasodor, A.E.; et al. Normal-weight central obesity and cardiometabolic disorders among Aboriginal and Torres Strait Islander Australians. BMC Med. 2025, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K.J.G.; Greenland, S.; Lash, T.L. Design Strategies to Improve Study Accuracy. In Modern Epidemiology, 3rd ed.; Rothman, K.J., Greenland, S., Lash, T.L., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2008; p. 14. [Google Scholar]





| BRI Quartiles | ||||
|---|---|---|---|---|
| Q1 | Q2 | Q3 | Q4 | |
| N | 3164 | 3160 | 3165 | 3153 |
| Limits of BRI (range) men | 0.01, 3.5 | 3.5, 4.2 | 4.2, 5.0 | 5.0, 14.8 |
| Limits of BRI (range) women | 0.5, 2.2 | 2.2, 2.9 | 2.9, 3.8 | 3.8, 24.4 |
| Mean BRI (men) | 2.9 (0.5) | 3.8 (0.2) | 4.5 (0.2) | 6.0 (1.0) |
| Mean BRI (women) | 1.8 (0.3) | 2.5 (0.2) | 3.3 (0.3) | 4.9 (1.3) |
| Age, y | 33.0 (9.4) | 37.1 (10.2) | 41.3 (11.7) | 44.7 (12.6) |
| Sex % women | 60.2 | 60.2 | 60.3 | 60.2 |
| Married, % | 38.3 | 51.0 | 61.0 | 62.2 |
| University education, y | 5.0 (1.5) | 5.1 (1.6) | 5.1 (1.5) | 5.1 (1.6) |
| BMI, kg/m2 | 22.2 (2.4) | 22.5 (2.5) | 23.7 (2.7) | 26.4 (3.7) |
| Smoking | ||||
| -Never, % | 58.8 | 52.4 | 46.1 | 39.6 |
| -Current, % | 23.2 | 23.4 | 23.6 | 26.7 |
| -Former smoker, % | 18.0 | 24.2 | 30.3 | 33.7 |
| Smoking (pack/year) | 2.5 (6.3) | 3.7 (7.8) | 5.1 (9.5) | 7.3 (12.2) |
| Leisure-time physical activity, METs-h/wk | 26.8 (27.2) | 22.8 (22.8) | 20.3 (20.8) | 17.6 (18.3) |
| Television watching, h/d | 1.5 (1.2) | 1.6 (1.2) | 1.6 (1.2) | 1.7 (1.2) |
| Hypertension at baseline, % | 4.7 | 7.3 | 11.2 | 20.5 |
| Cancer at baseline, % | 1.6 | 2.2 | 2.8 | 4.1 |
| Diabetes at baseline, % | 0.6 | 1.1 | 1.6 | 3.3 |
| CVD at baseline, % | 0.6 | 1.2 | 1.4 | 2.3 |
| Hypertriglyceridemia at baseline, % | 2.5 | 4.8 | 6.6 | 13.3 |
| Hypercholesterolemia at baseline, % | 10.2 | 15.7 | 19.0 | 25.6 |
| Total energy intake, kcal/d | 2585 (770) | 2538 (759) | 2464 (758) | 2431 (785) |
| Adherence to Med Diet (score 1–9) 2 | 4.2 (1.8) | 4.2 (1.8) | 4.3 (1.8) | 4.4 (1.8) |
| Adoption of special diets, % | 5.7 | 6.1 | 7.6 | 12.0 |
| Between-meal snacking, % | 32.0 | 31.5 | 30.2 | 36.2 |
| Siesta, % | 47.6 | 53.2 | 57.4 | 58.7 |
| Health conscious (score 1–10) | 3.6 (1.7) | 3.9 (1.8) | 4.2 (1.9) | 4.4 (1.9) |
| BMI Categories | ||||
| Underweight <20 kg/m2 | Normoweight 20–25 kg/m2 | Overweight 25–30 kg/m2 | Obesity >30 kg/m2 | |
| N | 1845 | 7111 | 3149 | 537 |
| Mean BMI (men) | 19.2 (0.7) | 23.2 (1.3) | 26.9 (1.3) | 32.2 (2.2) |
| Mean BMI (women) | 18.9 (0.8) | 22.1 (1.4) | 26.7 (1.3) | 32.9 (2.8) |
| Age, y | 31.9 (8.6) | 37.7 (11.3) | 45.0 (12.1) | 46.3 (11.9) |
| Sex % women | 95.9 | 67.2 | 28.7 | 29.4 |
| Married, % | 35.0 | 50.0 | 68.3 | 67.4 |
| University education, y | 4.9 (1.4) | 5.1 (1.5) | 5.3 (1.6) | 5.1 (1.5) |
| BRI (men) | 2.6 (0.7) | 3.6 (0.8) | 4.7 (1.0) | 6.4 (1.5) |
| BRI (women) | 2.2 (0.7) | 3.1 (1.1) | 4.5 (1.3) | 6.3 (2.0) |
| Smoking | ||||
| -Never, % | 59.4 | 51.5 | 40.2 | 37.4 |
| -Current, % | 25.7 | 24.1 | 23.5 | 25.1 |
| -Former smoker, % | 14.9 | 24.4 | 36.3 | 37.5 |
| Smoking (pack/year) | 2.4 (5.4) | 4.3 (8.4) | 8.6 (12.8) | 10.8 (14.2) |
| Leisure-time physical activity, METs-h/wk | 19.6 (20.8) | 22.9 (23.9) | 21.9 (21.9) | 15.7 (17.0) |
| Television watching, h/d | 1.6 (1.3) | 1.6 (1.2) | 1.7 (1.1) | 1.8 (1.2) |
| Hypertension at baseline, % | 2.4 | 7.3 | 19.7 | 36.7 |
| Cancer at baseline, % | 1.8 | 2.7 | 2.7 | 5.0 |
| Diabetes at baseline, % | 0.4 | 1.2 | 2.6 | 5.8 |
| CVD at baseline, % | 0.5 | 1.0 | 2.5 | 3.9 |
| Hypertriglyceridemia at baseline, % | 1.1 | 3.8 | 13.7 | 25.7 |
| Hypercholesterolemia at baseline, % | 9.7 | 14.5 | 26.4 | 34.1 |
| Total energy intake, kcal/d | 2574 (777) | 2516 (763) | 2539 (764) | 2499 (856) |
| Adherence to Med Diet 2 (score 1–9) | 4.0 (1.8) | 4.2 (1.8) | 4.4 (1.8) | 4.4 (1.8) |
| Adoption of special diets, % | 4.8 | 7.2 | 9.7 | 15.5 |
| Between-meal snacking, % | 33.9 | 31.4 | 31.4 | 47.7 |
| Siesta, % | 48.2 | 52.9 | 59.7 | 60.3 |
| Health conscious (score 1–10) | 3.7 (1.7) | 4.0 (1.9) | 4.2 (1.9) | 4.3 (1.9) |
| BRI Quartiles | ||||||
|---|---|---|---|---|---|---|
| Q1 | Q2 | Q3 | Q4 | p-Trend | HR for +2 Units of BRI Increase | |
| n | 3164 | 3160 | 3165 | 3153 | ||
| BRI median (p25, p75) women | 1.9 (1.6, 2.1) | 2.5 (2.4, 2.7) | 3.3 (3.1, 3.5) | 4.5 (4.1, 5.2) | ||
| BRI median (p25, p75) men | 3.0 (2.7, 3.3) | 3.8 (3.6, 4.0) | 4.5 (4.4, 4.7) | 5.7 (5.3, 6.4) | ||
| Deaths | 34 | 63 | 119 | 164 | ||
| Person-years of follow-up | 55,107 | 55,400 | 54,814 | 52,999 | ||
| Crude rate (×10−3) | 0.6 | 1.1 | 2.2 | 3.1 | ||
| Crude HR | 1 (ref.) | 1.04 (0.68, 1.58) | 1.10 (0.74, 1.62) | 1.12 (0.76, 1.65) | 0.536 | 1.18 (1.01, 1.37) |
| Multivariate-adjusted HR 2 Model 1 | 1 (ref.) | 1.11 (0.73, 1.69) | 1.38 (0.93, 2.06) | 1.53 (1.04, 2.27) | 0.011 | 1.29 (1.10, 1.51) |
| Multivariate-adjusted HR 3 Model 2 | 1 (ref.) | 1.11 (0.72, 1.70) | 1.36 (0.91, 2.04) | 1.41 (0.95, 2.11) | 0.065 | 1.21 (1.03, 1.43) |
| BRI Quartiles | ||||||
|---|---|---|---|---|---|---|
| Q1 | Q2 | Q3 | Q4 | p-Trend | HR for +2 Units of BRI Increase | |
| Age < 60 y | ||||||
| n | 3035 | 2963 | 2984 | 2982 | ||
| BRI median (p25, p75) women | 1.9 (1.6, 2.1) | 2.5 (2.4, 2.7) | 3.2 (3.0, 3.5) | 4.5 (4.0, 5.2) | ||
| BRI median (p25, p75) men | 3.0 (2.6, 3.2) | 3.7 (2.6, 3.9) | 4.4 (4.2, 4.6) | 5.5 (5.2, 6.3) | ||
| Deaths | 28 | 40 | 65 | 84 | ||
| Person-years of follow-up | 52,904 | 52,007 | 52,122 | 50,640 | ||
| Crude rate (×10−3) | 0.5 | 0.8 | 1.2 | 1.7 | ||
| Crude HR | 1 (ref.) | 0.87 (0.53, 1.41) | 1.00 (0.64, 1.58) | 1.01 (0.65, 1.58) | 0.653 | 1.14 (0.94, 1.38) |
| Multivariate-adjusted HR 2 Model 1 | 1 (ref.) | 1.01 (0.62, 1.65) | 1.30 (0.82, 2.06) | 1.41 (0.90, 2.22) | 0.059 | 1.23 (1.00, 1.50) |
| Multivariate-adjusted HR 3 Model 2 | 1 (ref.) | 1.01 (0.62, 1.66) | 1.24 (0.78, 1.98) | 1.22 (0.77, 1.95) | 0.332 | 1.10 (0.88, 1.36) |
| Age ≥ 60 y | ||||||
| n | 171 | 169 | 169 | 169 | ||
| BRI median (p25, p75) women | 2.9 (2.6, 3.1) | 3.7 (3.6, 3.9) | 4.5 (4.2, 4.6) | 5.5 (5.2, 6.3) | ||
| BRI median (p25, p75) men | 3.8 (3.5, 4.1) | 4.6 (4.5, 4.8) | 5.3 (5.2, 5.5) | 6.1 (5.9, 6.9) | ||
| Deaths | 32 | 50 | 37 | 44 | ||
| Person-years of follow-up | 2779 | 2680 | 2673 | 2513 | ||
| Crude rate (×10−3) | 11.5 | 18.7 | 13.8 | 17.5 | ||
| Crude HR | 1 (ref.) | 1.46 (0.93, 2.29) | 1.23 (0.76, 1.99) | 1.46 (0.91, 2.32) | 0.202 | 1.38 (1.07, 1.77) |
| Multivariate-adjusted HR 2 Model 1 | 1 (ref.) | 1.48 (0.94, 2.32) | 1.23 (0.76, 1.99) | 1.70 (1.06, 2.72) | 0.060 | 1.41 (1.08, 1.83) |
| Multivariate-adjusted HR 3 Model 2 | 1 (ref.) | 1.61 (1.00, 2.60) | 1.19 (0.71, 2.00) | 1.64 (1.00, 2.70) | 0.132 | 1.31 (1.00, 1.72) |
| All | Age < 60 y | Age ≥ 60 y | ||||
|---|---|---|---|---|---|---|
| z-BRI | p | z-BRI | p | z-BRI | p | |
| n | 12,642 | 11,964 | 678 | |||
| Persons-year | 218,319 | 207,674 | 10,645 | |||
| Crude rate (×10−3) | 1.7 | 1.0 | 15,3 | |||
| Crude HR | 1.06 (0.96, 1.18) | 0.245 | 1.04 (0.91, 1.19) | 0.604 | 1.15 (0.97, 1.36) | 0.113 |
| Multivariate-adjusted HR 2 Model 1 | 1.17 (1.06, 1.30) | 0.003 | 1.14 (1.00, 1.30) | 0.052 | 1.24 (1.04, 1.48) | 0.016 |
| Multivariate-adjusted HR 3 Model 2 | 1.13 (1.01, 1.26) | 0.027 | 1.06 (0.92, 1.22) | 0.447 | 1.20 (1.00, 1.43) | 0.046 |
| A | ||||
| BRI Quartiles | Q1 | Q2 | Q3 | Q4 |
| BMI mean (SD) | 22.2 (2.4) | 22.5 (2.5) | 23.7 (2.7) | 26.4 (3.7) |
| Mortality HR | 1 (ref.) | 1.11 (0.72, 1.70) | 1.36 (0.91, 2.04) | 1.41 (0.95, 2.11) |
| B | ||||
| BMI Categories | Underweight (<20 kg/m2) | Normoweight (20–25 kg/m2) | Overweight (25–30 kg/m2) | Obese (>30 kg/m2) |
| BRI mean (SD) | 2.21 (0.74) | 3.10 (1.06) | 4.49 (1.27) | 6.31 (1.98) |
| BRI limits | 0.47–8.63 | 0.64–24.36 | 0.84–11.79 | 1.59–13.16 |
| Mortality HR | 1.64 (1.01, 2.65) | 1 (ref.) | 1.27 (0.99, 1.61) | 1.39 (0.94, 2.07) |
| All | Age ≥ 60 y | |||||
|---|---|---|---|---|---|---|
| n | Death n | HR (95% CI) 2 | n | Death n | HR (95% CI) 2 | |
| Main analysis 2 | 12,642 | 380 | 1.41 (0.95, 2.11) | 678 | 163 | 1.64 (1.00, 2.70) |
| Changing allowable energy limits out of usual 2 | 11,708 | 360 | 1.32 (0.88, 2.00) | 528 | 133 | 2.15 (1.18, 389) |
| Including only never smokers 2 | 6189 | 110 | 1.19 (0.60, 2.36) | 222 | 47 | 2.12 (0.75, 5.97) |
| Excluding participants with prevalent hypertension 2 | 11,261 | 238 | 1.32 (0.83, 2.09) | - | - | - |
| Excluding participants with prevalent diabetes 2 | 12,434 | 352 | 1.51 (1.00, 2.28) | 610 | 144 | 1.93 (1.14, 3.28) |
| Excluding participants with prevalent cancer 2 | 12,303 | 344 | 1.40 (0.93, 2.13) | 619 | 142 | 1.64 (0.95, 2.82) |
| Excluding participants with prevalent hypertriglyceridemia 2 | 11,785 | 308 | 1.54 (0.99, 2.40) | 532 | 127 | 1.82 (1.02, 3.25) |
| Excluding participants with prevalent hypercholesterolemia 2 | 10,416 | 257 | 1.49 (0.95, 2.35) | 407 | 104 | 1.46 (0.76, 2.77) |
| Excluding underweight participants | 10,797 | 358 | 1.61 (1.02, 2.55) | 672 | 163 | 1.72 (0.70, 4.24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez, L.J.; Sayon-Orea, C.; Toledo, E.; Bes-Rastrollo, M.; Donat-Vargas, C.; Barbagallo, M.; Martínez-González, M.A. Central Adiposity Assessed with Body Roundness Index and Mortality: The Seguimiento Universidad de Navarra Prospective Cohort. Geriatrics 2025, 10, 135. https://doi.org/10.3390/geriatrics10060135
Dominguez LJ, Sayon-Orea C, Toledo E, Bes-Rastrollo M, Donat-Vargas C, Barbagallo M, Martínez-González MA. Central Adiposity Assessed with Body Roundness Index and Mortality: The Seguimiento Universidad de Navarra Prospective Cohort. Geriatrics. 2025; 10(6):135. https://doi.org/10.3390/geriatrics10060135
Chicago/Turabian StyleDominguez, Ligia J., Carmen Sayon-Orea, Estefania Toledo, Maira Bes-Rastrollo, Carolina Donat-Vargas, Mario Barbagallo, and Miguel A. Martínez-González. 2025. "Central Adiposity Assessed with Body Roundness Index and Mortality: The Seguimiento Universidad de Navarra Prospective Cohort" Geriatrics 10, no. 6: 135. https://doi.org/10.3390/geriatrics10060135
APA StyleDominguez, L. J., Sayon-Orea, C., Toledo, E., Bes-Rastrollo, M., Donat-Vargas, C., Barbagallo, M., & Martínez-González, M. A. (2025). Central Adiposity Assessed with Body Roundness Index and Mortality: The Seguimiento Universidad de Navarra Prospective Cohort. Geriatrics, 10(6), 135. https://doi.org/10.3390/geriatrics10060135

